首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recombinant circumsporozoite protein (CS) based vaccine, RTS,S, confers protection against Plasmodium falciparum infection in controlled challenge trials and in field studies. The RTS,S recombinant antigen has been formulated with two adjuvant systems, AS01 and AS02, which have both been shown to induce strong specific antibody responses and CD4 T cell responses in adults. As infants and young children are particularly susceptible to malaria infection and constitute the main target population for a malaria vaccine, we have evaluated the induction of adaptive immune responses in young children living in malaria endemic regions following vaccination with RTS,S/AS01(E) and RTS,S/AS02(D). Our data show that a CS-specific memory B cell response is induced one month after the second and third vaccine dose and that CS-specific antibodies and memory B cells persist up to 12 months after the last vaccine injection. Both formulations also induced low but significant amounts of CS-specific IL-2(+) CD4(+) T cells one month after the second and third vaccine dose, upon short-term in vitro stimulation of whole blood cells with peptides covering the entire CS derived sequence in RTS,S. These results provide evidence that both RTS,S/AS01(E) and RTS,S/AS02(D) induced adaptive immune responses including antibodies, circulating memory B cells and CD4(+) T cells directed against P. falciparum CS protein. TRIAL REGISTRATION: ClinicalTrials.gov NCT00307021.  相似文献   

2.
Vaccine-induced protection against diseases like malaria, AIDS, and cancer may require induction of Ag-specific CD8(+) and CD4(+) T cell and Ab responses in the same individual. In humans, a recombinant Plasmodium falciparum circumsporozoite protein (PfCSP) candidate vaccine, RTS,S/adjuvant system number 2A (AS02A), induces T cells and Abs, but no measurable CD8(+) T cells by CTL or short-term (ex vivo) IFN-gamma ELISPOT assays, and partial short-term protection. P. falciparum DNA vaccines elicit CD8(+) T cells by these assays, but no protection. We report that sequential immunization with a PfCSP DNA vaccine and RTS,S/AS02A induced PfCSP-specific Abs and Th1 CD4(+) T cells, and CD8(+) cytotoxic and Tc1 T cells. Depending upon the immunization regime, CD4(+) T cells were involved in both the induction and production phases of PfCSP-specific IFN-gamma responses, whereas, CD8(+) T cells were involved only in the production phase. IFN-gamma mRNA up-regulation was detected in both CD45RA(-) (CD45RO(+)) and CD45RA(+)CD4(+) and CD8(+) T cell populations after stimulation with PfCSP peptides. This finding suggests CD45RA(+) cells function as effector T cells. The induction in humans of the three primary Ag-specific adaptive immune responses establishes a strategy for developing immunization regimens against diseases in desperate need of vaccines.  相似文献   

3.
Vaccination with the pre-erythrocytic malaria vaccine RTS,S induces high levels of antibodies and CD4+ T cells specific for the circumsporozoite protein (CSP). Using a biologically-motivated mathematical model of sporozoite infection fitted to data from malaria-naive adults vaccinated with RTS,S and subjected to experimental P. falciparum challenge, we characterised the relationship between antibodies, CD4+ T cell responses and protection from infection. Both anti-CSP antibody titres and CSP-specific CD4+ T cells were identified as immunological surrogates of protection, with RTS,S induced anti-CSP antibodies estimated to prevent 32% (95% confidence interval (CI) 24%–41%) of infections. The addition of RTS,S-induced CSP-specific CD4+ T cells was estimated to increase vaccine efficacy against infection to 40% (95% CI, 34%–48%). This protective efficacy is estimated to result from a 96.1% (95% CI, 93.4%–97.8%) reduction in the liver-to-blood parasite inoculum, indicating that in volunteers who developed P. falciparum infection, a small number of parasites (often the progeny of a single surviving sporozoite) are responsible for breakthrough blood-stage infections.  相似文献   

4.
Weiss WR  Jiang CG 《PloS one》2012,7(2):e31247
Live attenuated malaria vaccines are more potent than the recombinant protein, bacterial or viral platform vaccines that have been tested, and an attenuated sporozoite vaccine against falciparum malaria is being developed for humans. In mice, attenuated malaria sporozoite vaccines induce CD8(+) T cells that kill parasites developing in the liver. We were curious to know if CD8(+) T cells were also important in protecting primates against malaria. We immunized 9 rhesus monkeys with radiation attenuated Plasmodium knowlesi sporozoites, and found that 5 did not develop blood stage infections after challenge with live sporozoites. We then injected 4 of these protected monkeys with cM-T807, a monoclonal antibody to the CD8 molecule which depletes T cells. The fifth monkey received equivalent doses of normal IgG. In 3 of the 4 monkeys receiving cM-T807 circulating CD8(+) T cells were profoundly depleted. When re-challenged with live sporozoites all 3 of these depleted animals developed blood stage malaria. The fourth monkey receiving cM-T807 retained many circulating CD8(+) T cells. This monkey, and the vaccinated monkey receiving normal IgG, did not develop blood stage malaria at re-challenge with live sporozoites. Animals were treated with antimalarial drugs and rested for 4 months. During this interval CD8(+) T cells re-appeared in the circulation of the depleted monkeys. When all vaccinated animals received a third challenge with live sporozoites, all 5 monkeys were once again protected and did not develop blood stage malaria infections. These data indicate that CD8(+) T cells are important effector cells protecting monkeys against malaria sporozoite infection. We believe that malaria vaccines which induce effector CD8+ T cells in humans will have the best chance of protecting against malaria.  相似文献   

5.
RTS,S/AS01, a vaccine targeting pre-erythrocytic stages of Plasmodium falciparum, is undergoing clinical trials. We report an analysis of cellular immune response to component Ags of RTS,S-hepatitis B surface Ag (HBs) and P. falciparum circumsporozoite (CS) protein-among Tanzanian children in a phase IIb RTS,S/AS01(E) trial. RTS,S/AS01 (E) vaccinees make stronger T cell IFN-γ, CD69, and CD25 responses to HBs peptides than do controls, indicating that RTS,S boosts pre-existing HBs responses. T cell CD69 and CD25 responses to CS and CS-specific secreted IL-2 were augmented by RTS,S vaccination. Importantly, more than 50% of peptide-induced IFN-γ(+) lymphocytes were NK cells, and the magnitude of the NK cell CD69 response to HBs peptides correlated with secreted IL-2 concentration. CD69 and CD25 expression and IL-2 secretion may represent sensitive markers of RTS,S-induced, CS-specific T cells. The potential for T cell-derived IL-2 to augment NK cell activation in RTS,S-vaccinated individuals, and the relevance of this for protection, needs to be explored further.  相似文献   

6.
Identification of correlates of protection for infectious diseases including malaria is a major challenge and has become one of the main obstacles in developing effective vaccines. We investigated protection against liver-stage malaria conferred by vaccination with adenoviral (Ad) and modified vaccinia Ankara (MVA) vectors expressing pre-erythrocytic malaria Ags. By classifying CD8(+) T cells into effector, effector memory (T(EM)), and central memory subsets using CD62L and CD127 markers, we found striking differences in T cell memory generation. Although MVA induced accelerated central memory T cell generation, which could be efficiently boosted by subsequent Ad administration, it failed to protect against malaria. In contrast, Ad vectors, which permit persistent Ag delivery, elicit a prolonged effector T cell and T(EM) response that requires long intervals for an efficient boost. A preferential T(EM) phenotype was maintained in liver, blood, and spleen after Ad/MVA prime-boost regimens, and animals were protected against malaria sporozoite challenge. Blood CD8(+) T(EM) cells correlated with protection against malaria liver-stage infection, assessed by estimation of number of parasites emerging from the liver into the blood. The protective ability of Ag-specific T(EM) cells was confirmed by transfer experiments into naive recipient mice. Thus, we identify persistent CD8 T(EM) populations as essential for vaccine-induced pre-erythrocytic protection against malaria, a finding that has important implications for vaccine design.  相似文献   

7.
CD8+ T cells have been implicated as critical effector cells in protection against the pre-erythrocytic stage of malaria in mice and humans following irradiated sporozoite immunization. Immunization experiments in animal models by several investigators have suggested different strategies for vaccination against malaria and many of the targets from liver stage malaria antigens have been shown to be immunogenic and to protect mice from the sporozoite challenge. Several prime/boost protocols with replicating vectors, such as vaccinia/influenza, with non-replicating vectors, such as recombinant particles derived from yeast transposon (Ty-particles) and modified vaccinia virus Ankara, and DNA, significantly enhanced CD8+ T cell immunogenicity and also the protective efficacy against the circumsporosoite protein of Plasmodium berghei and P. yeti. Based on these experimental results the development of a CD8+ T cell inducing vaccine has moved forward from epitope identification to planning stages of safety and immunogenicity trials of candidate vaccines.  相似文献   

8.
Type 1 cell-mediated immunity might play an important role in protection from typhoid fever. We evaluated whether immunization with Salmonella enterica serovar Typhi (S. Typhi) strain CVD 908-htrA (a Delta aroC Delta aroD Delta htrA mutant), a leading live oral typhoid vaccine candidate, elicits specific CD4(+) and CD8(+) S. Typhi immune responses. Potent CTL responses and IFN-gamma secretion by CD8(+) T cells were detected following immunization with CVD 908-htrA in high (4.5 x 10(8) CFU) and low (5 x 10(7) CFU) dosages. S. Typhi-specific CTL were observed in six of eight vaccinees (four high and two low dose) after immunization. Mean increases in the frequency of IFN-gamma spot-forming cells (SFC) in the presence of S. Typhi-infected targets were 221 +/- 41 SFC/10(6) PBMC and 233 +/- 87 SFC/10(6) PBMC, in the high and low dose groups, respectively. Strong CD4(+) T cell responses were also observed. Increases in the IFN-gamma production to soluble S. Typhi flagella (STF) occurred in 82 and 38% of the volunteers who received the high and low doses, respectively. Robust correlations were observed between volunteers that responded with IFN-gamma SFC to stimulation with S. Typhi-infected cells and IFN-gamma released in response to stimulation with STF Ags (r = 0.822, p < 0.001) and between CTL and IFN-gamma production to STF (r = 0.818, p = 0.013). These data demonstrating the concomitant induction of both CD4- and CD8-mediated CMI are consistent with a significant role for type 1 immunity in controlling typhoid infection and support the continuing evaluation of CVD 908-htrA as a typhoid vaccine candidate.  相似文献   

9.
A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP)-specific CD4(+) T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (T(E/EM)) and/or central memory (T(CM)) CD4(+) T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both T(E/EM) and T(CM) cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4(+) T(E/EM) cells and of CD4(+) T(CM) cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4(+) T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4(+) T(E/EM) cells and of CD4(+) T(E/EM) cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both T(E/EM) and T(CM) cells are major producers of IL-2.  相似文献   

10.
With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.  相似文献   

11.
In vivo electroporation dramatically enhances plasmid vaccine efficacy. This enhancement can be attributed to increased plasmid delivery and, possibly, to some undefined adjuvant properties. Previous reports have demonstrated CD8(+) T cell priming by plasmid vaccines is strongly dependent upon CD4(+) T cell help. Indeed, the efficacy of a plasmid vaccine expressing Escherichia coli beta-galactosidase was severely attenuated in MHC class II-deficient (C2D) mice. To determine whether electroporation could compensate for the absence of CD4(+) T cell help, C2D mice were immunized by a single administration of plasmid in combination with electroporation using two conditions which differed only by the duration of the pulse (20 or 50 msec). Both conditions elicited robust cellular and humoral responses in wild-type mice, as measured by IFN-gamma ELISPOT, anti-beta-galactosidase ELISA, and protection from virus challenge. In C2D mice, the cellular response produced by the vaccine combined with the 50-msec pulse, as measured by ELISPOT, was identical to the response in wild-type mice. The 20-msec pulse elicited a milder response that was approximately one-fifth that of the response elicited by the 50-msec pulse. By contrast, the 20-msec conditions provided comparable protection in both wild-type and C2D recipients whereas the protection elicited by the 50-msec conditions in C2D mice was weaker than in wild-type mice. Further investigation is required to understand the discordance between the ELISPOT results and outcome of virus challenge in the C2D mice. Nonetheless, using this technique to prime CD8(+) T cells using plasmid vaccines may prove extremely useful when immunizing hosts with limiting CD4(+) T cell function, such as AIDS patients.  相似文献   

12.
Immunization of mice with nonviable Listeria monocytogenes generates an insufficient CD8(+) T cell response and consequently only limited protection against subsequent L. monocytogenes infection. We have recently demonstrated that depletion of regulatory CD4(+) T cells during immunization significantly enhances CD8(+) T cell responses. In the present study, we determined the impact of CD4(+) T cell depletion on the CD8(+) T cell response against heat-killed LISTERIA: Treatment of mice with anti-CD4 mAb during boost immunization with heat-killed Listeria significantly increased numbers of Listeria-specific CD8(+) T cells and improved protection against subsequent infection with L. monocytogenes. During challenge infection, numbers of Listeria-specific CD8(+) T cells were enhanced, and these cells expressed effector functions in terms of IFN-gamma production. In summary, we demonstrate that combining nonviable L. monocytogenes vaccination and CD4(+) T cell depletion improves generation of long-lasting and functional Listeria-specific CD8(+) memory T cells.  相似文献   

13.
Sterile immunity can be provided against the pre-erythrocytic stages of malaria by IFN-gamma-secreting CD8(+) T cells that recognize parasite-infected hepatocytes. In this study, we have investigated the use of attenuated fowlpox virus (FPV) strains as recombinant vaccine vectors for eliciting CD8(+) T cells against Plasmodium berghei. The gene encoding the P. berghei circumsporozoite (PbCS) protein was inserted into an FPV vaccine strain licensed for use in chickens, Webster's FPV, and the novel FPV vaccine strain FP9 by homologous recombination. The novel FP9 strain proved more potent as a vaccine for eliciting CD8(+) T cell responses against the PbCS Ag. Sequential immunization with rFP9 and recombinant modified vaccinia virus Anakara (MVA) encoding the PbCS protein, administered by clinically acceptable routes, elicited potent CD8(+) T cell responses against the PbCS protein. This immunization regimen elicited substantial protection against a stringent liver-stage challenge with P. berghei and was more immunogenic and protective than DNA/MVA prime/boost immunization. However, further improvement was not achieved by sequential (triple) immunization with a DNA vaccine, FP9, and MVA.  相似文献   

14.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

15.
In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x106) and provided 80–100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.  相似文献   

16.
The magnitude and duration of CD8(+) T cell-mediated responses in the skin to hapten sensitization and challenge, contact hypersensitivity (CHS), is negatively regulated by CD4(+) T cells through an unknown mechanism. In this study we show that CD4(+) T cells restrict the development and expansion of hapten-specific CD8(+) T cells mediating CHS responses to 2,4-dinitrofluorobenzene. In the absence of CD4(+) T cells, high numbers of hapten-specific CD8(+) T cells producing IFN-gamma were detected in the skin-draining lymph nodes on day 5 postsensitization, and these numbers decreased slightly, but were maintained through day 9, correlating with the increased magnitude and duration of CHS responses observed in these mice. In the presence of CD4(+) T cells, the number of hapten-specific CD8(+) T cells producing IFN-gamma detected on day 5 postsensitization was lower and quickly fell to background levels by day 7. The limited development of effector CD8(+) T cells was associated with decreased numbers of hapten-presenting dendritic cells in the lymphoid priming site. This form of immunoregulation was absent after sensitization of Fas ligand-defective gld mice. Transfer of wild-type CD4(+) T cells to gld mice restored the negative regulation of CD8(+) T cell priming and the immune response to hapten challenge in gld-recipient mice. These results indicate that CD4(+) T cells restrict hapten-specific CD8(+) T cell priming for CHS responses through a Fas ligand-dependent mechanism.  相似文献   

17.
A substantial and protective response against malaria liver stages is directed against the circumsporozoite protein (CSP) and involves induction of CD8(+) T cells and production of IFN-gamma. CSP-derived peptides have been shown to be presented on the surface of infected hepatocytes in the context of MHC class I molecules. However, little is known about how the CSP and other sporozoite Ags are processed and presented to CD8(+) T cells. We investigated how primary hepatocytes from BALB/c mice process the CSP of Plasmodium berghei after live sporozoite infection and present CSP-derived peptides to specific H-2K(d)-restricted CD8(+) T cells in vitro. Using both wild-type and spect(-/-) P. berghei sporozoites, we show that both infected and traversed primary hepatocytes process and present the CSP. The processing and presentation pathway was found to involve the proteasome, Ag transport through a postendoplasmic reticulum compartment, and aspartic proteases. Thus, it can be hypothesized that infected hepatocytes can contribute in vivo to the elicitation and expansion of a T cell response.  相似文献   

18.
Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these “whole-parasite” vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines.  相似文献   

19.
CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.  相似文献   

20.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号