首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radio-LC-MS for the characterization of 99mTc-labeled bioconjugates   总被引:1,自引:0,他引:1  
This report describes the first example of using radio-LC-MS for determining the composition of (99m)Tc radiopharmaceuticals at the tracer level. The in-line radiometric detector is a useful addition to a standard LC-MS and provides direct correlation between the MS data and the radioactive species in a radiopharmaceutical kit. Complexes [(99m)Tc(HYNICtide)(tricine)(L)] (RP444, L = TPPTS; RP445, L = TPPDS; and RP446, L = TPPMS) were prepared using a decayed generator eluant. All the ternary ligand (99m)Tc complexes show the expected monoprotonated molecular ions, (M + 1)(+), and diprotonated molecular ions, (M + 2)(2+). The LC-MS spectral data support the proposed structure and are consistent with those obtained for their corresponding (99)Tc analogues. Ternary ligand complexes [(99m)Tc(HYNICtide)(tricine)(L)] (L = ISONIC-HE and ISONIC-Sorb) are neutral, and the molecular weights are also lower than that of RP444. Using a fresh generator eluant (24 h prior elution), only 1-2 mCi of (99m)Tc [(7 x 10(-)(12))-(1.5 x 10(-)(11)) mol of technetium complex] are required to obtain a reasonably clean mass spectrum. Radio-LC-MS is a quick and accurate analytical tool for characterization of (99m)Tc radiopharmaceuticals at the tracer level.  相似文献   

2.
This report describes a novel ternary ligand system composed of a phenylhydrazine, a crown ether-containing dithiocarbamate (DTC), and a PNP-type bisphosphine (PNP). The combination of three different ligands with (99m)Tc results in cationic (99m)Tc-diazenido complexes, [(99m)Tc(NNAr)(DTC)(PNP)]+, with potential radiopharmaceuticals for heart imaging. Synthesis of cationic (99m)Tc-diazenido complexes can be accomplished in two steps. For example, the reaction of phenylhydrazine with (99m)TcO4- at 100 degrees C in the presence of excess stannous chloride and 1,2-diaminopropane-N,N,N',N'-tetraacetic acid (PDTA) results in the [(99m)Tc(NNPh)(PDTA)n] intermediate, which then reacts with sodium N-(dithiocarbamato)-2-aminomethyl-15-Crown-5 (L4) and N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]ethoxyethylamine (PNP6) at 100 degrees C for 15 min to give the complex, [(99m)Tc(NNPh)(L4)(PNP6)]+ in high yield (>90%). Cationic complexes [(99m)Tc(NNPh)(DTC)(PNP)]+ are stable for > or = 6 h. Their composition was determined to be 1:1:1:1 for Tc:NNPh:DTC:PNP using the mixed-ligand experiments on the tracer ((99m)Tc) level and was further confirmed by the ESI-MS spectral data of a model compound [Re(NNPh)(L4)(L6)]+. It was found that both DTCs and bisphosphines have a significant impact on the lipophilicity of their cationic (99m)Tc-diazenido complexes. Results from a (99m)Tc-labeling efficiency experiment showed that 4-hydrazinobenzoic acid (HYBA) might be useful as a bifunctional coupling agent for (99m)Tc-labeling of small biomolecules. However, the (99m)Tc-labeling efficiency of HYBA is much lower than that of 6-hydrazinonicotinic acid (HYNIC) with tricine and trisodium triphenylphosphine-3,3',3'-trisulfonate (TPPTS) as coligands.  相似文献   

3.
A HYNIC-conjugated chemotactic peptide (fMLFK-HYNIC) was labeled with (99m)Tc using tricine and TPPTS as coligands. The combination of fMLFK-HYNIC, tricine, and TPPTS with (99m)Tc produced a ternary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(TPPTS)] (RP463). RP463 was synthesized either in two steps, in which the binary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(2)] (RP469) was formed first and then reacted with TPPTS, or in one step by direct reduction of [(99m)Tc]pertechnetate with stannous chloride in the presence of fMLFK-HYNIC, tricine, and TPPTS. The radiolabeling yield for RP463 was usually >/=90% using 10 microg of fMLFK-HYNIC and 100 mCi of [(99m)Tc]pertechnetate. Unlike RP469, which decomposed rapidly in the absence of excess tricine coligand, RP463 was stable in solution for at least 6 h. [(99)Tc]RP463 was prepared and characterized by HPLC and electrospray mass spectrometry. In an in vitro assay, [(99)Tc]RP463 showed an IC(50) of 2 nM against binding of [(3)H]fMLF to receptors on PMNs. [(99)Tc]RP463 also induces effectively the superoxide release of polymorphonuclear leukocytes (PMNs) with an EC(50) value of 0.2 +/- 0.2 nM. The localization of RP463 in the infection foci was assessed in a rabbit infection model. RP463 was cleared from the blood faster than RP469 and was excreted mainly through the renal system. As a result of rapid blood clearance and increased uptake, the target-to-background ratios continuously increased from 1.5 +/- 0.2 at 15 min postinjection to 7.5 +/- 0.4 at 4 h postinjection. Visualization of the infected area could be as early as 2 h. A transient decrease in white blood cell count of 35% was observed during the first 30 min after injection of the HPLC-purified RP463 in the infected rabbit. This suggests that future research in this area should focus on developing highly potent antagonists for chemotactic peptide receptor or other receptors on PMNs and monocytes.  相似文献   

4.
A solid-phase technetium chelation chemistry was developed as a means of preparing (99m)Tc radiopharmaceuticals at high effective specific activity (HSA). Three peptidic N(3)S (99m)Tc ligands [mercaptoacetyl-Gly-Gly-Gly (MAG3), picolinyl-Ser-Cys-Gly-Thr-Lys-Pro-Pro-Arg (RP063), and dimethyl-Gly-Ser-Cys-Gly-Thr-Lys-Pro-Pro-Arg (RP128)] were used. The free thiol of Cys in each was attached to a series of commercially available amine-functionalized supports in a two-step process. The amine groups on the solid supports were converted to maleimide groups followed by the attachment of the (99m)Tc chelators through a thiol ether linkage with Cys. The optimized loading of the supports ranged 6-122 micromol/g support as determined by amino acid analysis. Each of the peptide-loaded supports (50-100 mg) was placed in either glass syringe vessels or disposable chromatography columns. Labeling with [(99m)Tc]pertechnetate (200-800 MBq) in the presence of stannous gluconate was achieved at room temperature for 30-60 min or in a 100 degrees C water bath for 10 min. Up to 80% of the activity was eluted from the column with saline to give products with purity up to 99.8% as determined by HPLC. Amino acid analysis indicated as little as 100 pmol of peptide present in the (99m)Tc products, demonstrating that extremely high effective specific activity can be achieved without the need for purification.  相似文献   

5.
Youn SW  Choi JY  Kim YH 《Chirality》2000,12(5-6):404-407
Chiral hydrazones 1 reacted with aryl- or alkyl-lithiums at -78 degrees C in a short reaction time, within 10 min, to afford arylated or alkylated chiral hydrazines 3 with extremely high diastereoselectivity (up to >99% de) and high chemical yields. The hydrazines are readily converted to chiral amino alcohols 4.  相似文献   

6.
Shi J  Jia B  Liu Z  Yang Z  Yu Z  Chen K  Chen X  Liu S  Wang F 《Bioconjugate chemistry》2008,19(6):1170-1178
In this report, we present the synthesis and evaluation of the (99m)Tc-labeled beta-Ala-BN(7-14)NH2 (ABN = beta-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) as a new radiotracer for tumor imaging in the BALB/c nude mice bearing HT-29 human colon cancer xenografts. The gastrin releasing peptide receptor binding affinity of ABN and HYNIC-ABN (6-hydrazinonicotinamide) was assessed via a competitive displacement of (125)I-[Tyr4]BBN bound to the PC-3 human prostate carcinoma cells. The IC 50 values were calculated to be 24 +/- 2 nM and 38 +/- 1 nM for ABN and HYNIC-ABN, respectively. HYNIC is the bifunctional coupling agent for (99m)Tc-labeling, while tricine and TPPTS (trisodium triphenylphosphine-3,3',3'-trisulfonate) are used as coligands to prepare the ternary ligand complex [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] in very high yield and high specific activity. Because of its high hydrophilicity (log P = -2.39 +/- 0.06), [(99m)Tc(HYNIC-ABN)(tricine)(TPPS)] was excreted mainly through the renal route with little radioactivity accumulation in the liver, lungs, stomach, and gastrointestinal tract. The tumor uptake at 30 min postinjection (p.i.) was 1.59 +/- 0.23%ID/g with a steady tumor washout over the 4 h study period. As a result, it had the best T/ B ratios in the blood (2.37 +/- 0.68), liver (1.69 +/- 0.41), and muscle (11.17 +/- 3.32) at 1 h p.i. Most of the injected radioactivity was found in the urine sample at 1 h p.i., and there was no intact [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] detectable in the urine, kidney, and liver samples. Its metabolic instability may contribute to its rapid clearance from the liver, lungs, and stomach. Despite the steady radioactivity washout, the tumors could be clearly visualized in planar images of the BALB/c nude mice bearing the HT-29 human colon xenografts at 1 and 4 h p.i. The favorable excretion kinetics from the liver, lungs, stomach, and gastrointestinal tract makes [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] a promising SPECT radiotracer for imaging colon cancer.  相似文献   

7.
Hydrazones of a 6-hydrazinonicotinyl-modified cyclic peptide IIb/IIIa receptor antagonist were prepared in order to protect the hydrazine moiety from reaction with trace aldehyde and ketone impurities encountered during the process of manufacturing and compounding lyophilized kits used in radiolabeling with (99m)Tc. Hydrazones were prepared by either a direct reaction of the 6-hydrazinonicotinyl-modified cyclic peptide with carbonyl compounds or by conjugation of the cyclic peptide with hydrazones of succinimidyl 6-hydrazinonicotinate. Stability of the hydrazones was evaluated by treatment with formaldehyde. Hydrazones derived from simple aliphatic aldehydes underwent an exchange reaction with formaldehyde, while hydrazones of aromatic aldehydes and ketones provided the greatest level of stability when challenged with formaldehyde. We have been successful in protecting 6-hydrazinonicotinyl-modified cyclic peptides from reacting with formaldehyde, while still allowing sufficient reactivity for radiolabeling with (99m)Tc. The hydrazones of succinimidyl 6-hydrazinonicotinate are convenient and general reagents for forming 6-hydrazinonicotinyl conjugates with amino-functionalized bioactive molecules.  相似文献   

8.
The purpose of this study was to determine whether the adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Regional stunning was produced by 15 min of coronary artery occlusion and 3 h of reperfusion (RP) in anesthetized open-chest pigs. In acute protection studies, animals were pretreated with saline, low-dose AMP-579 (15 microg/kg iv bolus 10 min before ischemia), or high-dose AMP-579 (50 microg/kg iv at 14 microg/kg bolus + 1.2 microg.kg(-1).min(-1) for 30 min before coronary occlusion). The delayed preconditioning effects of AMP-579 were evaluated 24 h after administration of saline vehicle or high-dose AMP-579 (50 microg/kg iv). Load-insensitive contractility was assessed by measuring regional preload recruitable stroke work (PRSW) and PRSW area. Acute preconditioning with AMP-579 dose dependently improved regional PRSW: 129 +/- 5 and 100 +/- 2% in high- and low-dose AMP-579 groups, respectively, and 78 +/- 5% in the control group at 3 h of RP. Administration of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.7 mg/kg) blocked the acute protective effect of high-dose AMP-579, indicating that these effects are mediated through A1 receptor activation. Delayed preconditioning with AMP-579 significantly increased recovery of PRSW area: 64 +/- 5 vs. 33 +/- 5% in control at 3 h of RP. In isolated perfused rat heart studies, kinetics of the onset and washout of AMP-579 A1 and A2a receptor-mediated effects were distinct compared with those of other adenosine receptor agonists. The unique nature of the adenosine agonist AMP-579 may play a role in its ability to induce delayed preconditioning against in vivo myocardial stunning.  相似文献   

9.
The (90)Y and (177)Lu complexes (RP697 and RP688, respectively) of a DOTA-conjugated vitronectin receptor antagonist (SU015: 2-(1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)-1-cyclododecyl)acetyl-Glu(cyclo[Lys-Arg-Gly-Asp-D-Phe])-cyclo[Lys-Arg-Gly-Asp-D-Phe]) were prepared by reacting SU015 with the radiometal chloride in ammonium acetate buffer (pH > 7.2) in the presence of an antioxidant (sodium gentisate, GA). Through a series of radiolabeling experiments, it was found that there are many factors influencing the rate of (90)Y chelation and the radiolabeling efficiency of SU015. These include the purity of SU015, the pH, reaction temperature, and heating time, as well as the presence of trace metal contaminants, such as Ca(2+), Fe(3+), and Zn(2+). The chelation of (90)Y by SU015 is slow, so that heating at elevated temperatures (50-100 degrees C) is needed to complete the (90)Y-labeling. The rate of (90)Y chelation is also dependent on the pH of the reaction mixture. Under optimized radiolabeling conditions (pH 7.2-7.8 and heating at 50-100 degrees C for 5-10 min), the minimum amount of SU015 required to achieve 95% RCP for RP697 is approximately 25 microg for 20 mCi of (90)YCl(3) corresponding to a SU015:(90)Y ratio of approximately 30:1.  相似文献   

10.
Functionalization of biologically relevant molecules for the labeling with the novel fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) precursor has gained considerable attention recently. Therefore, we tested seven different tridentate (histidine L(1)(), iminodiacetic acid L(2)(), N-2-picolylamineacetic acid L(3)(), N, N-2-picolylaminediacetic acid L(4)()) and bidentate (histamine L(5)(), 2-picolinic acid L(6)(), 2,4-dipicolinic acid L(7)()) ligand systems, with the potential to be bifunctionalized and attached to a biomolecule. The ligands allowed mild radiolabeling conditions with fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) (30 min, 75 degrees C). The ligand concentrations necessary to obtain yields of >95% of the corresponding organometallic complexes 1-7 ranged from 10(-)(6) to 10(-)(4) M. Complexes of the general formula "fac-[(99m)TcL(CO)(3)]" (L = tridentate ligand) and "fac-[(99m)Tc(OH(2))L'(CO)(3)]" (L' = bidentate ligand), respectively, were produced. Challenge studies with cysteine and histidine revealed significant displacement of the ligands in complexes 5-7 but only little exchange with complexes 1-4 after 24 h at 37 degrees C in PBS buffer. However, no decomposition to (99m)TcO(4)(-) was observed under these conditions. All complexes showed a hydrophilic character (log P(o/w) values ranging from -2.12 to 0.32). Time-dependent FPLC analyses of compounds 1-7 incubated in human plasma at 37 degrees C showed again no decomposition to (99m)TcO(4)(-) after 24 h at 37 degrees C. However, the complexes with bidentate ligands (5-7) became almost completely protein bound after 60 min, whereas the complexes with tridentate coordinated ligands (1-4) showed no reaction with serum proteins. The compounds were tested for their in vivo stability and the biodistribution characteristics in BALB/c mice. The complexes with tridentate coordinated ligand systems (1-4) revealed generally a good and fast clearance from all organs and tissues. On the other hand, the complexes with only bidentate coordinated ligands (5-7) showed a significantly higher retention of activity in the liver, the kidneys, and the blood pool. Detailed radiometric analyses of murine plasma samples, 30 min p.i. of complex fac-[(99m)TcL(1)(CO)(3)], 1, revealed almost no reaction of the radioactive complex with the plasma proteins. By contrast, in plasma samples of mice, which were injected with complex fac-[(99m)Tc(OH(2))L(5)(CO)(3)](+), 5, the entire radioactivity coeluded with the proteins. On the basis of these in vitro and in vivo experiments, it appears that functionalization of biomolecules with tridentate-chelating ligand systems is preferable for the labeling with fac-[(99m)Tc(OH(2))(3)(CO)(3)](+), since this will presumably result in radioactive bioconjugates with better pharmacokinetic profiles.  相似文献   

11.
A sensitive, specific and reproducible method for the quantitative determination of the anabolic metandienone in human hair has been developed. The preparation involved a decontamination step with methylene chloride. The hair sample (about 50 mg) was solubilised in 1 ml 1 M NaOH, 10 min at 95 degrees C, in presence of 2 ng of nandrolone-d(3) used as internal standard. The homogenate was neutralized and extracted using consecutively a solid-phase extraction (Isolute C(18) eluted with methanol) and a liquid-liquid extraction with pentane. The residue was derivatized by adding 5 microl MSTFA/NH(4)I/2-mercaptoethanol (250 microl; 5 mg; 15 microl) and 45 microl MSTFA, then incubated for 20 min at 60 degrees C. A 1 microl aliquot of derivatized extract was injected into the column (HP5-MS capillary column, 5% phenyl-95% methylsiloxane, 30 m x 0.32 mm i.d., 0.25 microm film thickness) of a Hewlett Packard (Palo Alto, CA, USA) gas chromatograph (6890 Series). Metandienone was identified using three transitions (its daughter ions at m/z 339 and 206 for the parent 444 and 191 for 206) using a Waters Quattro Micro MS-MS system. The transition m/z 444 to 206 has been used as quantification transition and the others as identification transitions. The assay was capable of detecting 2 pg/mg of metandienone when approximately 50 mg of hair material was processed. Linearity was observed for metandienone concentrations ranging from 2 to 500 pg/mg with a correlation coefficient of 0.9997. Intra-day and between-day precisions at 50 pg/mg were 13.4-16.5% and 22.0%, respectively, with an extraction recovery of 48%. The analysis of hair, cut into four segments, obtained from an athlete, revealed the presence of metandienone at the concentrations of 78, 7, 10 and 108 pg/mg in each segment of hair (0-1, 1-2, 2-3 and 3 cm to the tip).  相似文献   

12.
Four medetomidine/ketamine (M/K) doses (30 microg/kg/3 mg/kg; 40/4; 50/5; 60/6), administered by intramuscular injection, were evaluated for short-term immobilization of adult male variable flying foxes (Pteropus hypomelanus). The highest dose (60 microg/kg/6 mg/kg) produced a significantly faster induction (31 +/- 46 sec) than the lowest dose (30/3) (125 +/- 62 sec). The highest dose levels (50/5, 60/6) produced significantly longer immobilization times (52.5 +/- 25.7 min and 60.6 +/- 20.8 min, respectively) than did the lower doses (30/3, 40/4) (18.8 +/- 8.7 min and 31.0 +/- 14.3 min, respectively). The dose at which 50% of the bats were immobilized for > or = 30 min (ED(50)) was approximately 40 microg/kg/4 mg/kg. This dose produced a mean immobilization time of 31 +/- 14 min, bradypnea and bradycardia. In conclusion, a M/K dose of 50 microg/kg/5 mg/kg is recommended for greater than 30 min of relaxed immobilization in free-living variable flying foxes and is sufficient for safe collection of samples.  相似文献   

13.
Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds.  相似文献   

14.
A model consisting of 59Fe-labelled macrophages was developed for screening potential iron-chelating drugs. Mouse peritoneal macrophages, induced by previous intraperitoneal injections of 3% thioglycollate, were labelled in vitro by their exposure to immune complexes of 59Fe-transferrin-antitransferrin antibody. Optimal conditions for macrophage labelling and subsequent 59Fe release were established. Sixty-two aromatic hydrazones, the majority of which had iron binding structures similar to pyridoxal isonicotinoyl hydrazone, were synthesized by condensation of aromatic aldehydes (pyridoxal, salicylaldehyde, 2-hydroxy-1-naphthylaldehyde and 2-furaldehyde) with various acid hydrazides prepared by systematic substitutions on the benzene ring. These compounds were examined for their potential to stimulate 59Fe release from 59Fe-labelled macrophages and also from reticulocytes and hepatocytes loaded with non-heme 59Fe. The majority of hydrazones derived from pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde seemed to be equally effective in both the macrophage and reticulocyte testing systems. However, the pyridoxal hydrazones were much more active in hepatocytes than the other groups of hydrazones. Several compounds proved to be very potent in mobilizing 59Fe. These included hydrazones derived from 2-hydroxy-1-naphthylaldehyde and benzoic acid hydrazide, p-hydroxybenzoic acid hydrazide, 2-thiophenecarboxylic acid hydrazide, and also pyridoxal benzoyl hydrazone, pyridoxal m-fluorobenzoyl hydrazone and pyridoxal 2-thiophenecarboxyl hydrazone.  相似文献   

15.
N-1-Alkylamino and N-1-alkyloxy-4-hydroxyquinolon-3-yl benzothiadiazines were synthesized and evaluated as inhibitors of genotype 1 HCV polymerase. The N-1-alkyloxy derivatives were not potent inhibitors, however N-1-alkylamino derivatives displayed comparable potency to carbon analogs. Analogs with aliphatic substituents were significantly more potent than those with benzylic substituents against genotype 1a polymerase. The most potent inhibitors contained small alkyl or carbocyclic substituents and exhibited IC50's of 50-100 and 200-400 nM against genotype 1b and 1a HCV polymerase, respectively.  相似文献   

16.
Mixed-ligand model complexes of general formula [(99m)Tc(O)(kappa(3)-PNX)(kappa(1)-SPh))] [X = O (1a), S (2a)] were prepared in a one-step procedure from [(99m)TcO(4)(-)] using stannous chloride as reducing agent. Stability studies and challenge experiments with glutathione showed that complex 2a presented promising features for pursuing animal studies. The activity in the brain (% dose injected/organ) at 5 min (0.14% +/- 0.03) and 120 min (0.11% +/- 0.02) pi encouraged the synthesis of several mixed-ligand "3 + 1" oxo complexes of general formula [M(O)(kappa(3)-PNS)(kappa(1)-SL))] (M = (99m)Tc, 3a-6a, Re, 3-6), in which the tridentate ligand is the heterofunctionalized phosphine 2-(diphenylphosphanyl)-N-(2-thioethyl)benzamide (PNS) and the co-ligands are different arylpiperazine derivatives (HSL1-HSL4). The (99m)Tc complexes have been characterized by comparison of their retention times in the HPLC chromatogram (gamma-detection) with the retention times of the analogous Re complexes (UV detection at 254 nm). The (99m)Tc complexes, obtained with radiochemical purity higher than 95%, after HPLC purification, are stable in saline, 0.01 M PBS (pH 7.4), rat plasma (4 h, 37 degrees C), and glutathione (10 mM solutions, 2h, 37 degrees C). Binding affinity and selectivity for 5-HT(1A) receptors (relative to the 5-HT(2A) receptor) were determined, complex 5 demonstrating the best values (IC(50) for the 5-HT(1A) 2.35 +/- 0.02 nM; competitor 5-HT(2A) 372 +/- 11 nM). Biodistribution and stability studies in mice indicated a preferred hepatobiliary excretion, a high in vivo stability, but a poor brain uptake.  相似文献   

17.
Labeling biomolecules with (99m)Tc(CO)(3)(+) ((99m)Tc tricarbonyl) is attracting increasing attention. Although histidine is often considered an ideal bifunctional chelator for (99m)Tc (or (188)Re) tricarbonyl, the family of dipicolylamine carboxylate chelators may be a useful alternative because of the expected ease of synthesis and because the structure provides a pendent carboxylate for potential conjugation to biomolecules. The dipicolylamine chelator N,N-bis(2-pyridylmethyl)-4-aminobutyric acid (BPABA) was synthesized using 4-aminobutyric acid in place of glycine or aminopropionic acid in the literature, to avoid possible involvement of the carboxylate in the complex formation process by forming five- or six-membered chelation rings. Using a commercial tricarbonyl kit (Mallinckrodt), the complex formation properties of both BPABA and commercial histidine with (99m)Tc tricarbonyl were investigated, and the in vitro complex stabilities in saline and in serum were compared. Stability in vivo was also examined following i.v. administration to normal mice. BPABA was synthesized simply and quantitatively by reacting picolyl chloride with aminobutyric acid in one step. On RP HPLC, the product eluted essentially in one peak and the structure was confirmed by ESI-MS. After labeling, both BPABA and histidine were shown by RP HPLC to form tricarbonyl complexes. In both cases, after incubation at 100 degrees C for 20 min, only one predominant peak of (99m)Tc(CO)(3)(+)-histidine or (99m)Tc(CO)(3)(+)-BPABA was apparent, and both complexes were stable at room temperature in saline for at least 24 h. After incubation for 24 h in 37 degrees C serum, by SE HPLC, 20% of the (99m)Tc(CO)(3)(+)-histidine was bound to serum protein compared to less than 10% for (99m)Tc(CO)(3)(+)-BPABA. A 5000 molar excess of histidine at 100 degrees C for 6 h was unable to dissociate (99m)Tc(CO)(3)(+)-BPABA. By contrast, BPABA easily dissociated (99m)Tc(CO)(3)(+)-histidine under the same conditions. Both complexes were stable in vivo in mice, and (99m)Tc(CO)(3)(+)-BPABA showed rapid and specific hepatobiliary clearance while (99m)Tc(CO)(3)(+)-histidine was cleared through the kidneys. In conclusion, BPABA was easily synthesized and was shown to possess properties comparable to histidine for labeling of biomolecules with (99m)Tc tricarbonyl. However, it was found that the chelator concentration required for quantitative (99m)Tc tricarbonyl labeling with both BPABA and histidine were 2 orders higher than that required with more conventional labeling using MAG(3). Finally, the complex (99m)Tc(CO)(3)(+)-BPABA itself was found to clear exclusively via the hepatobiliary pathway and may have value as a potential hepatobiliary imaging agent.  相似文献   

18.
A broad spectrum of radiolabeled peptides with high affinity for receptors expressed on tumor cells is currently under preclinical and clinical investigation for scintigraphic imaging and radionuclide therapy. The present paper evaluates two (99m)Tc-labeled forms of the C-terminal octapeptide of cholecystokinin (CCK8): sulfated (s)CCK8, with high affinity for CCK1 and CCK2 receptors, and nonsulfated (ns)CCK8, with high affinity for CCK2 receptors but low affinity for CCK1 receptors. Peptides were conjugated with the bifunctional chelator N-hydroxysuccinimidyl hydrazino niconitate (s-HYNIC). (99m)Tc-labeling, performed in the presence of nicotinic acid and tricine, was highly efficient (approximately 95%) and yielded products with a high specific activity (approximately 700 Ci/mmol) and good stability (approximately 5% release of radiolabel during 16 h incubation in phosphate buffered saline at 37 degrees C). Chinese hamster ovary cells stably expressing the CCK1 receptor (CHO-CCK1 cells) internalized approximately 3% of added (99m)Tc-sCCK8 per confluent well during 2 h at 37 degrees C. Internalization was effectively blocked by excess unlabeled sCCK8. CHO-CCK1 cells did not internalize (99m)Tc-nsCCK8. Displacement of (99m)Tc-sCCK8 and -nsCCK8 by unlabeled CCK-8 (performed at 0 degrees C to prevent internalization) revealed 50% inhibitory concentrations (IC(50)) of 8 nM and >1 microM, respectively. CHO-CCK2 cells internalized approximately 25% and approximately 5% of added (99m)Tc-sCCK8 and -nsCCK8, respectively. In both cases internalization was blocked by excess unlabeled peptide. IC(50) values for the displacement of (99m)Tc-sCCK8 and -nsCCK8 were 3 nM and 10 nM, respectively. CHO-CCK1 cell-derived tumors present in one flank of athymic mice accumulated 2.0% of injected (99m)Tc-sCCK8 per gram tissue at 1 h postinjection. This value decreased to 0.6% following coinjection with excess unlabeled peptide. Uptake of (99m)Tc-nsCCK8 was low (0.2%) and not did change by excess unlabeled peptide (0.3%). Accumulation of (99m)Tc-sCCK8 and -nsCCK8 by CHO-CCK2 cell-derived tumors (present in the other flank) amounted to 4.2% and 0.6%, respectively. In both cases uptake was significantly reduced by excess unlabeled peptide to 1.0% and 0.4% for sCCK8 and nsCCK8, respectively. Accumulation of (99m)Tc-sCCK8 was also high in pancreas (11.7%), stomach (2.0%), and kidney (2.1%), whereas uptake of (99m)Tc-nsCCK8 was high in stomach (0.7%) and kidney (1.4%). Both radiolabeled peptides showed a rapid blood clearance. In conclusion, these data show that CCK8 analogues can be efficiently labeled with (99m)Tc using s-HYNIC as chelator and nicotinic acid/tricine as coligand system without compromising receptor binding. Furthermore, the present study demonstrates that CCK1 tumors hardly accumulate (99m)Tc-nsCCK8, CCK2 tumors accumulate 2 times more (99m)Tc-sCCK8 than CCK1 tumors, and CCK2 tumors accumulate 15 times more (99m)Tc-sCCK8 than (99m)Tc-nsCCK8. Although accumulation in some nontarget organs was also higher with (99m)Tc-sCCK8, this may not reflect the human situation due to a different receptor expression pattern in humans as compared to mice. Therefore, further studies are warranted to investigate the possible use of (99m)Tc-sCCK8 for scintigraphic imaging of CCK receptor-positive tumors in humans.  相似文献   

19.
The immunosuppressant drug mycophenolic acid (MPA) and its major metabolite, mycophenolic acid glucuronide (MPAG), are highly bound to albumin. An HPLC-tandem-MS (HPLC/MS/MS) and an HPLC-UV assay were developed to measure free (unbound) concentrations of MPA and MPAG, respectively. Ultrafiltrate was prepared from plasma (500 microl) by ultrafiltration at 3000 x g for 20 min (20 degrees C). Both MPA and MPAG were isolated from ultrafiltrate (100 microl) by acidification and C18 solid-phase extraction. Free MPA was measured by electrospray tandem mass spectrometry using selected reactant monitoring (MPA: m/z 338.2--> 206.9) in positive ionisation mode. Chromatography was performed on a PFPP column (50 mm x 2 mm, 5 microm). Total analysis time was 7 min. The assay was linear over the range 1-200 microg/l with a limit of quantification of 1 microg/l. The inter-day accuracy and imprecision of quality controls (7.5, 40, 150 microg/l) were 94-99% and < 7%, respectively. Free MPAG was chromatographed on a C18 Nova-Pak column (150 mm x 3.9 mm, 5 microm) using a binary gradient over 20 min. The eluent was monitored at 254 nm. The assay was linear over the range 1-50 mg/l with the limit of quantification at 2.5 mg/l. The inter-day accuracy and imprecision of quality controls (5, 20, 45 mg/l) was 101-107% and < 8% (n = 4), respectively. For both methods no interfering substances were found in ultrafiltrate from patients not receiving MPA. The methods described have a suitable dynamic linear range to facilitate the investigation of free MPA and MPAG pharmacokinetics in transplant patients. Further, this is the first reported HPLC-UV method to determine free MPAG concentrations.  相似文献   

20.
This report describes the (99m)Tc labeling of a hydrazinonicotinamide (HYNIC)-conjugated LTB(4) receptor antagonist (SG380). The ternary ligand technetium complex [(99m)Tc(SG38)(tricine)(TPPTS)] (RP517) was prepared using a non-SnCl(2)-containing formulation ((2001) J. Pharm. Sci. 90, 114-123). Unlike other HYNIC-conjugated small biomolecules, SG380 is lipophilic and has low solubility in the kit matrix. Using a combination of a solubilizing agent (Lysolecithin) and a cosolvent (ethanol), we have developed a new formulation for routine preparation of RP517. Using this formulation, RP517 can be prepared in high radiochemical purity (RCP > 90%) and remains stable in the kit matrix for at least 6 h. We also prepared the corresponding (99)Tc analogue, [(99)Tc]RP517. An HPLC concordance experiment using RP517 and [(99)Tc]RP517 showed that the same technetium complex was prepared at both the tracer and macroscopic levels. The LC-MS data are completely consistent with the 1:1:1:1 composition for Tc:SG380:tricine:TPPTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号