首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maintenance of hemocyte populations is critical for both development and immune responses. In insects, the maintenance of hemocyte populations is regulated by mitotic division of circulating hemocytes and by discharge from hematopoietic organs. We found cell clusters in the hemolymph of Mamestra brassicae larvae that are composed of small, spherical cells. Microscopic observations revealed that the cells in these clusters are similar to immature or precursor cells present in hematopoietic organs. The results of bromodeoxyuridine (BrdU) incorporation experiments demonstrate that these cells are mitotically active. Furthermore, these cells maintain their immature state and proliferate until late in the last larval instar. The results of in vitro experiments showed that most of the cells changed their morphology to one consistent with plasmatocytes or granulocytes, and that the change was promoted by addition of larval hemolymph to the culture medium, in particular when hemolymph was collected at a prepupal stage. Taken together, our results suggested that cells in clusters may be an additional source of hemocytes during larval development.  相似文献   

2.
Bombyx mori paralytic peptide (BmPP), a multifunctional cytokine-like molecule, is expressed in the hematopoietic organ-wing imaginal disc complex, suggesting that BmPP is involved in both immune response and the hematopoietic process. We studied the effects of BmPP on plasmatocytes and hematopoietic organs of the silkworm. BmPP (1 microM) stimulated spreading of circulating plasmatocytes, but the percentage of spread plasmatocytes was only 20%. Over 10 nM of BmPP, however, elicited prominent spreading in 70% of young plasmatocytes discharged from cultured hematopoietic organs. Cells in hematopoietic organs that were enzymatically dispersed did not spread even after adding 100 nM of BmPP, indicating that plasmatocytes acquired BmPP-sensitivity immediately after discharge. When cultured in a medium containing larval plasma, hematopoietic organs grew markedly and discharged a large number of hemocytes, over 95% of which were morphologically plasmatocytes. The hemocyte discharge was blocked in the medium containing BmPP dose-dependently, although hematopoietic organ growth was not suppressed. These results suggest that BmPP plays important roles both in hematopoietic regulation and in the hemocyte immune reaction of the silkworm.  相似文献   

3.
The cellular arm of the insect immune response is mediated by the activity of hemocytes. While hemocytes have been well-characterized morphologically and functionally in model insects, few studies have characterized the hemocytes of non-model insects. Further, the role of ontogeny in mediating immune response is not well understood in non-model invertebrate systems. The goals of the current study were to (1) determine the effects of caterpillar size (and age) on hemocyte density in naïve caterpillars and caterpillars challenged with non-pathogenic bacteria, and (2) characterize the hemocyte activity and diversity of cell types present in two forest caterpillars: Euclea delphinii and Lithacodes fasciola (Limacodidae). We found that although early and late instar (small and large size, respectively) naïve caterpillars had similar constitutive hemocyte densities in both species, late instar Lithacodes caterpillars injected with non-pathogenic E. coli produced more than a twofold greater density of hemocytes than those in early instars. We also found that both caterpillar species contained plasmatocytes, granulocytes and oenocytoids, all of which are found in other lepidopteran species, but lacked spherulocytes. Granulocytes and plasmatocytes were found to be strongly phagocytic in both species, but granulocytes exhibited a higher phagocytic activity than plasmatocytes. Our results strongly suggest that for at least one measure of immunological response, the production of hemocytes in response to infection, response magnitudes can increase over ontogeny. While the underlying raison d’ être for this improvement remains unclear, these findings may be useful in explaining natural patterns of stage-dependent parasitism and pathogen infection.  相似文献   

4.
Hemocytes and hemocytopoiesis in Silkworms.   总被引:6,自引:0,他引:6  
J Beaulaton 《Biochimie》1979,61(2):157-164
A brief review is presented of the current state of ultrastructure, cytochemistry, and physiology of the hemocytes and meso- and metathoracic peri-imaginal-wing organs in silkworms. According to the accepted morphological classification, five circulating types of hemocytes are recognized in Bombyx mori as well as in Antheraea pernyi. They are prophemocytes or stem cells, plasmatocytes or pre-differentiated cells and three specialized cells, granulocytes, spherule cells and oenocytoids. During post-embryonic development the last four types are the most common in the circulating hemolymph. Plasmatocytes are considered to be pluripotent cells from which granulocytes, spherule cells and oenocytoids are derived. Contrary to the situation in most insects the plasmatocytes are not phagocytic in Antheraea. The granulocytes are efficient phagocytes. Both plasmatocytes and granulocytes are involved in pinocytosis. Another possible function of the granulocytes is hemolymph coagulation. The function of the spherule cells which contain a paracrystalline material (muco- or glycoproteins) is by no means clear. The phenoloxidase activity found within the cytosol of oenocytoids appears effective against the natural monophenol and diphenol substrates. The involvement of oenocytoids in the complex metabolism of phenols and particularly in the production of plasma phenolases has been reported. The mitotic division of five circulating hemocyte types is well known and was long regarded as the only mechanism of postembryonic hemocyte production. We present for silkworms, experimental evidence of the hemocytopoietic function of the meso- and metathoracic organs surrounding the imaginal wing discs. Ablation experiments demonstrate that the mitotic activity of free hemocytes is unable to maintain the normal hemocytogram in the absence of the two paris of organs. These organs are typically divided into cell islets ensheathed by a connective tissue membrane. Two types of islets may be classified by the disposition of the cells : the compact islets or aggregations of stem cells and the reticulate islets which are mainly composed of hemocytes at different steps of differentiation. The relative number of prohemocytes in the total hemocyte population ranges from 84 to 97 p. cent in organs of Antheraea pernyi. This well-defined cell type appears to be the major hemocyte type in hemocytopoietic organs. In Antheraea, the mitotic index (the relative number of mitotic hemocytes in the total cell population) varies from 0.5 to about 3 p. cent. Finally, our data direct attention to cyclic functional changes such as mitotic divisions and hemocyte differentiation which run parallel to the molting cycle.  相似文献   

5.
Hemocytes isolated from the larval hematopoietic organs of the silkworm were classified following staining with acridine orange and propidium iodide. Among the hemocytes isolated from the hematopoietic organs of whole fifth larval and wandering stages, most were prohemocytes (60%–70%) and oenocytoids (30%–40%). Granulocytes comprised only about 0.5%–1% at the wandering stage and were even rarer at other stages; no spherulocytes or plasmatocytes were found. Therefore, hemocyte differentiation inside larval hematopoietic organs is not as extensive as previously thought. Following 10–30 min in vitro culture of hemocytes isolated from larval hematopoietic organs, many young granulocytes and plasmatocytes appeared. Furthermore, during phagocytosis assays, prohemocytes were seen to adopt the morphology of plasmatocytes, containing fragments of phagocytosed cells. Our results underline the similarities between Drosophila and Bombyx hematopoiesis.  相似文献   

6.
The present study focuses on the ability of Pterostichus melas italicus Dejean to mount cellular and humoral immune responses against invading pathogens. Ultrastructural analyses revealed the presence of five morphologically distinct types of hemocytes: prohemocytes, plasmatocytes, granulocytes, oenocytoids and macrophage-like cells. Differential hemocyte counts showed that plasmatocytes and granulocytes were the most abundant circulating cell types and plasmatocytes exhibited phagocytic activity following the latex bead immune challenge. Macrophage-like cells were recruited after the immune challenge to remove exhausted phagocytizing cells, apoptotic cells and melanotic capsules formed to immobilize the latex beads. Total hemocyte counts showed a significant reduction of hemocytes after latex bead treatment. Phenoloxidase (PO) assays revealed an increase of total PO in hemolymph after immune system activation with lipopolysaccharide (LPS). Moreover, the LPS-stimulated hemocytes showed increased protein expression of inducible nitric oxide synthase, indicating that the cytotoxic action of nitric oxide was engaged in this antimicrobial collaborative response. These results provide a knowledge base for further studies on the sensitivity of the P. melas italicus immune system to the environmental perturbation in order to evaluate the effect of chemicals on non-target species in agroecosystems.  相似文献   

7.
Drosophila larval hematopoietic organs produce circulating hemocytes that ensure the cellular host defense by recognizing and neutralizing non-self or noxious objects through phagocytosis or encapsulation and melanization. Hematopoietic lineage specification as well as blood cell proliferation and differentiation are tightly controlled. Mutations in genes that regulate lymph gland cell proliferation and hemocyte numbers in the body cavity cause hematopoietic organ overgrowth and hemocyte overproliferation. Occasionally, mutant hemocytes invade self-tissues, behaving like neoplastic malignant cells. Two alleles of the Polycomb group (PcG) gene multi sex combs (mxc) were previously isolated as such lethal malignant blood neoplasm mutations. PcG genes regulate Hox gene expression in vertebrates and invertebrates and participate in mammalian hematopoiesis control. Hence we investigated the need for mxc in Drosophila hematopoietic organs and circulating hemocytes. We show that mxc-induced hematopoietic hyperplasia is cell autonomous and that mxc mainly controls plasmatocyte lineage proliferation and differentiation in lymph glands and circulating hemocytes. Loss of the Toll pathway, which plays a similar role in hematopoiesis, counteracted mxc hemocyte proliferation but not mxc hemocyte differentiation. Several PcG genes tested in trans had no effects on mxc hematopoietic phenotypes, whereas the trithorax group gene brahma is important for normal and mutant hematopoiesis control. We propose that mxc provides one of the regulatory inputs in larval hematopoiesis that control normal rates of plasmatocyte and crystal lineage proliferation as well as normal rates and timing of hemocyte differentiation.  相似文献   

8.
Cells of the moth immune system are derived from organs that loosely envelop the four wing imaginal discs. The immune response in these insects is believed to depend on the activities of two main classes of hemocytes: plasmatocytes and granular cells. The fates of cells that arise from these hematopoietic organs have been followed by immunolabeling with plasmatocyte-specific and granular-cell-specific antibodies. Cells within each hematopoietic organ differ in their coherence and in their expression of two plasmatocyte-specific surface proteins, integrin and neuroglian. Within an organ there is no overlap in the expression of these two surface proteins; neuroglian is found on the surfaces of the coherent cells while integrin is expressed on cells that are losing coherence, rounding up, and dispersing. A granular-cell-specific marker for the protein lacunin labels the basal lamina that delimits each organ but only a small number of granular cells that lie on or near the periphery of the hematopoietic organ. When organs are cultured in the absence of hemolymph, all cells derived from hematopoietic organs turn out to immunolabel with the plasmatocyte-specific antibody MS13. The circulating plasmatocytes derived from hematopoietic organs have higher ploidy levels than the granular cells and represent a separate lineage of hemocytes.Edited by P. Simpson  相似文献   

9.
In this study, we examined cellular immune responses in the flesh fly, Sarcophaga bullata, when parasitized by the ectoparasitoid Nasonia vitripennis. In unparasitized, young pharate adults and third instar, wandering larvae of S. bullata, four main hemocyte types were identified by light microscopy: plasmatocytes, granular cells, oenocytoids, and pro-hemocytes. Parasitism of young pharate adults had a differential effect on host hemocytes; oenocytoids and pro-hemocytes appeared to be unaltered by parasitism, whereas adhesion and spreading behavior were completely inhibited in plasmatocytes and granular cells by 60 min after oviposition. The suppression of spreading behavior in granular cells lasted the duration of parasitism. Plasmatocytes were found to decline significantly during the first hour after parasitism and this drop was attributed to cell death. Melanization and clotting of host hemolymph did not occur in parasitized flies, or the onset of both events was retarded by several hours in comparison to unparasitized pharate adults. Hemocytes from envenomated flies were altered in nearly identical fashion to that observed for natural parasitism; the total number of circulating hemocytes declined sharply by 60 min post-envenomation, the number of plasmatocytes declined but not granular cells, and the ability of plasmatocytes and granular cells to spread when cultured in vitro was abolished within 1 h. As with parasitized hosts, the decrease in plasmatocytes was due to cell death, and inhibition of spreading lasted until the host died. Isolated crude venom also blocked adhesion and spreading of these hemocyte types in vitro. Thus, it appears that maternally derived venom disrupts host immune responses almost immediately following oviposition and the inhibition is permanent. The possibility that this ectoparasite disables host defenses to afford protection to feeding larvae and adult females is discussed.  相似文献   

10.
Stofanko M  Kwon SY  Badenhorst P 《Genetics》2008,180(1):253-267
In Drosophila, defense against foreign pathogens is mediated by an effective innate immune system, the cellular arm of which is composed of circulating hemocytes that engulf bacteria and encapsulate larger foreign particles. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. The most abundant larval hemocyte type is the plasmatocyte, which is responsible for phagocytosis and is present either in circulation or in adherent sessile domains under the larval cuticle. The mechanisms controlling differentiation of plasmatocytes and their migration toward these sessile compartments are unclear. To address these questions we have conducted a misexpression screen using the plasmatocyte-expressed GAL4 driver Peroxidasin-GAL4 (Pxn-GAL4) and existing enhancer-promoter (EP) and EP yellow (EY) transposon libraries to systematically misexpress approximately 20% of Drosophila genes in larval hemocytes. The Pxn-GAL4 strain also contains a UAS-GFP reporter enabling hemocyte phenotypes to be visualized in the semitransparent larvae. Among 3412 insertions screened we uncovered 101 candidate hemocyte regulators. Some of these are known to control hemocyte development, but the majority either have no characterized function or are proteins of known function not previously implicated in hemocyte development. We have further analyzed three candidate genes for changes in hemocyte morphology, cell-cell adhesion properties, phagocytosis activity, and melanotic tumor formation.  相似文献   

11.
Larval endoparasitoids can avoid the immune response of the host by the function of polydnavirus (PDV) and venom. PDV infects hemocytes and affects the hemocyte function of the host. In this paper, we investigated how PDV and venom affect the hemocyte population of the host. Cotesia kariyai, the larval endoparasitoid, lowers the hemocyte population of the noctuid host larvae soon after parasitization. The reduction in the number of circulating hemocytes is caused by the breakdown of the circulating hemocytes and of the hematopoietic organ which generates the circulating hemocytes. The decrease in the number of hemocytes shortly after parasitization is a response to the venom. However, the decrease in hemocyte population on and after 6 h post-parasitization appears to be caused by the PDV. Apoptosis in circulating hemocytes was observed on and after 6 h post-injection of PDV plus venom. It was revealed through cytometry that mitosis of circulating hemocytes was halted within 24 h after the injection of PDV plus venom. Apoptosis in the hematopoietic organ was induced 12 h after the injection of PDV plus venom. Furthermore, the plasma from the hosts injected with PDV plus venom depressed the number of hemocytes released from the hemotopoiteic organs.  相似文献   

12.
刘晓楠  赵素娟  王博  王宏鑫  郝阳光 《昆虫学报》2021,64(12):1359-1366
【目的】探究敲低piwi基因对黑腹果蝇Drosophila melanogaster血细胞增殖及分化的影响。【方法】利用黑腹果蝇e33C-Gal4和Hml-Gal4-UAS-2×EGFP品系分别与野生型w1118和UAS-piwi RNAi品系杂交,实现在黑腹果蝇游离血细胞或淋巴腺中降低piwi基因的表达;采用免疫荧光染色方法检测Piwi蛋白在血细胞中的定位及其对黑腹果蝇血细胞增殖与分化的影响。【结果】Piwi蛋白在黑腹果蝇游离血细胞及整个淋巴腺中都表达,且主要定位在细胞质;敲低piwi基因导致游离血细胞数量明显增加,处于有丝分裂M期的细胞数量增加,但未影响游离血细胞中浆细胞及薄层细胞的分化;敲低piwi基因对淋巴腺血细胞增殖无影响,但导致浆细胞过度分化及薄层细胞的产生。【结论】piwi基因在果蝇游离血细胞中的缺失可引起血细胞过度增殖,而在淋巴腺中敲低可引起血细胞的异常分化。  相似文献   

13.
应用血球计数器统计了胚后发育期臭腹腺蝗Zonocerus variegatus中存在的血细胞类型和数目。从1龄幼虫至成虫的发育阶段中共观察到6种血细胞类型,即原血细胞 (PRS)、 浆血细胞 (PLS)、粒细胞 (GRS)、珠血细胞 (SPS)、绛色细胞(OES) 和adipohaemocytes (ADS)。不过,在1龄幼虫期未发现OES。在这6种血细胞中,PLS的总平均数最高,OES的总平均数最低。成虫期的血细胞数目显著高于其他发育阶段(P<0.05),而1龄幼虫和2龄幼虫期的血细胞数目不存在显著差异(P>0.05)。  相似文献   

14.
Cotesia glomerata L. (Hymenoptera: Braconidae) is a parasitoid of early instar larvae of Pieris brassicae L. (Lepidoptera: Pieridae). Late instars of P. brassicae can more often overcome parasitization by hemocytic encapsulation of C. glomerata eggs. Short-term hemocyte responses to parasitization were examined in third and fourth instar larvae of P. brassicae. Total and differential hemocyte counts did not differ between parasitized and unparasitized host larvae. A rapid, but temporary decrease of total hemocyte as well as plasmatocyte numbers was observed immediately after oviposition. Numbers of hemocytes adhering to tissues were shown to be the same in untreated, wounded and parasitized P. brassicae larvae by tracing hemocytes with monoclonal antibodies as markers. The in vitro spreading ability of hemocytes from unparasitized third and fourth instar larvae was lower than that of the last instar's; parasitization, however, had no influence on hemocyte spreading. We therefore suggest that the higher parasitization success of C. glomerata in earlier instars of P. brassicae is mainly due to the low spreading ability of the hemocytes. Abbreviations: ACS – anticoagulant saline; BSA – bovine serum albumin; DABCO – 1,4-diazabicyclo-[2,2,2]-octane; DHC – differential hemocyte count; FITC – fluorescein isothiocyanate; GR – granular cells; LPS – lipopolysaccharide; mAb – monoclonal antibody; OE – oenocytoids; PL – plasmatocytes; PRO – prohemocytes; PS – Pieris saline; PVP – polyvinylpyrrolidone; TBS – tris-buffered saline; THC – total hemocyte count.  相似文献   

15.
亚洲玉米螟幼虫血细胞的包囊行为   总被引:1,自引:0,他引:1  
胡建  符文俊 《动物学研究》2003,24(6):435-440
根据光镜和电镜观察结果,将亚洲玉米螟(Ostrinia furnacalis)幼虫血细胞分为粒细胞、浆细胞、类绛色细胞、原血细胞和球形血细胞五类。调查了幼虫的血细胞总数(THC)和各类血细胞数量(DHC)的变化情况。从三龄末期到五龄第五天期间,幼虫的THC在蜕皮前后会下降,蜕皮后约12h降到最低点,然后又慢慢回升。在五龄幼虫前5d期间,浆细胞在前第三天呈增加趋势,之后开始下降,而粒细胞呈相反趋势。浆细胞和粒细胞具有附着延展性,它们可以附着在载玻片表面,但延展能力不同。血细胞可以迅速黏附在外源物如葡聚糖凝胶珠表面形成包囊,部分包囊会发生黑化现象。体外培养条件下,血细胞也可以形成包囊,其结构与体内形成的包囊差异不大。  相似文献   

16.
Insect hemocytes play a major role in developmental processes where they disassociate and rebuild metamorphosing tissues while undergoing physiological changes themselves. We identified hemocyte changes from the last larval to the beginning of the pupal stage of the tobacco hornworm, Manduca sexta. Larval and pupal hemocytes behaved differently in a 40% Percoll density gradient. Larval granular cells were found in almost all density layers, pupal granular cells were abundant in high density layers; larval plasmatocytes occurred in dense layers, pupal plasmatocytes became enriched in less dense layers of the gradient. Using a panel of monoclonal antibodies generated against purified hemocytes, several different antibody binding patterns were identified. Quantitative differences in staining intensities were observed more often than qualitative changes, e.g. a loss or a gain of staining. Both phenomena were related to both plasmatocytes and granular cells. The distribution of the corresponding antigens in tissues was tested on cross sections of larvae and pupae as well as in Western blot analyses using organ homogenates. Several antibodies were specific for hemocytes only, among which two antibodies bound to molecules of the hematopoietic organ. Other antibodies had an additional reactivity to other tissues, mainly to the basal lamina.  相似文献   

17.
为了阐明幼虫密度对草地螟Loxostege sticticalis L.(鳞翅目: 螟蛾科)细胞免疫能力的影响, 本研究调查了在活体灰菜植株上1,5,10和20头/瓶(900 mL)4种密度条件下的其5龄幼虫血细胞种类、数量和组成。结果表明: 草地螟幼虫血淋巴中有原血细胞、浆血细胞、 颗粒血细胞、珠血细胞和类绛色血细胞等5种(类)血细胞。血细胞总数、 浆血细胞、颗粒血细胞数量随幼虫密度的增加而显著递增, 但原血细胞、珠血细胞和类绛色血细胞数量在幼虫密度间的差异不明显;各种血细胞所占血细胞总数的比例在4个密度中的排序相同, 但10和20头/瓶密度下的浆血细胞比例显著高于1头/瓶的,其余4种血细胞的比例在不同密度之间无显著差异。可见, 幼虫密度主要是通过影响草地螟幼虫浆血细胞和颗粒血细胞的数量及血细胞总数, 从而影响草地螟的细胞免疫能力。  相似文献   

18.
In the context of comparative studies on immunity defence mechanisms of adults and larvae of the coleopteran Cetonischema aeruginosa (Drury, 1770) the ultrastructure of the circulating hemocytes of the third instar larval stage has been investigated by means of light and transmission electron microscopy (TEM). Six types of hemocytes were found in the hemolymph of C. aeruginosa and they were identified as prohemocytes, granulocytes, plasmatocytes, coagulocytes, oenocytoids and spherule cells. In order to identify the "professional" phagocyte cell, phagocytosis assays were performed in vivo by injection of 0.9 microm carboxylate-modified polystyrene latex beads. It was demonstrated that the granulocytes and the oenocytoids of C. aeruginosa were the only hemocyte types involved in this cellular response.  相似文献   

19.
Cotesia plutellae, a solitary endoparasitoid wasp, parasitizes the diamondback moth, Plutella xylostella, and induces host immunosuppression and lethality in the late larval stage. This study focused on changes of cellular immunity in the parasitized P. xylostella in terms of hemocyte composition and cellular functions. In third and fourth instar larvae of nonparasitized P. xylostella, granular cells represented the main hemocyte type (60-70%) and plasmatocytes were also present at around 15% among the total hemocytes. Following parasitization by C. plutellae, the relative proportions of these two major hemocytes changed very little, but the total hemocyte counts exhibited a significant reduction. Functionally, the granular cells played a significant role in phagocytosis based on a fluorescence assay using fluorecein isothiocyanate-labeled bacteria. The phagocytic activity of the granular cells occurred as early as 5 min after incubation with the bacteria, and increased during the first 40 min of incubation. The parasitism by C. plutellae significantly inhibited phagocytosis of the granular cells. Plasmatocytes also exhibited minor phagocytic activity. Moreover, plasmatocyte phagocytosis was not inhibited by parasitism. On the other hand, hemocyte-spreading behavior in response to pathogen infection was significant only for plasmatocytes, which exhibited a characteristic spindle shape upon infection. A significant spreading of the plasmatocytes was found as early as 5 min after pathogen incubation and their ratio increased during the first 40 min.An insect cytokine, plasmatocyte-spreading peptide 1 (PSP1) from Pseudoplusia includens, was highly active in inducing plasmatocyte-spreading behavior of P. xylostella in a dose-dependent manner. P. xylostella parasitized by C. plutella was significantly inhibited in plasmatocyte-spreading in response to an active dose of PSP1. An in vivo encapsulation assay showed that the parasitized P. xylostella could not effectively form the hemocyte capsules around injected agarose beads. This research demonstrates that the parasitism of C. plutellae adversely affects the total hemocyte populations in number and function, which would contribute to host immunosuppression.  相似文献   

20.
[目的]血细胞是昆虫血淋巴免疫的主导者.调查家蚕Bombyx mori幼虫血细胞密度变化和成因、血细胞密度与家蚕抗性的关系,是研究家蚕血细胞相关的免疫调控和抗性育种的重要组成.[方法]用细胞计数板统计家蚕品种大造不同龄期(4龄第1-4天、5龄第1-8天和上蔟期)幼虫10 μL血淋巴中的血细胞数目并计算血细胞密度,利用I...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号