首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagenase released from rheumatoid synovial cells in culture is in a latent form. Subsequently, it may be activated by limited proteolysis. This study was designed to determine whether latent enzyme could bind to collagen fibrils and await activation. The data showed that latent collagenase bound to fibrils equally well at 24 degrees C and 37 degrees C, but that this represented little more than half the binding achieved by active enzyme at temperatures lower than that at which fibrils can be degraded. Binding was not inhibited by the presence of alpha2 macroglobulin, the principal proteinase inhibitor of plasma which cannot complex with inactive or latent collagenase but readily complexes with active species of enzyme. The data support the hypotheses that inactive forms of collagenase accumulate in tissues by binding to substrate, and that activation by proteases such as plasmin initiates collagen breakdown.  相似文献   

2.
1. Collagenase (EC 3.4.24.3) is released from bovine gingival explants in vitro as a zymogen. The zymogen does not hydrolyze collagen and does not form a complex with alpha2-macroglobulin (alpha2-M). It elutes in gel filtration with an apparent molecular weight of approx. 80 000. 2. Incubation of the zymogen with trypsin results in a 15 000-20 000 dalton decrease in molecular weight and imparts to the enzyme the ability to hydrolyze collagen and to form a complex with alppha2-M. 3. The zymogen can be completely separated from the active enzyme to alpha2-M. Likewise, the zymogen can be harvested from cultures supplemented with serum.  相似文献   

3.
Tadpole collagenase hydrolyzed native and denatured collagen and synthetic peptides with sequences of 2,4-dinitrophenyl-L-prolyl-L-leucylglycyl-L-isoleucyl-L-alanylglycyl-L-arginie amide and 2,4-dinitrophenyl-L-prolyl-L-glutaminyl-glycyl-L-isoleucyl-L-alanylglycyl-L-glutaminyl-D-arginine. The specific enzyme activity against the latter substrate and collagen fibrils is found to be 933 nmol/min per mg protein and 8440 units (microgram collagen degraded/min), respectively. Optimum pH for the enzyme is 7.5-8.5. A collagenase complex with alpha2-macroglobulin did not hydrolyze collagen fibrils, but digested the synthetic substrates at the Gly-Ile bond. The amino acid composition of the enzyme was determined. Immunoelectrophoresis of the enzyme at pH 8.6 against anti-tadpole collagenase rabbit immunoglobulin G shows a single precipitin line at a position migrating faster than human serum albumin and corresponding to enzyme activity against collagen fibril and synthetic substrates.  相似文献   

4.
Latent and active collagenase were extracted from human polymorphonuclear leukocytes. Separation of the two forms of the enzyme was performed by gel filtration on Sepharose 6 B. The latent form of the enzyme was detected from chromatographic fractions after a brief treatment with trypsin or exposure of the fractions to the sulfhydryl reagent phenylmercuric chloride. Latent enzyme eluted before active enzyme from the column, indicating a higher apparent molecular weight. Partially purified latent enzyme exhibited an apparent molecular size of 70-75 kDa as estimated by gel filtration. A value of 50-55 kDa was obtained for active enzyme. Without activation the latent enzyme did not degrade soluble collagen substrate. This was demonstrated by a quantitative viscometric assay and also by sodium dodecyl sulfate polyacrylamide gel electrophoresis, when no typical cleavage products of collagen could be seen. Latent enzyme could not be obtained unless serine protease inhibitors were present during the extraction and purification procedures. The effects of the activators trypsin, phenylmercuric chloride, phenylmethyl sulfonyltrypsin, and N-ethylmaleimide on the latent human polymorphonuclear leukocyte collagenase were studied. Contrary to the suggestion that inactive proteases activate latent human polymorphonuclear leukocyte collagenase, the inactive phenylmethyl sulfonyl-trypsin could not activate latent collagenase.  相似文献   

5.
1. Experiments were performed to determine whether the specific collagenases and other metal proteinases are bound and inhibited by alpha(2)-macroglobulin, as are endopeptidases of other classes. 2. A specific collagenase from rabbit synovial cells was inhibited by human serum. The inhibition could be attributed entirely to alpha(2)-macroglobulin; alpha(1)-trypsin inhibitor was not inhibitory. alpha(2)-Macroglobulin presaturated with trypsin or cathepsin B1 did not inhibit collagenase, and pretreatment of alpha(2)-macroglobulin with collagenase prevented subsequent reaction with trypsin. The binding of collagenase by alpha(2)-macroglobulin was not reversible in gel chromatography. 3. The collagenolytic activity of several rheumatoid synovial fluids was completely inhibited by incubation of the fluids with alpha(2)-macroglobulin. 4. The collagenase of human polymorphonuclear-leucocyte granules showed time-dependent inhibition by alpha(2)-macroglobulin. 5. The collagenolytic metal proteinase of Crotalus atrox venom was inhibited by alpha(2)-macroglobulin. 6. The collagenase of Clostridium histolyticum was bound by alpha(2)-macroglobulin, and inhibited more strongly with respect to collagen than with respect to a peptide substrate. 7. Thermolysin, the metal proteinase of Bacillus thermoproteolyticus, was bound and inhibited by alpha(2)-macroglobulin. 8. It was shown by polyacrylamidegel electrophoresis of reduced alpha(2)-macroglobulin in the presence of sodium dodecyl sulphate that synovial-cell collagenase, clostridial collagenase and thermolysin cleave the quarter subunit of alpha(2)-macroglobulin near its mid-point, as do serine proteinases. 9. The results are discussed in relation to previous work, and it is concluded that the characteristics of interaction of the metal proteinases with alpha(2)-macroglobulin are the same as those of other proteinases.  相似文献   

6.
Collagenase released from rheumatoid synivial cells in culture is in a latent form. Subsequently, it may be activated by limited proteolysis. This study was designed to determine whether latent enzyme could bind to collagen fibrils and await activation. The data showed that latent collagenase bound to fibrils equally well at 24°C and 37°C, but that this represented little more than half the binding achieved by active enzyme at temperatures lower than that at which fibril can be degraded. Binding was not inhibited by the presence of α2 macroglobulin, the principal proteinase inhibitor of plasma which cannot complex with inactive or latent collagenase but readily complexes with active species of enzyme. The data support the hypotheses that inactive forms of collagenase accumulate in tissues by binding the substrate, and that activation by proteases such as plasmin intiates collagen breakdown.  相似文献   

7.
1. Explants of dog gingiva, maintained in culture for 9 days in the absence of serum, released a collagenase (EC 3.4.24.3) into the medium. The yield of active enzyme reached a maximum after 5-8 days with concomitant release of collagen degradation products from the explants. 2. The enzyme attacked undenatured collagen in solution at 25 degrees C resulting in a 58% loss of specific viscosity and producing the two characteristic products TCA(3/4) and TCB(1/4). Electron microscopy of segment-long-spacing crystallites of these reaction products showed the cleavage locus of the collagen molecule at interband 40. 3. Optimal enzyme activity was observed over the pH range 7.5-8.5 and a molecular weight of approximately 35,000 was derived from gel filtration studies. EDTA, 1,10-phenanthroline, cysteine and dithiothreitol all inhibited collagenase activity. Proteoglycan derived from porcine and human cartilage did not inhibit the enzyme. 4. The enzyme was inhibited by the dog serum proteins alpha2-macroglobulin and a smaller component of molecular weight approximately 40,000. This small component was purified by column chromatography utilising Sephadex G-200, DEAE A-50, and G-100 (superfine grade). Agarose electrophoresis of the purified component showed it to represent a beta-serum protein. alpha1-Antitrypsin did not inhibit the enzyme. 5. The physiological importance of the natural serum inhibitors and gingival collagenase are discussed in relation to latent enzyme and periodontal disease.  相似文献   

8.
Summary In order to obtain a unified concept on the physiological role of collagenase in collagen metabolism in tissues of each species, possible problems in the isolation and characterization of collagenase from tissue explants are described with special references to the effects of ionic strength and concomitant tissue components.Although vertebrate collagenase can be isolated directly from tissues rich in collagen fibers including basement lamella of tadpole skin, rat dermis and human rheumatoid synovial membrane, a significant fraction of the enzyme remains in a tightly bound form with collagen substrate in the tissues.The significance of serum 2-macroglobulin in the regulation of collagenase activityin vivo has been demonstrated by the isolation of a complex of collagenase with 2-macroglobulin from human rheumatoid synovial fluid. The relationship between the amount of enzymatically inactive (latent) collagenase and the degree of articular destruction in various joint diseases is discussed.an invited article.  相似文献   

9.
Culture of human dermal fibroblasts within a three-dimensional matrix composed of native type I collagen fibrils is widely used to study the cellular responses to the extracellular matrix. Upon contact with native type I collagen fibrils human skin fibroblasts activate latent 72-kDa type IV collagenase/ gelatinase (MMP-2) to its active 59- and 62-kDa forms. This activation did not occur when cells were cultured on plastic dishes coated with monomeric type I collagen or its denatured form, gelatin. Activation could be inhibited by antibodies against MT1-MMP, by the addition of TIMP-2 and by prevention of MT1-MMP processing. MT1-MMP protein was detected at low levels as active protein in fibroblasts cultured as monolayers. In collagen gel cultures, an increase of the active, 60-kDa MT1-MMP and an additional 63-kDa protein corresponding to inactive MT1-MMP was detected. Incubation of medium containing latent MMP-2 with cell membranes isolated from fibroblasts grown in collagen gels caused activation of the enzyme. Furthermore, regulation of MT1-MMP expression in collagen cultures seems to be mediated by alpha2beta1 integrins. These studies suggest that activation of the proMMP-2 is regulated at the cell surface by a mechanism which is sensitive to cell culture in contact with physiologically relevant matrices and which depends on the ratio of proenzyme and the specific inhibitor TIMP-2.  相似文献   

10.
The separation and further purification of human polymorphonuclear-leucocyte collagenase and gelatinase, using modifications of the method of Cawston & Tyler [(1979) Biochem J. 183, 647-656], are described. The final preparations yielded collagenase of specific activity 260 units/mg and gelatinase of specific activity 13 000 units/mg. Gelatinase was purified to apparent homogeneity in a latent form, and analysis of the activation of 125I-labelled latent enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel-filtration techniques suggested that no peptide material was lost on conversion into the active form. The purified natural inhibitors alpha 2-macroglobulin, tissue inhibitor of metalloproteinases ('TIMP') and amniotic-fluid inhibitor of metalloproteinases all inhibited the two polymorphonuclear-leucocyte metalloproteinases, but the last two inhibitors were slow to act and complete inhibition was difficult to attain. Collagenase degraded soluble types I and III collagen equally efficiently, but soluble type II collagen less well. Gelatinase alone had little activity on these substrates, although it enhanced the action of collagenase. Gelatinase was capable of degrading soluble types IV and V collagen at 25 degrees C, whereas collagenase was only active at higher temperatures when the collagens were susceptible to trypsin activity. By using tissue preparations of insoluble collagens (type I, II or IV) the activity of leucocyte collagenase was low and gelatinase activity was negligible, as measured by the solubilization of hydroxyproline-containing material. The two enzymes together were two or three times more effective in the degradation of these insoluble collagens.  相似文献   

11.
1. The involuting rat uterus displays an extremely rapid breakdown of collagen. Collagenase activity can be assayed directly in the insoluble 6000g pellet of uterine homogenates. At 1 day post partum, about 85% of this collagenase activity is in a latent form. 2. This latent form can be activated by trypsin or by a serine proteinase present in the uterine pellets. 3. The activating enzyme of the tissue is inhibited by a wide spectrum of trypsin inhibitors, including Trasylol, soya-bean and lima-bean trypsin inhibitors, snail inhibitor and di-isopropyl phosphoro-fluoridate. Partial inhibition is produced by benzamidine, phenylmethanesulphonyl fluoride, epsilon-aminohexanoate, leupeptin, antipain and alpha1-antitrypsin. Ovomucoid, 7-amino-1-chloro-3-tosylamido-1-heptan-2-one and 1-chloro-4-phenyl-3-(N-benzyloxy-carbonyl)amino-L-butan-2-one are not inhibitory. 4. Extraction of uterine pellets with 0.1 M-CaCl2 at 60 degrees C releases both latent and active collagenase. Exclusion chromatography on Sephadex G-100 gives an apparent molecular weight of approx. 77000 for the latent form and 66000 for the active form. The latent form is suggested to be a zymogen of collagenase.  相似文献   

12.
Radiolabelled anhydrotrypsin was bound by alpha 2M (alpha 2-macroglobulin) sufficiently tightly to resist separation during gel electrophoresis; 2 mol of anhydrotrypsin were bound/mol of alpha 2M, but the interaction differed in important respects from that between active proteinases and alpha 2M. Anhydrotrypsin was bound by the electrophoretically 'fast' form of alpha 2M, although much less effectively than by the 'slow' form. The inactive enzyme was displaced from alpha 2M by trypsin inhibitor, the order of effectiveness being aprotinin > soya-bean trypsin inhibitor > benzamidine. Saturation of alpha 2M with anhydrotrypsin did not prevent subsequent binding and inhibition of active trypsin by the alpha 2M, and the anhydrotrypsin was not displaced during this reaction. Anhydrotrypsin bound by alpha 2M retained its ability to react with antibodies against trypsin, whereas bound trypsin did not.  相似文献   

13.
Kallikrein in synovial fluid with rheumatoid arthritis   总被引:2,自引:0,他引:2  
The levels of kallikrein and collagenase in synovial fluid from rheumatoid arthritis (RA) patients were examined and the role of kallikrein in procollagenase activation is discussed. Both prekallikrein and active kallikrein in synovial fluid from patients with RA were significantly elevated when compared to synovial fluid from patients with osteoarthritis (OA). In RA synovial fluid, the ratio of the active form to total kallikrein was also higher than that in OA synovial fluid. Both active collagenase and the alpha 2-macroglobulin (alpha 2M)-collagenase complex in RA synovial fluid were higher than in OA synovial fluid. A partial correlation (r = 0.58) between active kallikrein and total collagenase (active and alpha 2M-collagenase complex) was observed in RA synovial fluid. These observations indicate that both kallikrein and collagenase are associated with the destruction of cartilage, but the role of kallikrein in procollagenase activation was not fully clarified.  相似文献   

14.
The interaction of horse alpha 2-macroglobulin with methylamine, trypsin and cathepsin D was studied by circular dichroism in the far and near UV region, by polyacrylamide gel electrophoresis and by determination of its inhibitory activity. The CD spectra of horse alpha 2-macroglobulin resemble those of bovine und human alpha 2-macroglobulin. The CD spectra were changed in a different manner after the interaction of alpha 2-macroglobulin with methylamine, trypsin and inactive or active cathepsin D, indicating that more than one conformational change occurs. Cathepsin D activity was not affected by complex formation with horse alpha 2-macroglobulin. In contrast to the action of trypsin, treatment with methylamine did not increase the electrophoretic mobility of alpha 2-macroglobulin.  相似文献   

15.
Latent collagenase has been isolated in pure form from the rheumatoid synovial fluid. The final preparation, activated by trypsin, yielded a collagenase of specific activity 2,227 units/mg. Electrophoresis in sodium dodecyl sulfate polyacrylamide gels revealed a protein doublet of 54 and 50 kDa. Trypsin or HgCl2 activation resulted in disappearance of the doublet and emergence of a new doublet of 47 and 43 kDa. The latent collagenase could also be activated by leucocyte cathepsin G or plasmin. Neither the latent nor the active collagenase from synovial fluid showed any cross-reactivity with the antibodies against leucocyte collagenase. The trypsin activated collagenase degraded collagen type I, II, III giving typical cleavage products but did not degrade type IV and V collagen.  相似文献   

16.
1. Total, active and latent collagenase activities were determined by direct assay of tissue homogenates. 2. The rate of collagen breakdown during post-partum involution of the rat uterus is correlated with the total activity of collagenase. Both are low at parturition, reach a maximum within 24h and fall slowly to low values of 5 days post partum. This temporal correlation strongly supports the hypothesis that collagenase participates in collagen breakdown in vivo. 3. Further support for this hypothesis is provided by the finding that oestradiol-17 beta (100 micrograms/day, intraperitoneally injected), which inhibits the breakdown of collagen by 36% during the first 4 days of involution, produces a closely corresponding decrease in total collagenase activity. 3. The effect of oestradiol in lowering collagenase activity is not due to alterations in collagen substrate, collagenase kinetic behaviour or latent-to-active enzyme conversion. 4. Of the total assayable collagenase, about 35% is fully active and 65% is in a latent form. 5. About 70% of this latent form can be activated by a serine proteinase found, together with collagenase, in the insoluble fraction of uterine homogenates.  相似文献   

17.
Three different types of neutral proteases related to collagen metabolism have been found in the granule fraction of human leucocytes from normal adults, using collagen, gelatin, and synthetic peptides as substrates. These are collagenase, an enzyme showing a potent hydrolytic activity against gelatin but little against native collagen, and one splitting the cross-links region of collagen. Their molecular weights were estimated to be about 75,000 150,000, and 25,000, respectively, by gel chromatography. The former two enzymes were inhibited by a alpha2-macroglobulin and ethylenediaminetetraacetate, but not by alpha1-proteinase inhibitor (alpha1-antitrypsin) or phenylmethylsulfonylfluoride, while the latter enzyme, associated in behavior with an enzyme hydrolyzing succinyl-(l-alanyl)3-p-nitroanilide, was inhibited by alpha1-proteinase inhibitor, alpha2-macroglobulin, and phenylmethylsulfonylfluoride, but not by ethylenediaminetetraacetate. A possible cooperative function of these enzymes in collagen catabolism is discussed.  相似文献   

18.
Three human matrix degrading leukocyte proteinases, type I collagenase, gelatinase and a new type IV collagenase were isolated in latent and active form. Activation of all three latent enzymes could be achieved by treatment with either organomercurials or with trypsin. In addition the 90 kDa latent type I-collagenase could be activated by disulfides, while a newly discovered 70 kDa latent form could be activated with organomercurials or with trypsin. The active type I collagenase was inhibited by gamma-anticollagenase from human serum (and the leukocyte type I collagenase inhibitor, while the newly found type IV collagenase was inhibited only partially. The complexes formed from gamma-anticollagenase with type I collagenase, i. e. latent enzyme, are not reactive site associated complexes. The binding is not of a substrate-like and competitive manner. After inhibition of the enzyme though inactive against its natural substrates it is still hydrolyzing the synthetic low molecular weight octapeptide DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg-OH.  相似文献   

19.
1. The neutral collagenase released into the culture medium by explants of human skin tissue was purified by ultrafiltration and column chromatography. The final enzyme preparation had a specific activity against thermally reconstituted collagen fibrils of 32mug of collagen degraded/min per mg of enzyme protein, representing a 266-fold increase over that of the culture medium. Electrophoresis in polyacrylamide disc gels showed it to migrate as a single protein band from which enzyme activity could be eluted. Chromatographic and polyacrylamide-gel-elution experiments provided no evidence for the existence of more than one active collagenase. 2. The molecular weight of the enzyme estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 60000. The purified collagenase, having a pH optimum of 7.5-8.5, did not hydrolyse the synthetic collagen peptide 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg-OH and had no non-specific proteinase activity when examined against non-collagenous proteins. 3. It attacked undenatured collagen in solution at 25 degrees C, producing the two characteristic products TC(A)((3/4)) and TC(B)((1/4)). Collagen types I, II and III were all cleaved in a similar manner by the enzyme at 25 degrees C, but under similar conditions basement-membrane collagen appeared not to be susceptible to collagenase attack. At 37 degrees C the enzyme attacked gelatin, producing initially three-quarter and one-quarter fragments of the alpha-chains, which were degraded further at a lower rate. As judged by the release of soluble hydroxyproline peptides and electron microscopy, the purified enzyme degraded insoluble collagen derived from human skin at 37 degrees C, but at a rate much lower than that for reconstituted collagen fibrils. 4. Inhibition of the skin collagenase was obtained with EDTA, 1,10-phenanthroline, cysteine, dithiothreitol and sodium aurothiomaleate. Cartilage proteoglycans did not inhibit the enzyme. The serum proteins alpha(2)-macroglobulin and beta(1)-anti-collagenase both inhibited the enzyme, but alpha(1)-anti-trypsin did not. 5. The physicochemical and enzymic properties of the skin enzyme are discussed in relation to those of other human collagenases.  相似文献   

20.
A monospecific rabbit anti-inhibitor serum did not cross-react with either intact latent collagenase or with the one pretreated by p-aminophenylmercuric acetate. Furthermore, immunoglobulin G purified from the antiserum quantitatively inhibited the anti-collagenolytic activity of the inhibitor in either the presence or absence of p-aminophenylmercuric acetate. But the immunoglobulin G did not affect latent collagenase at all. These facts, along with other lines of evidence, strongly support the possibility that the inhibitor may not be responsible for the latency of collagenase and allow us to propose a dual regulatory mechanism of collagenase activity; that is, an inactive form, per se, may thus be additionally kept in the inactive state by the existence of an inhibitor which is synthesized in the same pulp tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号