首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton inventory investigations of the hydrolysis N-acetylbenzotriazole at pH 3.0 (or the equivalent point on the pD rate profile) have been conducted at two different temperatures and at ionic strengths ranging from 0 to 3.0 M. The solvent deuterium isotope effects and proton inventories are remarkably similar over this wide range of conditions. The proton inventories suggest a cyclic transition state involving four protons contributing to the solvent deuterium isotope effect for the water-catalyzed hydrolysis. The hydrolysis data are described by the equation kn = ko (1 ? n + nπa1)4 with πa1 ~ 0.74, where ko is the observed first-order rate constant in protium oxide, n is the atom fraction of deuterium in the solvent, kn is the rate constant in a protium oxide-deuterium oxide mixture, and πa1 is the isotopic fractionation factor.  相似文献   

2.
Precipitation of human fibrinogen in 0.15 m NaCl occurred at pH 7.4 (Tris-HCl buffer) when ZnCl2, CuCl2, NiCl2, or CoCl2 were added beyond their respective critical concentrations. The critical concentrations were about 4 × 10?5m ZnCl2, 6 × 10?5m CuCl2, 3 × 10?4m NiCl2 and 1 × 10?3m CoCl2. At pH 5.8 2-(N-morpholino)-ethane sulphonic acid buffer, the critical concentrations were found only for CuCl2 and ZnCl2, and were about 3 × 10?5and 3 × 10?4m, respectively. CaCl2 and MgCl2 were not effective up to 1 × 10?2and 2 × 10?2m at pH 7.4 and 5.8, respectively. At pH 7.4, precipitation was better in 0.015 m NaCl than in 0.15 m NaCl for both CuCl2 and ZnCl2. Little or no conformational change was indicated on binding Cu2+ ions. The fluorescence of tryptophan was quenched only by CuCl2, while other metal ions (ZnCl2, NiCl2, CoCl2 and CaCl2) were ineffective as quenchers.  相似文献   

3.
Presteady-state kinetic studies of α-chymotrypsin-catalyzed hydrolysis of a specific chromophoric substrate, N-(2-furyl)acryloyl-l-tryptophan methyl ester, were performed by using a stopped-flow apparatus both under [E]0 ? [S]0 and [S]0 ? [E]0 conditions in the pH range of 5–9, at 25 °C. The results were accounted for in terms of the three-step mechanism involving enzyme-substrate complex (E · S) and acylated enzyme (ES′); no other intermediate was observed. This substrate was shown to react very efficiently, i.e., the maximum of the second-order acylation rate constant (k2Ks)max = 4.2 × 107 M?1 s?1. The limiting values of Ks′ (dissociation constant of E · S), K2 (acylation rate) and k3 (deacylation rate) were obtained from the pH profiles of these parameters to be 0.6 ± 0.2 × 10?5 m, 360 ± 15 s?1 and 29.3 ± 0.8 s?1, respectively. Likewise small values were observed for Ki of N-(2-furyl)-acryloyl-l-tryptophan and N-(2-furyl)acryloyl-d-tryptophan methyl ester and Km of N-(2-furyl)acryloyl-l-tryptophan amide. The strong affinities observed may be due to intense interaction of β-(2-furyl)acryloyl group with a secondary binding site of the enzyme. This interaction led to a k?1k2 value lower than unity, i.e., the rate-limiting process of the acylation was the association, even with the relatively low k2 value of this methyl ester substrate, compared to those proposed for labile p-nitrophenyl esters.  相似文献   

4.
The immobilization of Rhodopseudomonas capsulata chromatophores by entrapment in an alginate gel is described. Alginate beads were prepared with Ba2+, Sr2+ and Ca2+ as gel-forming agents and compared for their mechanical strength, chemical resistance against disruption by phosphate-induced swelling, and yield of photophosphorylation activity. Barium alginate beads proved to have better physico-chemical properties than the more commonly used calcium alginate beads. After embedding in barium alginate gel, R. capsulata chromatophores retained a high yield (up to 70%) of their photophosphorylation capacity. Alginate entrapment did not cause a large increase in the Michaelis constant for ADP and phosphate, the substrates of adenosinetriphosphatase (ATPase). These constants were KADPm = 1.4 × 10?5m and KPim = 2.2 × 10?4m for free chromatophores and KADPm = 2.3 × 10?4m and KPim = 5.6 × 10?4m for chromatophores entrapped in barium alginate gel. However, embedding gave no additional protection against rapid inactivation of chromatophores upon storage at 3°C. Preliminary results with a batch reactor for continuous ATP regeneration are presented. The barium alginate method has two features which are not generally encountered at the same time, extremely mild conditions for entrapment and excellent physical properties of the gels beads, which make this method a suitable tool for the construction of bioreactors with immobilized cells or organelles.  相似文献   

5.
Quantitative structure-activity relationships have been formulated for the inhibition of dihydrofolate reductase from bovine and rat liver by 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(3-X-phenyl)-s-triazines. The best correlations are: bovine, log1C = 1.05π3 ? 1.21 log (β·10π3 + 1) + 6.64, where log β = ?0.736 and r = 0.955 for 28 congeners; rat, log1C = 1.12π3 ? 1.34 log (β·10π3 + 1) + 6.29, where log β = ?0.978 and r = 0.977 for 18 congeners. In these expressons C is the molar concentration of inhibitor producing 50% inhibition of the enzyme, π3 is the octanol/water hydrophobic parameter for the 3-X-phenyl substituent, β is an iteratively derived coefficient, and r is the multiple least squares correlation coefficient. The implications of these bilinear models are discussed and compared with earlier work by B. R. Baker.  相似文献   

6.
7.
Initial rate, product inhibition, and isotope rate kinetic studies of pig heart mitochondrial and supernatant malate dehydrogenases, acting upon the nonphysiological substrates, meso-tartrate and 2-keto-3-hydroxysuccinate, are reported. The measured spontaneous keto-enol equilibrium for 2-keto-3-hydroxysuccinate in 0.05 m Tris-acetate (pH 8.0) at 25 °C favors the enol form, dihydroxyfumarate, with an apparent equilibrium constant of 0.036. The enzyme-catalyzed reaction favors meso-tartrate with an apparent equilibrium constant of 1.25 × 10?6, M?1 at pH 8.0. The mechanism apparently remains ordered bi bi for both enzymes when these nonphysiological substrates are used, and the chemical-converting hydride transfer step becomes more rate limiting for both enzymes. This conclusion is supported by VHVD and (VHKH)VDKD values of 2.6 and 3.1, respectively, for the mitochondrial enzyme and 1.9 and 2.9, respectively, for the supernatant enzyme.  相似文献   

8.
The association constant, KA, for myosin subfragment-1 binding to actin was measured as a function of ionic strength [KCl, LiCl, and tetramethylammonium chloride (TMAC)]and temperature by the method of time-resolved fluorescence depolarization. The following thermodynamic values were obtained from solutions of 0.20 × 10?6m S-1, 1.00 × 10?6m actin in 0.15 m KCl, pH 7.0, at 25 °C: ΔG ° = ?39 ± 1 kJ M?1, ΔH0 = 44 ± 2 kJ M?1 and ΔS0 = 0.28 ± 0.01 kJ M?10K?1. For measurements in KCl (0.05 to 0.60 m), In Ka = ?8.36 (KCl)12. Thus, the binding is endothermic and strongly inhibited by high ionic strength. When KCl was replaced by LiCl or TMAC the ionic effects on the binding were cation specific. The nature of actin-(S-1) binding in the rigor state is discussed in terms of these results.  相似文献   

9.
Isolation and characterization of isocitrate lyase of castor endosperm   总被引:1,自引:0,他引:1  
Isocitrate lyase (threo-DS-isocitrate glyoxylate-lyase, EC 4.1.3.1) has been purified to homogeneity from castor endosperm. The enzyme is a tetrameric protein (molecular weight about 140,000; gel filtration) made up of apparently identical monomers (subunit molecular weight about 35,000; gel electrophoresis in the presence of sodium dodecyl sulfate). Thermal inactivation of purified enzyme at 40 and 45 °C shows a fast and a slow phase, each accounting for half of the intitial activity, consistent with the equation: At = A02 · e?k1t + A02 · e?k2t, where A0 and At are activities at time zero at t, and k1 and k2 are first-order rate constants for the fast and slow phases, respectively. The enzyme shows optimum activity at pH 7.2–7.3. Effect of [S]on enzyme activity at different pH values (6.0–7.5) suggests that the proton behaves formally as an “uncompetitive inhibitor.” A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.9. Successive dialysis against EDTA and phosphate buffer, pH 7.0, at 0 °C gives an enzymatically inactive protein. This protein shows kinetics of thermal inactivation identical to the untreated (native) enzyme. Full activity is restored on adding Mg2+ (5.0 mm) to a solution of this protein. Addition of Ba2+ or Mn2+ brings about partial recovery. Other metal ions are not effective.  相似文献   

10.
The entropy-driven polymerization of tobacco mosaic virus protein is favored by an increase in ionic strength, μ, and by a decrease in pH. The effect of ionic strength is interpreted in terms of salting-out and electrical work, a function of charge and, therefore, of pH as well as of μ. The extent of polymerization is measured in terms of a characteristic temperature, T1, corresponding to a characteristic value of the equilibrium constant, KcT1 is measured at an early stage in the polymerization process where the optical density increment from light scatter is 0.01. The theory developed encompassing both salting-out and electrical work terms relates 1T1 to μ approximately according to the equation, 1T1 = C + Bμ ? Aμ12, where C is the ratio of entropy to enthalpy, B is proportional to the salting-out constant divided by enthalpy, and Aμ12 depends upon the square of the charge and is proportional to the electrical work contribution divided by the enthalpy. Data in which μ varied from 0.025 to 0.150 at three pH values, 5.95, 6.35, and 6.50, were fitted to this equation and the parameters C, B, and A were evaluated. Experiments were also carried out at a constant μ of 0.10 at pH values in increments of 0.1 between 5.9 and 6.8. The theory predicts that, at constant μ, 1T1, corrected for the electrical work contribution, is a linear function of pH with a negative slope proportional to the number of hydrogen ions bound per protein unit during polymerization, divided by the enthalpy. The data obtained fit two straight lines with different slopes above and below pH 6.3. Independent experiments carried out by the method of Stevens and Loga show that the number of hydrogen ions bound per protein unit also differs above and below pH 6.3 and the ratio of these is the same as the ratio of the above mentioned slopes. The data, therefore, make it possible to evaluate the enthalpy to be 24.8 kcal/mol of associating A protein and, with this value, the parameters C, B, and A can be interpreted. Standard entropies range from 86 e.u. at pH 6.5 to 88.5 at pH 5.95 and the salting-out constant, KS, is 2.2 at all pH values studied. At μ = 0.10, the values of the electrical work contribution at pH 5.95, 6.35, and 6.50 are +0.298, +0.455, and +0.534 kcal/mol, respectively. Theoretical calculations from models predict values in agreement within a factor of less than two.  相似文献   

11.
Superoxide anion can serve a reducing agent for tyramine hydroxylation by dopamine-β-hydroxylase. Stable O2? solutions were obtained by dissolving KO2 in dry dimethylsulfoxide and infused into buffered solutions of tyramine and dopamine-β-hydroxylase at constant rate. The reaction requires molecular oxygen, but differs from the ascorbate dependent hydroxylation in its alkaline pH optimum value (pH 7.5) and its low rate (9 nmol octopamine formed/min/mg of protein). In absence of tyramine O2? does not produce a stable reduced form of the enzyme.  相似文献   

12.
Using guanidinium and n-butylammonium cations (C+) as models for the positively charged side chains in arginine and lysine, we have determined the association constants with various oxyanions by potentiometric titration. For a dibasic acid, H2A, three association complexes may exist: K1M = [CHA][C+] [HA?]; K1D = [CA?][C+] [A2?]; K2D = [C2A][C+] [CA?]. For guanidinium ion and phosphate, K1M = 1.4, K1D = 2.6, and K2D = 5.1. The data for carboxylates indicate that the basicity of the oxyanion does not affect the association constant: acetate, pKa = 4.8, K1M = 0.37; formate, pKa = 3.8, K1M = 0.32; and chloroacetate, pKa = 2.9, K1M = 0.43, all with guanidinium ion. Association constants are also reported for carbonate, dimethylphosphinate, benzylphosphonate, and adenylate anions.  相似文献   

13.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

14.
The kinetic parameters for the hydrolyses of different l-α-amino acid-β-naphthylamides by Bacillus subtilis aminopeptidase have been measured for the native enzyme and for the enzyme activated in 5 mm Co(NO3)2. In most cases Co2+ activation decreased Km(app) values and increased kcat values, in other cases km(app) and kcat values were increased; for the remainder of the substrates tested km(app) values and kcat values were decreased. In all cases tested the ratios of (kcatKm(app))CO2+/(kcatKm(app)nativ) were increased (2- to 108-fold). For the native enzyme the order of specificity toward the l-amino acid-β-naphthylamides was Arg > Met > Trp > Lys > Leu and for the Co2+ activated enzyme the order of specificity was Lys > Arg > Met > Trp > Leu. The native enzyme hydrolyzed Pro-β-naphthylamide, but not α-Glu-β-naphthylamide; Co2+ activation of the enzyme affected an appreciable rate of hydrolysis of the latter substrate.  相似文献   

15.
(1) Aqueous solutions of 1–10 μM ferricytochrome c treated with 100 μM–100 mM H2O2 at pH 8.0 emit chemiluminescence with quantum yield Ф ? 10?9 and absolute maximum intensity Imax ? 105 hv/s per cm3 (λ = 440), and exhibit exponential decay with a rate constant of 0.15 s?1. (2) The emission spectrum of the chemiluminescence covers the range 380–620 nm with the maximum at 460 ± 10 nm. (3) Neither cytochrome c nor haemin fluoresce in the spectral region of the chemiluminescence. In the reaction course with H2O2, a weak fluorescence in the region 400–620 nm with λmax = 465–510 nm (λexc 315–430 nm) gradually arises. This originates from tryptophan oxidation products of the formylkynurenine type or from imidazole derivatives, respectively. (4) Frozen solutions (77 K) of cytochrome c exhibit phosphorescence typical of tryptophan (λexc = 280 nm, λem = 450 nm). During the peroxidation, an additional phosphorescence gradually appears in the range 480–620 nm with λmax = 530 nm (λexc = 340 nm). This originates from oxidative degradation products of tryptophan. (5) There are no red bands in the chemiluminescence spectra of cytochrome c or haemin. This result suggests that singlet molecular oxygen O2(1Δg) is not involved in either peroxidation or chemiluminescence. (6) The haem Fe3+ group and H2O2 appear to be crucial for the chemiluminescence. It is suggested that the generation of electronically excited, light-emitting states is coupled to the production of conformational out-of-equilibrium states of peroxy-Fe-protoporphyrin IX compounds.  相似文献   

16.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

17.
18.
Substitution of the active site zinc ion of carboxypeptidase A by cadmium yields an enzyme inactive towards ordinary peptide substrates. However, a substrate analog (BzGlyNHCH2CSPheOH) containing a thioamide linkage at the scissile position is cleaved to the thioacid. The kinetic parameters and their pH dependencies are kcatKm = 5.04 × 104 min?1M?1, decreasing with either acid or base (PKE1 = 5.64, pKE2 = 9.55), and kcat = 1.02 × 102 min?1, decreasing with acid (pKES = 6.61). The thiopeptide is less efficiently cleaved by native (zinc) carboxypeptidase A. This cadmium-sulfur synergism supports a mechanism wherein the substrate amide is activated by metal ion coordination to its (thio) carbonyl.  相似文献   

19.
20.
The pH dependence of the reaction of tris(hydroxymethyl)aminomethane (Tris) with the activated carbonyl compound 4-trans-benzylidene-2-phenyloxazolin-5-one (I) is given by the equation k′2 = kbKa(Ka + [H+]) + ka[OH?]Ka(Ka + [H+]), where Ka is the dissociation constant of TrisH+. Spectrophotometric experiments show that the Tris ester of α-benzamido-trans-cinnamic acid is formed quantitatively over a range of pH values, regardless of the relative contribution of kb and ka terms to k2. Hence, both terms refer to alcoholysis. While the mechanism of the reaction is not determined unequivocally in the present work, the magnitude of the kb term, together with its dependence on the basic form of Tris, suggests that ester formation is occurring by nucleophilic attack of a Tris hydroxyl group on the carbonyl carbon of the oxazolinone, with intramolecular catalysis by the Tris amino group. The rate enhancement due to this group is at least 102 and possibly of the order 106. This system is compared with other model systems for the acylation step of catalysis by serine esterases and proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号