首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-homeostatic regulation of blood sugar concentration in the insect Manduca sexta L. was affected by nutritional status. Larvae maintained on diets lacking sucrose displayed low concentrations of trehalose, the blood sugar of insects, which varied from 5 to 15 mM with increasing dietary casein level between 12.5 and 75 g/l. These insects were glucogenic, as demonstrated by the selective 13C enrichment of trehalose synthesized from [3-13C]alanine, and de novo synthesis was the sole source of blood sugar. The distribution of 13C in glutamine established that following transamination of the 13C substituted substrate, [3-13C]pyruvate carboxylation rather than decarboxylation was the principal pathway of Pyr metabolism. The mean blood trehalose level was higher in insects maintained on diets with sucrose. At the lowest dietary casein level blood trehalose was approximately 50 mM, and declined to 20 mM at the highest casein level. Gluconeogenesis was detected in insects maintained on sucrose-free diets at the higher protein levels examined, but [3-13C]pyruvate decarboxylation and TCA cycle metabolism was the principal fate of [3-13C]alanine following transamination, and dietary carbohydrate was the principal source of glucose for trehalose synthesis. Feeding studies established a relationship between nutritional status, blood sugar level and dietary self-selection. Insects preconditioned by feeding on diets without sucrose had low blood sugar levels regardless of dietary casein level, and when subsequently given a choice between a sucrose diet or a casein diet, selected the former. Larvae preconditioned on a diet containing sucrose and the lowest level of casein had high blood sugar levels and subsequently selected the casein diet. Larvae maintained on the sucrose diet with the highest casein level had low blood sugar and self-selected the sucrose diet. When preconditioned on diets with sucrose and intermediate levels of casein, insects selected more equally between the sucrose and the casein diets. It is concluded that blood sugar level may be intimately involved in dietary self-selection by M. sexta larvae, and that in the absence of dietary carbohydrate, gluconeogenesis provides sufficient blood sugar to ensure that larvae choose a diet or diets that produce an optimal intake of dietary protein and carbohydrate.  相似文献   

2.
Metabolic alterations that accompany parasitism of invertebrate animals can play an important role in parasite development. Employing 13C NMR, this study examined pyruvate cycling from (2-(13)C)pyruvate in the lepidopteran insect Manduca sexta, and the effects of parasitism by the hymenopteran Cotesia congregata on the gluconeogenic formation of trehalose, the haemolymph or blood sugar of insects. Larvae were maintained on a semi-synthetic sucrose-free diet, or on the same diet with sucrose at 8.5 g/l. Pyruvate cycling was evident from the 13C enrichment in C3 of alanine, derived following carboxylation to oxaloacetate, and was similar in parasitized and normal insects regardless of diet. Trehalose was formed following de novo synthesis of glucose, and net synthesis was estimated from the 13C distribution in trehalose and alanine. The 13C-enrichment ratio [2trehalose C6/alanine C3] is an indicator of the level of gluconeogenesis relative to glycolysis, both enrichments were derived from (2-(13)C)pyruvate in the same manner. The ratio was greater than unity in all insects, regardless of diet, but was significantly greater in parasitized larvae, demonstrating an enhanced level of gluconeogenesis. This was confirmed by analysis of the 13C distribution in trehalose and glutamine derived from (3-(13)C)alanine. Despite enhanced de novo trehalose formation in parasitized insects, the haemolymph sugar level was similar to that of normal larvae. Because haemolymph trehalose regulates dietary carbohydrate intake, but not gluconeogenesis, the results suggest that accelerated induction of gluconeogenesis is an adaptive response to parasitism that provides increased carbohydrate for parasite growth and simultaneously maintains nutrient intake.  相似文献   

3.
Pyruvate cycling from (2-13C)pyruvate was detected in vivo in intact 5th instar Manduca sexta larvae by application of NMR spectroscopy. Cycling was evident from the enrichment of C3 in alanine following transamination of recycled pyruvate in larvae maintained on casein-based diets with or without sucrose. This metabolism is assumed to principally occur in the fat body. Analysis of 13C enriched metabolites released into the hemolymph indicated that isotopic dilution of recycled pyruvate was sufficiently great that further metabolism of the recycled metabolite did not occur to any significant extent under these dietary conditions. The C3/C2 13C-enrichment ratio of alanine, therefore, accurately reflected the relative degree of pyruvate cycling and indicated that the rate of cycling was approximately three-fold lower in larvae maintained on diets lacking sucrose. Moreover, based on the distribution of 13C in trehalose, these larvae displayed significantly greater rates of gluconeogenesis. Enrichment of C1, C2, C5 and C6 were principally due to carboxylation of the isotopically substituted substrate catalyzed by pyruvate carboxylase and, therefore, reflected net carbohydrate synthesis. Trehalose C3 and C4 enrichments were principally due to pyruvate dehydrogenase-catalyzed decarboxylation and reflected incorporation of label following metabolism through the TCA cycle. Pentose cycling following glucogenesis significantly affected the 13C distribution in trehalose in insects on both diets, and the relative intensity of trehalose C6 was, therefore, used for comparing the rates of gluconeogenesis and pyruvate cycling. Based on the 13C enrichment of trehalose C6 relative to C3 of alanine the mean rate of pyruvate cycling relative to the rate of gluconeogenesis was approximately 60% in larvae on the diet lacking sucrose, while the rate of pyruvate cycling in larvae maintained on the diet supplemented with sucrose was greater than the gluconeogenic flux. The results were consistent with the conclusion that pyruvate kinase likely plays an important role in regulating gluconeogenesis in M. sexta larvae.  相似文献   

4.
This study examined the effects of dietary casein and sucrose levels on nutrient intake, and distinguished the effects of carbohydrate and protein consumption on growth, fat content, pyruvate metabolism and blood trehalose level of 5th instar Manduca sexta larvae. Growth increased with increasing casein consumption but was unaffected by carbohydrate intake. Fat content also increased with carbohydrate consumption, but on carbohydrate-free diets fat content increased with increased protein consumption. Blood trehalose level and pyruvate metabolism were examined by nuclear magnetic resonance spectroscopy analysis of blood following administration of (3-(13)C)pyruvate. On diets containing sucrose, blood trehalose increased with increasing carbohydrate intake, and on most diets trehalose was synthesized entirely from dietary sucrose. Pyruvate cycling, indicated by the alanine C2/C3 (13)C enrichment ratio, increased with carbohydrate consumption reflecting increased glycolysis, and pyruvate decarboxylation exceeded carboxylation on all sucrose diets. Larvae that consumed <75 mg/day sucrose were gluconeogenic, based on the [2 (trehalose C6)(Glx C3/C2)]/alanine C2] (13)C enrichment ratio. On carbohydrate-free diets, blood trehalose levels were low and maintained entirely by gluconeogenesis. Blood trehalose level increased with increasing protein intake. Pyruvate cycling was very low, although many insects displayed higher levels of pyruvate decarboxylation than carboxylation. All gluconeogenic larvae displayed alanine (13)C enrichment ratios <0.35 and had blood trehalose levels <50 mM.  相似文献   

5.
Induction of gluconeogenesis is accelerated in larvae of the insect Manduca sexta L. parasitized by Cotesia congregata (Say), maintaining the concentration of the blood sugar trehalose, an important nutrient for parasite development. Investigation has demonstrated that when host larvae are offered a choice of diets with varying levels of sucrose and casein, parasitized insects consume a different balance of these nutrients, principally due to a decrease in protein consumption. The result is metabolic homeostasis, with normal unparasitized and parasitized larvae exhibiting similar levels of gluconeogenesis and blood sugar level. In the present study, normal unparasitized and parasitized larvae were maintained on individual chemically defined diets having the balance of protein and carbohydrate consumed by each when offered a dietary choice. Total dietary nutrient, the sum of carbohydrate and protein, was provided at six levels, composed of three pairs of diets. Each diet pair consisting of diets having equivalent overall nutrient ratios of 2:1 and 1:1 casein/sucrose. Host growth and diet consumption were significantly affected by dietary nutrient level and the magnitude of these effects was influenced by parasitism. Due to the effects of dietary nutrient level on diet consumption, none of the unparasitized and parasitized larvae within any of the three diet pairs consumed protein and carbohydrate at the levels predicted by the earlier choice experiments. Among insects on all of the diets, however, two groups of unparasitized and parasitized larvae consumed the expected levels of protein and carbohydrate. In each case, gluconeogenesis, as measured by 13C nuclear magnetic resonance spectroscopy (NMR) analysis of pyruvate cycling and trehalose synthesis from [2-13C]pyruvate, was evident in unparasitized and parasitized insects, confirming the conclusions of the earlier experiments. Generally, all larvae that consumed less than approximately 250 mg of sucrose over the 3-day feeding period, were gluconeogenic, regardless of diet. Differential carbohydrate consumption, therefore, was an important factor in inducing gluconeogenesis in both unparasitized and parasitized insects. The selective 13C enrichment in trehalose displayed by non-gluconeogenic larvae on some diets demonstrated trehalose formation from [2]pyruvate. The absence of net carbohydrate synthesis in these insects was likely due to an elevation of glycolysis. There was no significant effect of diet consumption or parasitism on blood trehalose level. Parasitized larvae displayed higher levels of gluconeogenesis than did unparasitized insects, a finding consistent with the conclusion that blood sugar is rapidly sequestered by developing parasites. The parasite burden, the total number of parasites developing within host larvae, as well as the number of parasites emerging from host larvae to complete development, was significantly less at the lowest dietary nutrient level, but was otherwise similar at all dietary nutrient levels. Moreover, the number of parasites that emerged increased with increasing diet consumption as reflected by host final weight.  相似文献   

6.
Gluconeogenesis and blood sugar formation were examined in Manduca sexta, fed carbohydrate- and fat-free diets with varying levels of casein. De novo carbohydrate synthesis was examined by nuclear magnetic resonance spectroscopy of the 13C enrichment in blood trehalose and alanine derived from (2-(13)C)pyruvate and (2,3-(13)C(2))pyruvate administered to 5th instar larvae. Gluconeogenic flux and blood trehalose concentration were positively correlated with protein consumption. On all diets, the 13C distribution in trehalose was asymmetric, with C6 more highly enriched than C1. The C6/C1 13C enrichment ratio, however, decreased with increased protein consumption and gluconeogenic flux. Although the asymmetric 13C enrichment pattern in trehalose is consistent with pentose cycling via the pentose phosphate pathway following de novo synthesis, experiments employing [2,3-(13)C(2)]pyruvate demonstrated that pentose cycling is not detected in insects under these nutritional conditions. Analysis of the multiplet NMR signal structure in trehalose due to spin-spin coupling between adjacent 13C enriched carbons showed the absence of uncoupling expected by pentose phosphate pathway activity. Here we suggest that the asymmetric 13C distribution in trehalose results from a disequilibrium of the triose phosphate isomerase-catalyzed reaction.  相似文献   

7.
Alterations of carbohydrate metabolism associated with parasitism were examined in an insect, Manduca sexta L. In insect larvae maintained on a low carbohydrate diet gluconeogenesis from [3-13C]alanine was established from the fractional 13C enrichment in trehalose, a disaccharide of glucose and the blood sugar of insects and other invertebrates. After transamination of the isotopically substituted substrate to [3-13C]pyruvate, the latter was carboxylated to oxaloacetate ultimately leading to de novo glucose synthesis and trehalose formation. Trehalose was selectively enriched with 13C at C1 and C6 followed by C2 and C5. 13C enrichment of blood sugar in insects parasitized by Cotesia congregata (Say) was significantly greater than was observed in normal animals. The relative contributions of pyruvate carboxylation and decarboxylation to trehalose labeling were determined from the 13C distribution in glutamine, synthesized as a byproduct of the tricarboxylic acid cycle. The relative contribution of carboxylation was significantly greater in parasitized larvae than in normal insects providing additional evidence of elevated gluconeogenesis due to parasitism. Despite the increased gluconeogenesis in parasitized insects the level of blood sugar was the same in all animals. Because de novo glucose synthesis does not normally maintain blood sugar level in insects maintained under these dietary conditions the findings suggest an aberrant regulation over gluconeogenesis. The 13C labeling in trehalose was nearly symmetric in all insects but the mean C1/C6 13C ratio was higher in parasitized animals suggesting a lower activity of the pentose phosphate pathway that brings about a redistribution of 13C in trehalose following de novo glucose synthesis. Additional studies with insects maintained on a high carbohydrate diet and administered [1,2-13C2]glucose confirmed a decreased level of pentose cycling during parasitism consistent with a lower level of lipogenesis. It is suggested, however, that the pentose pathway may facilitate the synthesis of trehalose from dietary carbohydrate by directing hexose phosphate cycled through the pathway to the production of energy.  相似文献   

8.
The present studies confirm that storage carbohydrate synthesis from [1-(13)C]glucose is elevated in Manduca sexta parasitized by Cotesia congregata, despite a decrease in the rate of metabolism of the labeled substrate. Further, the results demonstrate that a similar pattern of carbohydrate synthesis and glucose metabolism was induced in normal larvae by administration of the glycolytic inhibitor, iodoacetate. (13)C enrichment of C6 of trehalose and glycogen demonstrated randomization of the C1 label at the triose phosphate step of the glycolytic/gluconeogenic pathway and suggested that gluconeogenesis, that is, de novo carbohydrate formation, contributed to the synthesis of carbohydrate in both normal and parasitized insects. Accounting for differences in the (13)C enrichment in C1 of trehalose and glycogen due to direct labeling from [1-(13)C]glucose, the mean C6/C1 labeling ratios in trehalose and glycogen of parasitized larvae and insects treated with iodoacetate were greater than the mean ratio observed in normal larvae, suggesting a greater contribution of gluconeogenesis to trehalose labeling in parasitized insects. This conclusion was confirmed by additional investigations on the metabolism of [3-(13)C]alanine by normal and parasitized insects. The pattern of (13)C enrichment in hemolymph trehalose observed in normal larvae maintained on a low carbohydrate diet indicated a large contribution of gluconeogenesis, while gluconeogenesis contributed very little to trehalose labeling in normal insects maintained on a high carbohydrate diet. Parasitized insects maintained on a high or a low carbohydrate diet displayed a significantly greater contribution of gluconeogenesis to trehalose labeling than was observed in normal larvae maintained on the same diets. In conclusion, these investigations indicate that regulation over the utilization of dietary glucose for trehalose and glycogen synthesis as well as the dietary regulation of de novo carbohydrate synthesis were altered by parasitism.  相似文献   

9.
The effect of dietary composition (high-protein, high-carbohydrate and high-fat diets) and starvation on in totum gluconeogenesis from L-(U-14C)glutamate was studied in the rainbow trout. High-fat and high-carbohydrate diets produced a significant hyperglycaemia. Lower blood glucose values were obtained in trout fed on a high-protein diet. Liver glycogen levels were significantly lower in trout fed on carbohydrate-free diets (high-protein and high-fat diets) and in starved fish. Gluconeogenesis from L-(U-14C)glutamate was markedly reduced in fish given the high-carbohydrate diet and significantly enhanced in starved fish. Radioactive liver glycogen was higher in starved fish, although the amount of radioactivity incorporated into glycogen was very low.  相似文献   

10.
Dietary carbohydrate, the principal energy source for insects, also determines the level of the blood sugar trehalose. This disaccharide, a byproduct of glycolysis, occurs at highly variable concentrations that play a key role in regulating feeding behavior and growth. Little is known of how developing insects partition the metabolism of dietary carbohydrate to meet the needs for blood trehalose, ribose sugars and NADPH, as well as energy production. This study examined the effects of varying dietary sucrose levels between 3.4 and 34 g/l in an artificial diet on growth rate, depot fat content and blood sugar formation from (13)C-enriched glucose in Manduca sexta. (2-(13)C)Glucose or (1,2-(13)C(2))glucose were administered to larvae by injection and after 6 h blood was analyzed by nuclear magnetic resonance spectroscopy. [2-(13)C]Trehalose was the principal product of [2-(13)C]glucose, but trehalose was also (13)C-enriched at C1 and C3, demonstrating activity of the pentose phosphate pathway. The trehalose C1/C2 (13)C-enrichment ratio, a measure of the substrate cycled through the pentose pathway, significantly increased with increasing dietary sugar, and reached a mean of 0.22 at the highest level. Blood trehalose concentration increased from approximately 38 mM at the lowest dietary carbohydrate level to 75 mM at the highest. Moreover, blood trehalose, growth rate and depot fat all increased in precisely the same way in relation to the level of pentose cycling. Based on the multiplet (13)C-NMR signal structure of trehalose synthesized from [1,2-(13)C(2)]glucose by insects maintained on a high carbohydrate diet, it was established that the formation of trehalose from glucose phosphate derived directly from the administered substrate, with no involvement of the pentose pathway, was greater than that from glucose phosphate metabolized through the pentose pathway prior to trehalose synthesis. On the other hand, glucose phosphate first metabolized through the pentose pathway contributed more to pyruvate formation than did glucose phosphate formed from the labeled substrate metabolized directly to pyruvate via glycolysis; this finding based on the multiplet (13)C-NMR signal structure in alanine derived from pyruvate. The results suggest that as dietary carbohydrate increases blood sugar synthesis from glucose phosphate derived directly from dietary sugar is facilitated by the pentose pathway which provides an increasing amount of substrate to pyruvate formation.  相似文献   

11.
The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.  相似文献   

12.
1. Factors governing hepatic utilization of alanine were studied in vivo and in vitro in rats adapted to increasing dietary protein. 2. Hepatic alanine utilization was enhanced 5-fold with a 90%-casein diet, compared with a 13%-casein diet. The increased uptake resulted from enhanced fractional extraction in the presence of high concentrations of alanine in the portal vein. 3. The increase in alanine metabolism on high-protein diets was associated with an increase in alanine aminotransferase and in pyruvate utilization for gluconeogenesis. 4. The emergence of a high-affinity component appeared to be responsible for the enhanced transport of alanine with high-protein diets. 5. High extracellular concentrations after alanine loads resulted in a maximal rate of utilization and of accumulation of alanine by liver cells in vivo and in vitro. Alanine accumulation was particularly active with high-protein diets. 6. In starved rats, alanine transport was also increased, but low concentrations of alanine in afferent blood contributed to make transport limiting for alanine utilization. 7. In fed rats, the rates of transport and catabolism of alanine generally appear to undergo parallel changes; both processes thus play a fundamental role in the control of alanine utilization by the liver.  相似文献   

13.
14.
1. Glucose synthesis from lactate plus pyruvate and from lactate plus alanine was measured in the presence or absence of 1mM-oleate or 2mM-octanoate at low (2mM) or high (8mM) concentrations of NH4Cl. 2. Both fatty acids alone or with 2mM-NH4Cl doubled glucose production from lactate plus pyruvate. Glucose synthesis from lactate plus alanine, in the presence of oleate, was decreased 16% by 2mM-NH4Cl. 3. In the presence of fatty acids, 8mM-NH4Cl decreased gluconeogenesis by 60-65% from both lactate plus pyruvate and lactate plus alanine. This inhibition was correlated with a high accumulation of aspartate and a drastic decrease in 2-oxoglutarate and malate in the cells. 4. In the presence of 2mM- or 8 mM-NH4Cl, oleate and glucogenic precursors, the addition of 2.5mM-ornithine stimulated urea synthesis. 5. This was paralleled by a decrease of 16% in glucose synthesis from lactate plus pyruvate in the presence of 2mM-NH4Cl and had no effect at 8mM-NH4Cl. In the system producing glucose from lactate plus alanine, ornithine completely reversed the inhibition caused by 2mM-NH4Cl and only partly that by 8mM-NH4Cl. 6. Gluconeogenesis from pyruvate was also inhibited by 2mM-NH4Cl in the presence of oleate or ethanol. This way due to the decrease of malate, which is the C4 precursor of glucose in this system. 7. The limitation of gluconeogenesis by 2-oxoglutarate and malate concentrations in the liver cell and the competition for energy between glucose and urea synthesis is discussed.  相似文献   

15.
Inhibition of hepatic gluconeogenesis by ethanol   总被引:21,自引:10,他引:11       下载免费PDF全文
1. Gluconeogenesis from 10mm-lactate in the perfused liver of starved rats is inhibited by ethanol. The degree of inhibition reached a maximum of 66% at 10mm-ethanol under the test conditions and decreased at higher ethanol concentrations. The concentration-dependence of the inhibition is paralleled by the concentration-dependence of the activity of alcohol dehydrogenase. The enzyme is also inhibited by ethanol concentrations above 10mm. 2. Gluconeogenesis from pyruvate is not inhibited by ethanol. 3. The degree of the inhibition of gluconeogenesis from lactate by ethanol depends on the concentration of lactate and other oxidizable substances, e.g. oleate, in the perfusion medium. 4. Ethanol also inhibits, to different degrees, gluconeogenesis from glycerol, dihydroxyacetone, proline, serine, alanine, fructose and galactose. 5. The inhibition of gluconeogenesis from lactate by ethanol is reversed by acetaldehyde. 6. Pyrazole, a specific inhibitor of alcohol dehydrogenase, also reverses the inhibition of gluconeogenesis by ethanol. 7. Gluconeogenesis in kidney cortex, where the activity of alcohol dehydrogenase is very low, is not inhibited by ethanol. 8. Kidney cortex, testis, ovary, uterus and certain tissues of the alimentary tract were the only rat tissues, apart from the liver, that showed measurable alcohol dehydrogenase activity. 9. The concentrations of pyruvate in the liver were decreased to about one-fifth by ethanol. 10. The concentration of lactate in the perfused liver was about 3mm below that of the perfusion medium 30min. after the addition of 10mm-lactate. 11. The great majority of the findings support the view that the inhibition of gluconeogensis by ethanol is caused by the alcohol dehydrogenase reaction, which decreases the [free NAD(+)]/[free NADH] ratio. The decrease lowers the concentration of pyruvate and this is the immediate cause of the inhibition of gluconeogenesis from lactate, alanine and serine: the fall in the concentration of pyruvate lowers the rate of the pyruvate carboxylase reaction, one of the rate-limiting reactions of gluconeogenesis. The cause of the inhibition of gluconeogenesis from other substrates is discussed.  相似文献   

16.
The sensitivity of glucose production from L-lactate by isolated liver cells from starved rats to inhibition by alpha-cyano-4-hydroxycinnamate was studied. A small percentage of the maximal rate of gluconeogenesis was insensitive to inhibition by alpha-cyano-4-hydroxycinnamate, and evidence is presented to show that this is due to pyruvate entry into the mitochondria as alanine. After subtraction of this rate, Dixon plots of the reciprocal of the rate of gluconeogenesis against inhibitor concentration were linear both in the absence and presence of glucagon, phenylephrine or valinomycin, each of which stimulated gluconeogenesis by 30-50%. Pyruvate kinase activity was decreased by glucagon, but not by phenylephrine or valinomycin. Inhibition of gluconeogenesis by quinolinate (inhibitor of phosphoenolpyruvate carboxykinase) or monochloroacetate (probably inhibiting pyruvate carboxylation) caused a significant deviation from linearity of the Dixon plot obtained with alpha-cyano-4-hydroxycinnamate. Amytal, however, inhibited gluconeogenesis without affecting the linearity of this plot. These data, coupled with a computer simulation study, suggest that pyruvate transport may control gluconeogenesis from L-lactate and that hormones may stimulate this process through an effect on the respiratory chain. An additional role for pyruvate kinase and pyruvate carboxylase is quite compatible with the data presented.  相似文献   

17.
M J Geelen 《Life sciences》1977,20(6):1027-1034
Hepatocytes isolated from the liver of rats starved for two days synthesized glycogen only when incubated in the presence of both glucose and glucogenic precursors (combinations of alanine, glycerol, pyruvate, lactate or fructose). Unlabeled glucogenic precursors facilitated the incorporation of [U-14C]glucose into glycogen. Unlabeled glucose likewise greatly enhanced glycogen synthesis from isotopically labeled lactate and other glucogenic precursors.In those systems which contained no added endocrines glucose dampened glycogen phosphorylase activity in a cAMP-independent fashion. Fructose is unable to mimic the effects of glucose on glycogen deposition and on glycogen phosphorylase activity.  相似文献   

18.
3-Mercaptopicolinic acid, an inhibitor of gluconeogenesis   总被引:19,自引:16,他引:3  
1. 3-Mercaptopicolinic acid (SK&F 34288) inhibited gluconeogenesis in vitro, with lactate as substrate, in rat kidney-cortex and liver slices. 2. In perfused rat livers, gluconeogenesis was inhibited when lactate, pyruvate or alanine served as substrate, but not with fructose, suggesting pyruvate carboxylase or phosphoenolpyruvate carboxylase as the site of inhibition. No significant effects were evident in O(2) consumption, hepatic glycogen, urea production, or [lactate]/[pyruvate] ratios. 3. A hypoglycaemic effect was evident in vivo in starved and alloxan-diabetic rats, starved guinea pigs and starved mice, but not in 4h-post-absorptive rats. 4. In the starved rat the hypoglycaemia was accompanied by an increase in blood lactate. 5. A trace dose of [(14)C]lactate in vivo was initially oxidized to a lesser extent in inhibitor-treated rats, but during 90min the total CO(2) evolved was slightly greater. The total amount of the tracer oxidized was not significantly different from that in the controls.  相似文献   

19.
The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.  相似文献   

20.
1. In isolated rat hepatocytes incubated with pyruvate, ketogenesis increased with increasing pyruvate concentrations and decreased under the influence of 1 mM-alpha-cyano-4-hydroxycinnamate, a known inhibitor of pyruvate transport. Ketogenesis from pyruvate was higher by 30% in hepatocytes prepared from starved than from fed rats. 2. With pyruvate as substrate, 2 mM-dichloroacetate had no effect on ketogenesis of starved-rat hepatocytes, but increased ketogenesis of fed-rat hepatocytes to the 'starved' value. Gluconeogenesis from pyruvate, lactate and alanine, but not from glycerol, was inhibited by dichloroacetate. Both increased ketogenesis and decreased gluconeogenesis may result from an inhibition of pyruvate carboxylase by dichloroacetate. 3. Mitochondria were rapidly isolated from incubated hepatocytes, and [3-hydroxybutyrate]/[3-oxobutyrate] ratios were measured in the mitochondrial pellet ('mitochondrial' ratios) and in whole-cell suspensions ('total' ratios). Increasing pyruvate concentrations increased mitochondrial and decreased total ratios. In the presence of pyruvate (2 to 10 mM), dichloroacetate decreased mitochondrial and increased total ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号