首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alterations of carbohydrate metabolism associated with parasitism were examined in an insect, Manduca sexta L. In insect larvae maintained on a low carbohydrate diet gluconeogenesis from [3-13C]alanine was established from the fractional 13C enrichment in trehalose, a disaccharide of glucose and the blood sugar of insects and other invertebrates. After transamination of the isotopically substituted substrate to [3-13C]pyruvate, the latter was carboxylated to oxaloacetate ultimately leading to de novo glucose synthesis and trehalose formation. Trehalose was selectively enriched with 13C at C1 and C6 followed by C2 and C5. 13C enrichment of blood sugar in insects parasitized by Cotesia congregata (Say) was significantly greater than was observed in normal animals. The relative contributions of pyruvate carboxylation and decarboxylation to trehalose labeling were determined from the 13C distribution in glutamine, synthesized as a byproduct of the tricarboxylic acid cycle. The relative contribution of carboxylation was significantly greater in parasitized larvae than in normal insects providing additional evidence of elevated gluconeogenesis due to parasitism. Despite the increased gluconeogenesis in parasitized insects the level of blood sugar was the same in all animals. Because de novo glucose synthesis does not normally maintain blood sugar level in insects maintained under these dietary conditions the findings suggest an aberrant regulation over gluconeogenesis. The 13C labeling in trehalose was nearly symmetric in all insects but the mean C1/C6 13C ratio was higher in parasitized animals suggesting a lower activity of the pentose phosphate pathway that brings about a redistribution of 13C in trehalose following de novo glucose synthesis. Additional studies with insects maintained on a high carbohydrate diet and administered [1,2-13C2]glucose confirmed a decreased level of pentose cycling during parasitism consistent with a lower level of lipogenesis. It is suggested, however, that the pentose pathway may facilitate the synthesis of trehalose from dietary carbohydrate by directing hexose phosphate cycled through the pathway to the production of energy.  相似文献   

2.
The present studies confirm that storage carbohydrate synthesis from [1-(13)C]glucose is elevated in Manduca sexta parasitized by Cotesia congregata, despite a decrease in the rate of metabolism of the labeled substrate. Further, the results demonstrate that a similar pattern of carbohydrate synthesis and glucose metabolism was induced in normal larvae by administration of the glycolytic inhibitor, iodoacetate. (13)C enrichment of C6 of trehalose and glycogen demonstrated randomization of the C1 label at the triose phosphate step of the glycolytic/gluconeogenic pathway and suggested that gluconeogenesis, that is, de novo carbohydrate formation, contributed to the synthesis of carbohydrate in both normal and parasitized insects. Accounting for differences in the (13)C enrichment in C1 of trehalose and glycogen due to direct labeling from [1-(13)C]glucose, the mean C6/C1 labeling ratios in trehalose and glycogen of parasitized larvae and insects treated with iodoacetate were greater than the mean ratio observed in normal larvae, suggesting a greater contribution of gluconeogenesis to trehalose labeling in parasitized insects. This conclusion was confirmed by additional investigations on the metabolism of [3-(13)C]alanine by normal and parasitized insects. The pattern of (13)C enrichment in hemolymph trehalose observed in normal larvae maintained on a low carbohydrate diet indicated a large contribution of gluconeogenesis, while gluconeogenesis contributed very little to trehalose labeling in normal insects maintained on a high carbohydrate diet. Parasitized insects maintained on a high or a low carbohydrate diet displayed a significantly greater contribution of gluconeogenesis to trehalose labeling than was observed in normal larvae maintained on the same diets. In conclusion, these investigations indicate that regulation over the utilization of dietary glucose for trehalose and glycogen synthesis as well as the dietary regulation of de novo carbohydrate synthesis were altered by parasitism.  相似文献   

3.
Insect lysozyme from Manduca sexta (MS-lys) was overexpressed in E. coli and refolded to obtain active protein. Recombinant MS-lys presented a globular structure, with an alpha-helical content of 57% as assessed by circular dichroism spectroscopy. Light scattering studies showed that in solution MS-lys has a quasi-monodisperse size distribution, with a rod-like structure similar to nucleation clusters reported in egg lysozyme pre-crystallization stages. These results show that MS-lys is an excellent candidate for crystallization, folding and denaturation studies.  相似文献   

4.
Manduca sexta females that were decapitated produced no pheromone during the scotophase following decapitation, indicating that they were free of pheromone biosynthesis activating neuropeptide (PBAN). When deuterated hexadecanoic or (Z)-11-hexadecenoic acid was applied to the sex pheromone glands of decapitated or intact females of the same age, and allowed to incubate in vivo for 24 h, deuterium labeled Δ-11- and Δ-10, 12-unsaturated 16-carbon fatty acids were produced in both types of females. Injection of PBAN into intact or decapitated females 23 h after application of labeled acids had no effect on the production of unsaturated labeled fatty acids. However, deuterium labeled aldehydes were produced only in females that were injected with PBAN. Therefore, in this species, PBAN activates the process by which fatty acyl precursors in the pheromone gland are converted into the pheromonal aldehydes. © 1995 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    5.
    6.
    Paralytic peptide 1 (PP1) from a moth, Manduca sexta, is a 23-residue peptide (Glu-Asn-Phe-Ala-Gly-Gly-Cys-Ala-Thr-Gly-Tyr-Leu-Arg-Thr-Ala-Asp-Gly-Arg -Cys-Lys-Pro-Thr-Phe) that was first found to have paralytic activity when injected into M. sexta larvae. Recent studies demonstrated that PP1 also stimulated the spreading and aggregation of a blood cell type called plasmatocytes and inhibited bleeding from wounds. We determined the solution structure of PP1 by two-dimensional 1H NMR spectroscopy to begin to understand structural-functional relationships of this peptide. PP1 has an ordered structure, which is composed of a short antiparallel beta-sheet at residues Tyr11-Thr14 and Arg18-Pro21, three beta turns at residues Phe3-Gly6, Ala8-Tyr11 and Thr14-Gly17, and a half turn at the carboxyl-terminus (residues Lys20-Phe23). The well-defined secondary and tertiary structure was stabilized by hydrogen bonding and side-chain hydrophobic interactions. In comparison with two related insect peptides, whose structures have been solved recently, the amino-terminal region of PP1 is substantially more ordered. The short antiparallel beta-sheet of PP1 has a folding pattern similar to the carboxyl-terminal subdomain of epidermal growth factor (EGF). Therefore, PP1 may interact with EGF receptor-like molecules to trigger its different biological activities.  相似文献   

    7.
    The purpose of this study is to look for structural correlates of the demonstrated nicotine-insensitivity of larval Manduca sexta CNS, an insensitivity which is only slightly perturbed by desheathing (a technique used to disrupt perineurial diffusion barriers). The general organization of the hornworm ganglion is found to conform to the conventional insect pattern, but the following points are noted and discussed in terms of their potential relationship to nicotine-insensitivity: the damage caused to perineurial cells by desheathing is extremely localized, with cells immediately adjacent to the torn region showing good ultrastructural integrity; ionic lanthanum does not gain access to the subperineurial extracellular space following desheathing; lanthanum penetrates the ganglion in the cytoplasm of tracheal cells damaged peripherally during desheathing, but is excluded from the extracellular space surrounding such tracheal cells; smooth endoplasmic reticulum is much in evidence in perineurial cells and tracheal cells, sites where it might be implicated in nicotine detoxification; individual basal perineurial cells appear to cover extensive regions of the ganglion, thereby limiting intercellular diffusion.  相似文献   

    8.
    In their encounters with foreign intruders, the cells of the insect innate immune system, like those of the mammalian immune system, exhibit both humoral and cell-mediated responses. Some intruders can be dispatched by the humoral immune system alone, but many must be phagocytosed by individual hemocytes or encapsulated by interacting hemocytes. Surface proteins of hemocytes control the abrupt transition of hemocytes from resting, nonadherent cells to activated, adherent cells during these cell-mediated responses. Two of these surface proteins, an integrin and a tetraspanin, interact during this adhesive transition. As demonstrated with a hemocyte adhesion assay and a surface plasmon resonance assay, the large extracellular loop of tetraspanin D76 binds to a hemocyte-specific integrin of Manduca sexta. The interaction between the large extracellular loop domain and hemocyte-specific integrin is interrupted not only by a monoclonal antibody (MS13) that binds to a domain of beta-integrin known to be a ligand-binding site for cell adhesion but also by double-stranded beta-integrin RNA. Transfected S2 cells expressing tetraspanin mediate adhesion of hemocytes. A monoclonal antibody to tetraspanin D76 perturbs the cell-mediated immune response of encapsulation. These studies involving antibody blocking, RNA interference, and binding assays imply a trans interaction of integrin and tetraspanin on hemocyte surfaces.  相似文献   

    9.
    Odor-modulated upwind flight of the sphinx moth,Manduca sexta L.   总被引:1,自引:0,他引:1  
    1. Male and female Manduca sexta flew upwind in response to the odor of female sex-pheromone gland extract or fresh tobacco leaf respectively, and generated very similar zigzagging tracks along the odor plume. 2. After loss of odor during flight, males and females alike: (1) first flew slower and steered their flight more across the wind, then (2) stopped moving upwind, and finally (3) regressed downwind. 3. Males flying upwind in a pheromone plume in wind of different velocities maintained their ground speed near a relatively constant 'preferred' value by increasing their air speed as the velocity of the wind increased, and also maintained the average angle of their resultant flight tracks with respect to the wind at a preferred value by steering a course more precisely due upwind. 4. The inter-turn duration and turn rate, two measures of the temporal aspects of the flight track, were maintained, on average, with remarkable consistency across all wind velocities and in both sexes. The inter-turn durations also decreased significantly as moths approached the odor source, suggesting modulation of the temporal pattern of turning by some feature of the odor plume. This temporal regularity of turning appears to be one of the most stereotyped features of odor-modulated flight in M. sexta.  相似文献   

    10.
    Aminopeptidase N (APN; EC 3.4.11.2) is an exopeptidase that is attached to cell membranes by a hydrophobic amino-terminal stalk in vertebrates or a glycosylphosphatidylinositol (GPI) anchor in insects. In this study, we report the cloning, expression, and characterization of an aminopeptidase N from Manduca sexta midgut. The full-length aminopeptidase N cDNA (APN1a) encodes a 995-amino-acid protein. The predicted amino acid sequence differs by 8 amino acids from M. sexta APN1. These different amino acids do not modify any putative glycosylation or glycosylphosphatidylinositol anchor sites. The full-length cDNA was cloned into an expression plasmid, pHSP-HR5, and transiently expressed in an insect cell line derived from Spodoptera frugiperda (Sf21 cells). Immunoblot analysis with anti-APN antiserum showed that APN1a expressed in Sf21 cells is the same size (120 kDa) as APN found in midgut brush border membranes. After treatment with phosphatidylinositol-specific phospholipase C (PIPLC), anti-cross-reacting determinant antibody specific for PIPLC cleavage products recognized the expressed 120-kDa APN1a, but not endogenous Sf21 proteins, indicating that APN1a has an intact glycosylphosphatidylinositol anchor. These results are evidence that Sf21 cells synthesize few, if any, endogenous GPI-linked proteins. Immunofluorescence staining showed that the expressed APN1a was located on the surface of Sf21 cells.  相似文献   

    11.
    Octopamine (OA) is present in insect nervous tissue, but little is known about its biosynthesis. In the CNS of Manduca sexta, OA levels increase markedly during postembryonic adult development. To study this increase, we developed an assay for tyramine-beta-hydroxylase, the putatively rate-limiting enzyme for OA biosynthesis. Tyramine-beta-hydroxylase activity in extracts of M. sexta CNS tissue: (1) was time- and protein-dependent, and with protein concentrations up to 2 microg/microl, was linear for 20 min; (2) had a pH optimum of 7.0 for conversion of tyramine to OA; (3) required ascorbate, copper, and catalase; and (4) had an apparent K(M, tyramine) of 0.22+/-0.04 mM. These characteristics resemble those of the mammalian enzyme dopamine-beta-hydroxylase, suggesting that these two enzymes are functionally related. During adult development, tyramine-beta-hydroxylase activity increased 11-fold in the brain and 9-fold in the abdominal ganglia, paralleling increases in OA levels in those CNS structures during metamorphosis. The apparent kinetic constants of tyramine-beta-hydroxylase suggested that the amount of this enzyme present in the tissues increases. The increase in OA levels during adult development thus appears to be due to an increase in the level of enzyme available for OA synthesis and may reflect an increase in the number of octopaminergic neurons.  相似文献   

    12.
    Hemolymph lipoproteins (lipophorins) of adult Manduca sexta are disinct from larval forms in density, lipid content, composition, and the presence of a third, low molecular weight apoprotein. Generally, only one lipoprotein species exists in M. sexta hemolymph during any given life stage. Progression through the life cycle results in alterations of existing lipoproteins to produce new forms, without new protein synthesis. The observed alterations in lipoprotein density could result from facilitated lipid transfer in insect hemolymph. An in vitro assay of facilitated lipid transfer was developed which employs a high density lipophorin from the wandering larva (density = 1.18 g/ml) as acceptor and adult low density lipophorin (density = 1.03 g/ml) as donor. Adult lipophorin-deficient hemolymph was shown to catalyze a time-dependent equilibration of the starting lipoproteins to produce a new intermediate lipophorin, Lp-I. Hydrodynamic experiments on the donor, acceptor, and product lipoproteins excluded fusion as the mechanism whereby Lp-I is produced. Thus, it is concluded that Lp-I results from facilitated net lipid transfer from low to high density lipoprotein. Furthermore, experiments conducted with radioiodinated donor and radioiodinated acceptor lipoproteins demonstrated that apoprotein exchange does not occur during the lipid transfer reaction. When donor lipoprotein was labeled in the lipid moiety with carbon-14, evidence of diacylglycerol and phospholipid exchange was obtained. Partial characterization of the lipid transfer factor revealed a relationship between incubation time, donor concentration, acceptor concentration, lipophorin-deficient hemolymph concentration, and transfer activity, as measured by Lp-I production. It is concluded that lipophorin-deficient hemolymph contains one or more factor(s) that catalyze net lipid transfer as well as diacylglycerol and phospholipid exchange between lipophorins to produce a single form at equilibrium.  相似文献   

    13.
    The non-homeostatic regulation of blood sugar concentration in the insect Manduca sexta L. was affected by nutritional status. Larvae maintained on diets lacking sucrose displayed low concentrations of trehalose, the blood sugar of insects, which varied from 5 to 15 mM with increasing dietary casein level between 12.5 and 75 g/l. These insects were glucogenic, as demonstrated by the selective 13C enrichment of trehalose synthesized from [3-13C]alanine, and de novo synthesis was the sole source of blood sugar. The distribution of 13C in glutamine established that following transamination of the 13C substituted substrate, [3-13C]pyruvate carboxylation rather than decarboxylation was the principal pathway of Pyr metabolism. The mean blood trehalose level was higher in insects maintained on diets with sucrose. At the lowest dietary casein level blood trehalose was approximately 50 mM, and declined to 20 mM at the highest casein level. Gluconeogenesis was detected in insects maintained on sucrose-free diets at the higher protein levels examined, but [3-13C]pyruvate decarboxylation and TCA cycle metabolism was the principal fate of [3-13C]alanine following transamination, and dietary carbohydrate was the principal source of glucose for trehalose synthesis. Feeding studies established a relationship between nutritional status, blood sugar level and dietary self-selection. Insects preconditioned by feeding on diets without sucrose had low blood sugar levels regardless of dietary casein level, and when subsequently given a choice between a sucrose diet or a casein diet, selected the former. Larvae preconditioned on a diet containing sucrose and the lowest level of casein had high blood sugar levels and subsequently selected the casein diet. Larvae maintained on the sucrose diet with the highest casein level had low blood sugar and self-selected the sucrose diet. When preconditioned on diets with sucrose and intermediate levels of casein, insects selected more equally between the sucrose and the casein diets. It is concluded that blood sugar level may be intimately involved in dietary self-selection by M. sexta larvae, and that in the absence of dietary carbohydrate, gluconeogenesis provides sufficient blood sugar to ensure that larvae choose a diet or diets that produce an optimal intake of dietary protein and carbohydrate.  相似文献   

    14.
    El-Salhy  M.  Falkmer  S.  Kramer  K. J.  Speirs  R. D. 《Cell and tissue research》1983,232(2):295-317
    In the brain of adult specimens of the tobacco hornworm moth, Manduca sexta (L), cells immunoreactive for several kinds of neuropeptides were localized by means of the PAP procedure, by use of antisera raised against mammalian hormones or hormonal peptides. In contrast, no such neurosecretory cells were found in the corpora cardiaca and corpora allata (CC/CA); in the CC/CA, however, immunoreactive nerve fibres were observed, reaching these organs from the brain. The neurosecretory cells found in the brain were immunoreactive with at least one of the following mammalian antisera, namely those raised against the insulin B-chain, somatostatin, glucagon C-terminal, glucagon N-terminal, pancreatic polypeptide (PP), secretin, vasoactive intestinal polypeptide (VIP), glucose-dependent insulinotropic peptide (GIP), gastrin C-terminus, enkephalin, alpha- and beta-endorphin, Substance P, and calcitonin. No cells were immunoreactive with antisera specific for detecting neurons containing the insulin A-chain, nerve growth factor, epidermal growth factor, insulin connecting peptide (C-peptide), polypeptide YY (PYY), gastrin mid-portion (sequence 6-13), cholecystokinin (CCK) mid-portion (sequences 9-20 and 9-25), neurotensin C-terminus, bombesin, motilin, ACTH, or serotonin. All the neuropeptide-immunoreactive cells observed emitted nerve fibers passing through the brain to the CC and in some cases also to the CA. In CC these immunoreactive nerve fibers tended to accumulate near the aorta. It was speculated that neuropeptides are released into the circulating haemolymph and act as neurohormones.  相似文献   

    15.
    A lipoprotein receptor has been purified from the fat body of Manduca sexta larvae. The purification involves solubilization of membrane proteins in detergent, DEAE-, and hydroxyapatite chromatography, affinity chromatography on a concanavalin A column, and affinity chromatography on a lipoprotein-Sepharose column. An overall purification of 220-fold from the solubilized membranes was achieved. The receptor has an apparent molecular mass of 120 kDa. The receptor has an absolute requirement for Ca2+ and is inhibited by Suramin. The pH optimum of the receptor is 6.5, which is near the pH of the hemolymph. Binding data indicate a single high affinity binding site with a Kd = 4.1 +/- 0.19 x 10(-8) M as measured with the lipoprotein isolated from larval hemolymph. The major neutral lipid carried by insect lipoproteins is diacylglycerol, and it was shown that the affinity of the receptor for lipoprotein ligands correlates with their diacylglycerol content. It is proposed that the decrease in affinity of the receptor for lipoproteins depleted of diacylglycerol plays a key role in facilitating the transport of diacylglycerol from the midgut to the fat body during the larval feeding period. The insect receptor has some properties which are similar to those of vertebrate lipoprotein receptors, viz. molecular weight, requirement for Ca2+, and inhibition by Suramin. However, the insect receptor does not bind human low density lipoprotein.  相似文献   

    16.
    Induction of gluconeogenesis is accelerated in larvae of the insect Manduca sexta L. parasitized by Cotesia congregata (Say), maintaining the concentration of the blood sugar trehalose, an important nutrient for parasite development. Investigation has demonstrated that when host larvae are offered a choice of diets with varying levels of sucrose and casein, parasitized insects consume a different balance of these nutrients, principally due to a decrease in protein consumption. The result is metabolic homeostasis, with normal unparasitized and parasitized larvae exhibiting similar levels of gluconeogenesis and blood sugar level. In the present study, normal unparasitized and parasitized larvae were maintained on individual chemically defined diets having the balance of protein and carbohydrate consumed by each when offered a dietary choice. Total dietary nutrient, the sum of carbohydrate and protein, was provided at six levels, composed of three pairs of diets. Each diet pair consisting of diets having equivalent overall nutrient ratios of 2:1 and 1:1 casein/sucrose. Host growth and diet consumption were significantly affected by dietary nutrient level and the magnitude of these effects was influenced by parasitism. Due to the effects of dietary nutrient level on diet consumption, none of the unparasitized and parasitized larvae within any of the three diet pairs consumed protein and carbohydrate at the levels predicted by the earlier choice experiments. Among insects on all of the diets, however, two groups of unparasitized and parasitized larvae consumed the expected levels of protein and carbohydrate. In each case, gluconeogenesis, as measured by 13C nuclear magnetic resonance spectroscopy (NMR) analysis of pyruvate cycling and trehalose synthesis from [2-13C]pyruvate, was evident in unparasitized and parasitized insects, confirming the conclusions of the earlier experiments. Generally, all larvae that consumed less than approximately 250 mg of sucrose over the 3-day feeding period, were gluconeogenic, regardless of diet. Differential carbohydrate consumption, therefore, was an important factor in inducing gluconeogenesis in both unparasitized and parasitized insects. The selective 13C enrichment in trehalose displayed by non-gluconeogenic larvae on some diets demonstrated trehalose formation from [2]pyruvate. The absence of net carbohydrate synthesis in these insects was likely due to an elevation of glycolysis. There was no significant effect of diet consumption or parasitism on blood trehalose level. Parasitized larvae displayed higher levels of gluconeogenesis than did unparasitized insects, a finding consistent with the conclusion that blood sugar is rapidly sequestered by developing parasites. The parasite burden, the total number of parasites developing within host larvae, as well as the number of parasites emerging from host larvae to complete development, was significantly less at the lowest dietary nutrient level, but was otherwise similar at all dietary nutrient levels. Moreover, the number of parasites that emerged increased with increasing diet consumption as reflected by host final weight.  相似文献   

    17.
    The ability of olfactory receptor neurons to detect female-produced sex pheromone components and a limited sample of potential host plant odours was studied by single-sensillum recordings from olfactory sensilla present on male and female antennae in Manduca sexta. The majority of pheromone-sensitive receptor neurons examined in males was specialized for detection of the two major pheromone components, E10,Z12-hexadecadienal and E10,E12,Z14-hexadecatrienal or E10,E12,E14-hexadecatrienal. New olfactory receptor neurons tuned to the minor components E10,E12-hexadecadienal and Z11-hexadecenal were found. In females, olfactory receptor neurons specific to Z11-hexadecanal were discovered. Pheromone components and host volatiles were detected by separate sets of receptor neurons.  相似文献   

    18.
    The technique of steroid hormone autoradiography has been used to study the cellular distribution of ecdysteroid binding sites in the ventral nervous system of the tobacco hornworm moth, Manduca sexta. The ligand was 26-[125I]iodoponasterone. Tissue was examined from the subesophageal ganglia, thoracic ganglia, and abdominal ganglia of larvae at two times during the larval-pupal transient: the 2nd day of wandering and the prepupal stage. The patterns of neuronal binding seen were compared with those found in earlier autoradiographic studies of hormone binding in tissue sampled on the 1st day of wandering, in the pharate adult, and in the 4-day-old moth (Fahrbach and Truman, '89). The pattern of binding was reproducible but dependent upon developmental stage: whereas only a subset of neurons exhibited nuclear accumulation of radiolabeled ecdysteroids on the 1st day of wandering, less than 24 hours later nearly every neuron in the ventral nervous system was labeled. A limited pattern of binding, however, was seen again in the prepupal nervous system. Thus, the insect nervous system is able to use a single hormone both as a general cue for metamorphic development and as a single targeted to stage-specific subsets of neurons by alternating periods of ubiquitous expression of receptor with periods during which the capacity to bind the steroid hormone is highly restricted.  相似文献   

    19.
    Early on, we reported the partial purification of prophenoloxidase-activating proteinase-1 (PAP-1) from the tobacco hornworm, Manduca sexta [Proc. Natl. Acad. Sci. USA 95 (1998) 12220]. PAP-1 requires an auxiliary factor for generating active phenoloxidase (PO) [Insect Biochem. Mol. Biol. 33 (2003) 197; Insect Biochem. Mol. Biol. 34 (2004) 731]. To further characterize their roles in the proteolytic activation of prophenoloxidase (proPO), we purified PAP-1 to near homogeneity by hydroxylapatite, dextran sulfate, gel filtration, and lectin affinity chromatography. With 2.4 x 10(3)-fold purification and 20% yield, we obtained 63 microg PAP-1 from about 120 M. sexta prepupal cuticles (approximately 400 g). The purified glycoprotein (Mr=39,810+/-20; pI=5.6) had the highest amidase activity at pH 8.0 and a low salt concentration. The optimal conditions for proPO activation by PAP-1 and SPHs were: pH 8.0-8.4, PAP:SPH=1.5:1, and 0-10 degrees C for 40-50 min. While PAP-1 and SPHs are reasonably heat stable, PO activity generated after 1h incubation was lower at 20 or 30 degrees C than 0-10 degrees C because activated PO was unstable at a higher temperature. The KMs of PAP-1 toward IEARpNA and proPO were 201+/-18 microM and 16.6+/-3.0 microg/ml, respectively, and the absence of SPHs did not significantly affect KM for the synthetic substrate. PO activity and proPO cleavage were reduced in reaction mixtures containing the same amounts of proPO, PAP-1, and SPHs but increasing concentrations of NaCl. Ionic strength of the reaction buffer may reduce proPO-PAP-SPH interactions, proPO processing, and PO assembly.  相似文献   

    20.
    Phenoloxidase (PO)-catalyzed reactions are crucial to the survival of insects after a pathogen or parasite infection. In Manduca sexta, active PO is generated from its precursor by a prophenoloxidase activating proteinase (PAP) in the presence of non-catalytic serine proteinase homologs (SPHs). The PAP and SPHs, located at the ends of a branched proteinase cascade, also require limited proteolysis to become functional. While the processing enzyme of M. sexta proPAP-2 and proPAP-3 is known, we are now investigating the proteolytic activation of proSPH-1 and proSPH-2. Here, we report the development of a series of Bac-to-Bac plasmid vectors for co-expression, secretion, and affinity purification of proSPH-1 and proSPH-2 from insect cells infected by one baculovirus. The purified proteins were characterized and used as substrates in a search for their activating enzymes in plasma of the larvae injected with microorganisms. Proteolytic processing occurred after the proSPHs had been incubated with hydroxyapatite or gel filtration column fractions. The cleaved proteins were active as a cofactor for proPO activation by PAP, and coexistence of SPH-1 and SPH-2 is essential for manifesting the auxiliary effect.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号