首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated stem segments of Pinus silvestris L. produce new xylem in sterile culture for 5 weeks if sucrose and IAA are present in the medium. The response of cambium varies in the course of the season and along the tree stem. The cambium is more sensitive in spring and in the stem portion closer to tree apex than later in the season and closer to the stem base. Spring initiation of cambial activity in adult pine trees under natural conditions could not be correlated with any consistent concentration gradient of natural auxin extracted from the cambial region. Thus, the relation between concentration of auxin and the activity of cambium is complex and involves changes of cambial responsivity. Interaction with gibberellic acid or kinetin and changing concentration of sucrose were studied during the season, but none of these substances alone appeared to be responsible for the observed variation in cambial response to auxin.  相似文献   

2.
Stem flattening in Rhynchosia pyramidalis (Fabaceae) is achieved by the development of crescent-shaped successive cambia on two opposite sides of the stem (referred hereafter as distal side). Other lateral sides of the stem (adjacent to supporting host and its opposite side, referred as proximal sides) usually possess single cambium. In the young stems, parenchymatous cells located outside to protophloem of distal side dedifferentiate and develop small segments of cambium. Concomitant to bidirectional differentiation of the secondary xylem and phloem, these newly developed cambial segments also extend in tangential directions. Differential activity of newly developed crescent-shaped cambial segments deposits more secondary xylem at median position as compared to their terminal ends of the stem on distal side; consequently, it pushes the cambial segment outside, thus resulting in crescent-shaped arcs of the cambia only on two opposite sides. After the production of 1–2 mm of secondary xylem, they cease to divide and new segments of cambial arc develop on the same side in a similar fashion. Such repeated behaviour of successive cambia development consequently leads to the formation of tangentially flat stems. The secondary xylem is diffusely porous with indistinct growth rings and is composed of vessels (wide and narrow), fibres, axial ray parenchyma cells, while phloem consisted of sieve elements, companion cells, axial and ray parenchyma. Rays in both xylem and phloem are uni- to multiseriate and heterocellular. The structure of secondary xylem and development of successive cambia is correlated with climbing habit.  相似文献   

3.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

4.
The formation of new xylem in the spring is preceded by bud development. In decapitated pine stem the formation of xylem is arrested until the outgrowth of interfascicular buds takes place. When indole-3yl-acetic acid (IAA) is applied to the cut surfaces of decapitated stems it induces the formation of a xylem ring on the whole length of 5-ycar old trees. Naphthaleneacetic acid (NAA) causes the formation of xylem; however, the width of the growth ring is several times broader at the point of application than at the base of the leader. Cis- and trans-cinnamic acids, coumarin, L-tryptophan, kinetin (Kin), benzylaminopurine (BAP) and gibberellic acid (GA) alone do not induce cambial divisions; however, GA and the cytokinins given jointly with IAA or NAA accelerated the basipetal stimulus which has been induced by the auxins, resulting in normal xylem formation. 2,3,5-Triiodobonzoic acid (TIBA) given jointly with IAA-induced formation of compression wood in the apical part of the stem and narrow diameter tracheids at the base. When carboxyl labelled IAA or NAA are applied to pine segments it is found that the basipetal movement of IAA is much quicker than that of NAA. GA and the cytokinins increase the rate of transport of both auxins, whereas TIBA arrests the bulk of auxin in the apical part of the stem.  相似文献   

5.
The dormant cambial zone consisted of 5–6 cell layers in the main stem of Pinus sylvestris L. trees that were ca. I00 years old. Time of cambial reactivation was comparable at one (bottom) and 8 (top) meters above the ground. In spring, when the cambium reactivated, the number of cambial cells slightly increased and phloem cells were formed. The production of xylem cells followed 3–4 weeks later. The formation of xylem cells decreased, whereas that of phloem cells increased between late June and early July. Cambial reaction in 1-year-old cuttings that were debudded and treated apically with IAA in lanolin was similar to that in the ca. 100-year-old main stem. However, in debudded cuttings treated with plain lanolin, the number of cells in the carnbial zone decreased during the first week of culture, and only a few phloem cells were formed. Later, the fusiform cambial cells of the cambial zone were divided transversely and lost their typical morphology. It is proposed that some factor(s) from roots may stimulate the initiation of cambial cell division, because when the cambium reactivated, the number of cambial cells slightly increased in the ca. 100-year-old main stem, but decreased in the 1-year-old cuttings.  相似文献   

6.
The effects of several concentrations of indole-3-acetic acid (IAA) and sucrose on xylogenic cambial activity and secondary xylem differentiation were investigated in isolated stem segments of Quercus robur L. supplied with liquid medium in aseptic conditions. After 5 weeks of culture auxin controlled cambial cell division and the number and size of vessel elements even without sugar in the medium. Sucrose modified these IAA effects, although little cambial activity occurred without auxin. The xylem increment correlated with changes of auxin concentration with the optimum at 28.5 μ M IAA. The formation of wide vessels was correlated with the optimal concentration of auxin. The frequency of vessel differentiation increased with auxin concentration. High concentrations of sucrose (0.24 M and 0.96 M ) reduced both the number of vessels and their diameter. The frequency of vessel formation was inhibited more than the vessel size by changes of sugar concentration. The vessels formed under low concentrations of IAA were circular in transverse section. With increase in IAA concentration the shape of the vessel cross-section changed to oval with the largest dimension in the radial direction.  相似文献   

7.
The culture of isolated stem sogments was used as a technique to study polarity of xylem formation in Pinus silvestris L. Cambial activity was greatest at the apical or the basal end, whichever received the complete fresh medium, but decreased more abruptly with increasing distance when the basal end was so supplied. Whether gradients of activity increased basipetally or acropetally also depended upon the end to which the auxin and the sugar components were supplied. Ring-barking of segments, then cultur-ing them with apical supply of medium to the xylem, resulted in inhibition of xylem production below, and above, the ring. Cambial activity at the apical ends of such segments was expressible as a logarithmic function of the uninterrupted length of contiguous extraxylary tissues. The involvement of polarity phenomena in control of cambial activity in isolated stem segments is confirmed.  相似文献   

8.
Natural auxin content has been determined in the cambial region of large Pinus silvestris L. trees at various dates during the year. The tissue was collected from the stem of intact or ring-barked trees and from stumps remaining after the trees were cut down at breast height in early summer or late autumn. No seasonal decrease of concentration of the extractable auxin in the cambial region could be detected. Decapitation or ring-barking produced severe reduction in auxin content and arrested cambial division. In the next season the auxin level and the cambial activity remained completely depressed. It is concluded that without tissue continuity in the region external to xylem and without basipetal supply of substances, no mechanism operated by roots or remaining stem tissue near the tree base can ensure a high level of auxin in the cambial region or activate and maintain the cambial division. The activity of extracted pine auxin was found not to be identical with the stimulatory potential of authentic IAA determined by standard bioassays. The possibility of interaction with other extracted substances is discussed.  相似文献   

9.
Abstract. Gas chromatography – selected ion monitoring – mass spectrometry was used to measure the level of indole-3-acetic acid (IAA) in the cambial region at the top and bottom of the branchless portion of the main stem of three large Scots pine trees, at weekly intervals from 28 April to 13 July. During this period, the cambium reactivated from the dormant state and entered its 'grand' period of xylem and phloem production, which was monitored by microscopy. The total amount of IAA (ng cm−2) increased steadily from 28 April until late June, and thereafter remained constant. In contrast, the concentration of IAA (ng g−1 fresh weight) was high at the start of cambial reactivation, declined when the number of differentiating tracheids began to increase, and then rose as the number of cells decreased. The timing and magnitude of the changes in xylem and phloem production and in IAA level were similar at the two sampling positions. It is concluded that the seasonal changes in cambial activity in the conifer stem cannot be ascribed simply to a fluctuation in the level of endogenous IAA in the cambial region.  相似文献   

10.
Cambial division continued in decapitated Xanthium plants without concomitant xylem fiber differentiation. The application of indoleacetic acid to these plants did not affect the production of cambial derivatives or induce xylem fiber differentiation. When naphthaleneacetic acid was applied either to the second internode or to the stump of a lateral shoot, xylem fiber differentiation was induced in the newly formed cambial derivatives on the xylem side of the cambium in the stem. When naphthaleneacetic acid was applied unilaterally, xylem fiber differentiation was restricted to that side of the stem in the first internode and hypocotyl. Naphthaleneacetic acid also enhanced the production of cambial derivatives. Gibberellic acid enhanced cambial derivative production but did not affect the differentiation of xylem fibers. Similar numbers of cambial derivatives were produced in some naphthaleneacetic acid-treated plants in which xylem fiber differentiation was induced and in gibberellic acid-treated plants which did not differentiate xylem. When naphthaleneacetic acid was applied 72 hours after decapitation, the oldest of the cambial derivatives on the xylem side failed to develop into fibers although younger cells did. These results suggest that auxin has its direct effect on the induction of xylem differentiation rather than the induction of divisions prerequisite to differentiation.  相似文献   

11.
The effect of section length and number of longitudinally contiguous cells upon polar transport of natural auxin from the pine stem cambial region was investigated with oat coleoptile curvature tests. Basipetal and acropetal efflux of auxin to agar declines with increasing length of the sections, but the polarity quotient varies little and is similar to the polarity of individual cells. An integrated system of cells produces a wave along the stem in the efflux of auxin from consecutive segments. The possible role of such waves in development of polarity gradients and of the morphogenic maps of orientation of cells in the stem cambial region is discussed.  相似文献   

12.
BACKGROUND AND AIMS: The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata) was investigated. METHODS: Electric heating tape (20-22 degrees C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy. KEY RESULTS: Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems. CONCLUSIONS: The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.  相似文献   

13.
14.
The developmental anatomy of the vascular cambium and periderm ofBotrypus virginianus was studied, and its bearing on the systematic position of Ophioglossacease is discussed. The cambial zone including cambium is initiated in a procambial ring of the stem before primary vascular tissue is well differentiated. The presumed cambium is composed of fusiform and ray initials. The cambium is extremely unequally bifacial, producing secondary xylem centripetally, and quite a small number of parenchymatous cells but no secondary phloem centrifugally. The cambial activity persists long, although it is very low in the mature part of the stem. It seems that the circumferential increase of the cambium is accommodated by an increase in the number of cambial initials. Secondary xylem is nonstoried and composed of tracheids with circular-bordered pits with evenly thick pit membranes, and uniseriate or partly biseriate radial rays. It makes up the bulk of the stem xylem. Periderm is formed almost entirely around the stem, simultaneous with its increment due to the secondary xylem. The combination of these anatomical features of secondary tissue supports the idea that Ophioglossaceae are living progymnosperms.  相似文献   

15.
Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de‐differentiation, and re‐differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 30–40.  相似文献   

16.
This paper describes the differentiation process of regenerated tissue after ordinary girdling or after removal of a section of xylem from the stem, and the disparity in differentiation of the regenerated tissues after being differently treateds in Broussonetia papyrifera. After ordinary girdling for 3–4 weeks, new bark regenerated in the xylem. During the process of rind' formation, many specks of meristematic tissue were formed in the callus, from which vascular tissue clusters were developed. In addition, the new periderm appeared almost at the same time as the new vascular cambium was seen. When a section of xylem was removed from the stem, numerous calli developed rapidly on the inner surface of the bark. Meanwhile, the vascular cambium appeared in the immature phloem. Soon after, discontinued meristematic tissue bands also occurred in the callus. These meristematic tissues then connected with each other to form a concave oblate cambial ring which developed xylem inward and phloem outward. About 2–3 weeks later, the concave oblate trunk grew lengthwisely connecting with the upper anct lower portions of the normal stem. By then, the tree continued to grow. The inner surface tissue of the bark, after the xylem was removed, differentiated about one week earlier than the tissue on the surface of the xylem after girdling.  相似文献   

17.
MURMANIS  LIDIJA 《Annals of botany》1971,35(1):133-141
The changes in the ultrastructure of cambial cells of easternwhite pine (Pinus strobus L.) during an annual cycle are observedand recorded as are relationships of cambial cells during dormancyand at resumption of cambial activity. Cambial activity wasresumed late in March or early in April, when a few cells dividedpericlinally. Cambial activity reached a maximum during thelatter part of May with 15 to 20 undifferentiated cells present.In July it declined markedly, and the number of undifferentiatedcells equalled that of the dormant period. The xylem and phloemtissue cells produced late in the annual cycle overwinteredat varying developmental stages. In October cambial cells structurallyresembled dormant cells. The number of dormant cells in easternwhite pine cambium varied from 6 to 10. Active cells were characterizedby a large central vacuole, by an abundance of all cell organelles,and by thin cell walls. Dormant cells were characterized bynumerous small vacuoles, by structurally and quantitativelymodified cell organelles, and by relatively thick cell walls.  相似文献   

18.
Short-term Effects of Some Chemicals on Cambial Activity   总被引:1,自引:0,他引:1  
Aqueous solutions of indol-3yl-acetic acid (IAA), 1-naphthyl-aceticacid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), gibberellicacid (GA), 6-furfuryl-aminopurine (FAP), myo-inositol, and sucrosewere applied singly and in mixtures to the apical ends of disbuddedstem segments of willow. After 4 weeks all substances had hadsome effect on differentiation of xylem from cambial derivatives.The production of potential xylem cells, as well as their differentiationwere most markedly enhanced when IAA, GA, and FAP were appliedtogether, although the response was further augmented by additionof inositol or sucrose. The action of the substances when appliedas mixtures was often synergistic. This means that it is difficultto assess the role of different chemicals in xylem productionby extrapolation from experiments involving the applicationof single substances.  相似文献   

19.
Xylem and phloem tissue samples were collected from various-aged Great Basin bristlecone pine (Pinus longaeva D. K. Bailey) stems in southern Utah and southeastern California to determine whether the vascular cambia of older trees produce fewer xylem rays, shorter-lived xylem and phloem ray cells, fewer phloem sieve cells, and a thinner phloem. Increment cores were examined to determine whether ‘aged’ cambia produced narrower tracheids that might reduce water translocation. Sapwood thickness was measured and sapwood growth layers were counted on these cores. Regression and Classification and Regression Tree (CART) analyses of sample data found no age-related changes in cambial products. Phloem and xylem production appeared normal at all ages, with no evidence of cambial malfunction.  相似文献   

20.
In sterile-cultured explants of stems of the pine Pinus contorta Dougl., fusiform cambial cells differentiated entirely into axial parenchyma cells when exogenous indol-3yl-acetic acid (IAA) was omitted. The normal appearance of the cambial zone was maintained when IAA was included in the medium. The IAA-maintained stability of cambial structure suggests physiological rather than epigenetic control over vascular cambium structure. IAA was essential for the occurrence of callus growth in stem explants. Callus growth was similar in appearance and extent in winter- and summer-explanted material. Tracheids differentiated in explants only when actively differentiating tracheids were already present at the moment of explanting, suggesting the absence of factors necessary for tracheid differentiation in over-wintering tissues. Sclereid differentiation, which normally does not occur in phloem or xylem development in P. contorta, occurred in callus derived from active cambial explants. The sclereids were identical to sclereids which differentiated in pith of intact stems. The possibility that sclereid and tracheid differentiation may be fundamentally similar types of gene expression is discussed. Growth of P. contorta trees in continuous darkness resulted in extensive compression-wood tracheid differentiation in the upright main stem. Normal-wood tracheids differentiated in similar trees grown in light. More tracheids differentiated in light than in darkness. This apparently is the first report of induction of compression-wood tracheid differentiation in the absence of hormone treatment or tilting of trees. Different types and numbers of tracheids differentiated at different position in two-year-old disbudded defoliated stem cuttings of P. contorta in response to apically supplied IAA. No evidence for new tracheid differentiation was seen in control cuttings; however, the results suggest that neither cambial cell division nor tracheid differentiation were actually initiated by IAA. Directed transport of additional regulatory factors toward areas of high IAA concentration is formulated as a hypothesis to explain these observations. Gibberellic acid, (S)-abscisic acid and IAA inhibited tracheid differentiation when individually supplied to basal ends of P. contorta cuttings predisposed to differentiate new tracheids. Experiments with single intact needles on Pinus cembroides var. monophylla cuttings confirmed a previous interpretation that the mature pine needle, rather than the short-shoot apical meristem at its base, promotes tracheid differentiation in the stem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号