首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. DAWSON 《Ibis》1998,140(1):35-40
Two photoperiodic mechanisms controlling gonadal regression in birds have been identified: absolute photorefractoriness, typical of species with short breeding seasons, where gonadal regression occurs spontaneously during long days, and relative photorefractoriness, where a decrease in daylength is required to induce regression. An experiment was designed to test whether these simply represent extremes of one underlying mechanism. Three groups of male House Sparrows Passer domesticus were transferred from a short photoperiod, 8 h of light: 16 h of darkness per day (8L:16D) to long photoperiods of either 18L:6D, 16L:8D or 13L:11D. Gonadal maturation rates were similar in all three groups; gonadal regression and moult began latest in the 13L:11D group. Four additional groups of sparrows were transferred from 8L:16D to 18L:6D and then transferred to either 13L: 11D or 16L:8D prior to, or shortly after, the onset of gonadal regression. The decrease in daylength prior to regression had no effect on the timing of regression but did advance the onset of moult. Decrease in daylength after the onset of regression increased the rate of regression and the rate of moult. Because a decrease in daylength did not affect the timing of regression, the data do not support the hypothesis that absolute and relative photorefractoriness represent extremes of a single underlying photoperiodic control mechanism. The adaptive significance of the effects of decreasing daylength on the rate of regression and moult is discussed.  相似文献   

2.
A. DAWSON 《Ibis》1991,133(3):312-316
Testis size, bill colour and moult were monitored in male House Sparrows Passer domesticus kept under a natural daylength regime between February and November. On three occasions (at the summer solstice, 25 days later and 39 days later), groups of birds were transferred to a daylength of 18 h of light and 6 h of darkness per day (18L: 6D), the natural daylength at the solstice. In birds under natural daylengths, the testes had regressed significantly by 2 5 days after the solstice. In those transferred to 18L:6D at the solstice, the onset of regression was delayed by about 4 weeks. Transfer to 18L: 6D after the solstice did not cause recrudescence; the testes continued to regress. In birds transferred to 18L: 6D at the solstice, moult was delayed by 4 weeks and progressed more slowly. These results suggest that photoperiodically induced gonadal regression in this species contains elements characteristic of both absolute and relative photorefractoriness.  相似文献   

3.
The purpose of this study was to evaluate whether the insertion of a continuous-release melatonin implant into ewes provides a short-day photoperiodic signal or acts as a functional pinealectomy (provides no specific photoperiodic signal but renders ewes incapable of responding to changes in photoperiod). Ewes primed with 60 long days (18L:6D) during the spring were moved to intermediate day length (13L:11D) for 66 days and then given one of five treatments: 1) short-day control, second drop in photoperiod to 8L:16D; 2) intermediate-photoperiod control, kept on 13L:11D; 3) pinealectomy and kept on 13L:11D; 4) melatonin implant and kept on 13L:11D; 5) melatonin implant and moved to 8L:16D. Mean number of estrous cycles per group and total duration of reproductive activity were determined. Ewes in all groups began to exhibit estrous cycles after the initial reduction in photoperiod. The number of estrous cycles and duration of reproductive activity differed among groups. The number of estrous cycles and duration of reproductive activity was extended in ewes receiving the second drop in photoperiod compared to that of the intermediate-photoperiod controls. Pinealectomized ewes had a number of estrous cycles and duration of reproductive activity similar to those of ewes maintained on the intermediate photoperiod. Melatonin implants increased the number of estrous cycles and prolonged reproductive activity in ewes maintained on the intermediate photoperiod; melatonin implants did not prevent the extension of reproductive activity in ewes receiving the second photoperiodic drop to the short daylength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
JOHN P. DITTAMI 《Ibis》1987,129(1):69-85
The Blue-eared Glossy Starling Lamprotornis chalybaeus and Rüppell's Long-tailed Glossy Starling Lamprotornis purpuropterus were investigated in the field and in aviaries at Lake Nakuru National Park, Kenya for seasonality in reproductive activity and moult. The former species was found to be a seasonal breeder which nests after the onset of the heavy rains in April. Although some birds had large gonads prior to the rains in the dry season no nesting occurred. The rains were contemporary with increases in gonadal size and the plasma titres of LH, testosterone (T) in males and estradiol (E2) in females. These hormones are associated with the initiation of breeding activity. As breeding ceased in July and the moult began, the plasma titres again decreased. There was a bimodal breeding pattern which paralleled a change in biotope preference for nesting. Early nests, in the heavy rains, were on the open savanna and later nests were in the acacia forest. Late nesting birds also had delayed peaks in gonadal size, plasma titres of LH, T and E2 and a delayed moult onset. Data on individual captive birds demonstrate that these annual cycles have a distinctly individual character superimposed on the seasonal trends. In Rüppell's Long-tailed Glossy Starlings no seasonality in breeding was found although the flight feather moult commenced and was completed in all individuals at about the same time. The moult extended over about ten months, so a great deal of breeding-moult overlap was present. The absence of seasonality in field birds was reflected in the aviary birds, which had no pronounced cycles in the reproductive parameters measured (gonadal size, LH, T and E2 plasma titres). Breeding in field birds was regulated on a pair basis and correlated with increases in duetting. The striking differences in the seasonal organization between this species and Blue-eared Glossy Starlings were presumably due to the different biotope preferences and social behaviour of the two species.  相似文献   

5.
Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12h light:12h darkness per day (12L:12D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5L:12.5D for 4 years or 12.5L:11.5D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12L:12D. The responses to 11.5L:12.5D and 12.5L:11.5D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5L:12.5D in mid-winter to 12.5L:11.5D in mid-summer (simulating the annual cycle at 9 degrees N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 degrees N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes.  相似文献   

6.
THEO MEIJER 《Ibis》1991,133(1):80-84
The effects of food availability on the reproductive cycle and on the timing and duration of moult were investigated in first-year male and female Starlings Sturnus vulgaris under a constant photoperiod of 12 hours. A 20% lower body mass during the first 9 weeks of restricted feeding had a slight negative effect on testicular growth during the first 3 weeks of the experiment and delayed the onset of moult for 12 days after the return to ad libitum feeding conditions. No effects were found on changes of beak colour and moult duration of males. Females exposed to the shorter feeding time similarly showed a reduced body mass (21%) but compared with controls, did not differ in beak colour, in follicle growth, or in the onset and duration of moult. In contrast to males, body mass of the experimental females after the food restriction period remained lower for more than 6 weeks, compared to control birds. Females had a longer reproductive cycle and started moult later than males. The later an individual started to moult, the faster it moulted. Two females started to moult extremely late and did not moult their first primaries.
These results indicate that in male Starlings food restriction slightly affected the rate of photoinduced gonadal growth and the onset of postnuptial moult. These effects were not observed in females subjected to the same experimental conditions.  相似文献   

7.
Adult male wild rabbits were exposed to at least 16 weeks of 16L:8 D before experiments began. Plasma LH and FSH concentrations increased significantly (P less than 0.001) when rabbits were castrated in 16L:8D but declined when rabbits were transferred to 8L:16D. Concentrations had returned to normal for castrated rabbits in 16L:8D by 74 days after the start of the 8L:16D treatment. Treatment of intact male rabbits with an injection of LHRH before and after transfer to short daylengths caused a transient increase in plasma LH which lasted 50-80 min and this produced a concomitant rise in plasma testosterone. The daylength change had no effect on this response even though testicular size declined after the transfer to short daylengths. Rabbits moulted in response to exposure to 8L:16D. This suggests that hypothalamic activity responds to photoperiod and that changes in pituitary responsiveness to LHRH and steroid negative feedback are unimportant.  相似文献   

8.
In many birds reproduction is triggered by long daylengths but, paradoxically, continued exposure to long days leads to photorefractoriness and a complete shut down of the reproductive system. As these effects are thought to be mediated through the secretion of LH-RH, immunocytochemical techniques were used to investigate changes in the LH-RH system when European starlings were exposed to different photoperiods. Starlings exposed to 11L:13D and with mature testes show strong immunostaining both of LH-RH perikarya and fibers. Photosensitive short-day (8L:16D) starlings with undeveloped testes show an almost identical distribution of strongly immunoreactive perikarya but with less dense fibre staining. However, long-day (18L:6D) photorefractory starlings with fully regressed testes, show a profound reduction in LH-RH immunostaining. Perikarya have the same distribution but show a much reduced intensity of staining and fibers had almost entirely disappeared from all regions of the brain. Preliminary observations on the ultrastructure of immunocytochemically identified LH-RH neurones are also reported.  相似文献   

9.
The reproductive neuroendocrine response of Suffolk ewes to the direction of daylength change was determined in animals which were ovariectomized and treated with constant release capsules of oestradiol. Two groups of animals were initially exposed to 16 or 10 h light/day for 74 days. On day zero of the study, when one group of ewes was reproductively stimulated (elevated LH concentrations) and the other reproductively inhibited (undetectable LH concentrations), half the animals from each group were transferred to an intermediate daylength of 13 h light/day. The remaining ewes were maintained on their respective solstice photoperiods to control for photorefractoriness. LH concentrations rose in animals experiencing a 3 h decrease in daylength from 16L:8D to 13L:11D while LH concentrations fell to undetectable values in those that experienced a 3 h increase in daylength from 10L:14D to 13L:11D. The photoperiodic response of the Suffolk ewe, therefore, depends on her daylength history. Such a result could be explained if the 24-h secretory pattern of melatonin secretion, known to transduce photoperiodic information to the reproductive axis, was influenced by the direction of change of daylength. Hourly samples for melatonin were collected for 24 h 17 days before and three times after transfer to 13L:11D. The melatonin secretory profile always conformed to daylength. Therefore, the mechanism by which the same photoperiod can produce opposite neuroendocrine responses must lie downstream from the pineal gland in the processing of the melatonin signal.  相似文献   

10.
The temporal relationships between plasma concentrations of prolactin, thyroxine (T4) and triiodothyronine (T3) were determined in a group of six wild mallard drakes during the development and maintenance of long-day refractoriness after transfer from 6 h light: 18 h darkness (6L:18D) to 20L:4D for 24 weeks. As shown by changes in the plasma concentrations of luteinizing hormone (LH) and testosterone, the birds came into breeding condition and then became long-day refractory within 5 weeks of photostimulation. Long-day refractoriness was maintained for the remainder of the study. Plasma prolactin began to increase immediately after photostimulation, although not as fast as the increases in plasma LH and testosterone. The concentration of plasma T4 also increased after photostimulation but, as shown by decreased plasma LH and testosterone levels, only after the birds had become long-day refractory. The development of long-day refractoriness was thus directly correlated with an increased plasma prolactin and not with a change in plasma concentration of T4. Plasma T3 decreased after photostimulation but returned to prestimulation values as the birds became long-day refractory and remained stable for the remainder of the study. Concentrations of plasma T4 and prolactin returned to baseline values after about 15 weeks photostimulation showing that the long-term maintenance of long-day refractoriness is not directly related to continuously high plasma concentrations of either hormone.  相似文献   

11.
The timing and duration of primary moult were estimated for wild adult Starlings Sturnus vulgaris near Monks Wood in 1977-78, and for captive birds in 1999. The model of Underhill and Zucchini (1988) was modified to allow for a non-linear increase in the moult score, based on scores of captive birds. For wild birds, estimates of moult duration in 1977 and 1978 were 100 days and 98 days, with mean and standard deviation in start dates of 6 June and 7.3 days in 1977, and 2 June and 9.7 days in 1978. For captive birds, moult duration was 85 days, with mean and standard deviation of 31 May and 4.1 days. Differences between these estimates and those reported for other wild and captive Starling populations are discussed.  相似文献   

12.
Vinod  Kumar P. D. Tewary 《Ibis》1983,125(3):305-312
Little is known about the effects of photoperiod on avian migrants that visit southeast Asia. In this paper, we report experiments performed on an emberizid finch, the Black-headed Bunting Emberiza melanocephala , to investigate its photoperiodic responses under artificial photoperiods, and continuous light and darkness.
Two series of experiments were performed with the photosensitive male birds. In the first series, different groups were exposed to seven different artificial photoperiods: 3L/21D, 6L/18D, 8L./16D, 11L/13D, 12L/12D, 15L/9D and 20L/4D, for 30 days. They were weighed and laparotomized at the beginning and end of the experiments. The birds responded to 12L/12D, 15L/9D and 20L/4D, but not to 3L/21D, 6L/18D, 8L/16D and 11L/13D. In the second series, photosensitive birds were placed under continuous light (LL) and dark (DD) conditions for 130 and 90 days. Periodic observations indicated that testicular growth and fattening followed by involution and fat-depletion had resulted in birds under LL, indicating the onset of photorefractoriness, while DD had no effect either on gonads or fattening in the buntings.
Our results demonstrate that light stimulation is a prerequisite to reproductive and metabolic activities (pre-migratory and migratory changes, fattening and weight gain) in the Black-headed Bunting, which has a photoperiodic threshold to these events at between 11 and 12 h daily photoperiods.  相似文献   

13.
I. NEWTON  & P. ROTHERY 《Ibis》2005,147(4):667-679
Moult was studied in 1 year among Greenfinches trapped in a garden in east‐central England. Over the period June–December 2003, 333 captures of 179 individual adults provided information on breeding condition, moult, body weight, sex and age (yearling or older adult, equivalent to birds in their second or later calendar years, respectively). About 95% of all birds (sex and age groups combined) started primary feather moult from 2 July to 14 August, and finished from 10 October to 22 November. The mean date of moult onset in the population as a whole was 24 July. On average, males began 8 days before females, and yearlings began 6 days before older birds. The mean duration of moult was 100 days, whether the figure was calculated for the population as a whole or just for the 36 individual birds that were caught more than once during moult. However, moult rate was slightly slower, and moult duration slightly longer, in yearlings than in older adults of both sexes. No evidence was found for any systematic relationship between moult onset date and rate (duration). Breeding and moult overlapped by up to 5 weeks or more in individual birds, and some birds probably started to moult as early as the incubation stage of their last clutch of the season. The cloacal protuberance (taken as indicative of breeding condition) had regressed in all males by the time the fifth primary was shed, and the brood patch had regressed and re‐feathered in all females by the time the fourth primary was shed. The bulk of feather replacement in the secondary, tail and body tracts occurred in the second half of primary moult, and after cloacal protuberances and brood patches were completely regressed. In all birds examined near the end of primary moult the secondaries were still growing, and would have continued growth for up to another 19 days or more, extending the end of the moulting season into December. Body mass during moult was affected significantly by sex and age, as well as by time of day, amount of food in gullet, reproductive condition and date. No firm evidence emerged that body mass was affected by moult stage, after allowing for effects of date and other variables (although there was a non‐significant negative relationship between moult stage and body mass in males). In the population as a whole, the breeding season (from first egg‐laying to independence of last young) was spread over 21 weeks and moult over 24 weeks. With an overlap between the two events at the population level of up to 9 weeks, the two processes together took up to 36 weeks, some 69% of the year.  相似文献   

14.
In Exp. 1, 10 quiescent non-lactating tammars were exposed to 15L:9D (Days -41 to -1), 24L:0D (Days 0 to 14), 15L:9D (Days 15 to 34) and then to ambient increasing daylength from 13L:11D on Day 35. From Days 0 to 22 they received a s.c. injection of melatonin (400 ng/kg, N -5) on the arachis oil vehicle (N = 5) in the evening (19:30 h) 2.5 h before dark. Exposure to 24L:0D abolished the nocturnal plasma melatonin rise but this was reinstated by subsequent exposure to 15L:9D. Of 5 melatonin-treated tammars, 4 gave birth on Day 45, so had failed to respond to the melatonin injection alone but reactivated when this was combined with the endogenous melatonin rise during exposure to 15L:9D. Of 5 control tammars, 4 remained quiescent until reactivated by the decrease in daylength to 13L:11D, and gave birth significantly later (Day 63.7 +/- 2.2, mean +/- s.e.m., P less than 0.05). In Exp. 2, 6 tammars were exposed to 15L:9D (Days -15 to -1) and then to 12L:12D (Days 0 to 15) by extending the dark phase by 3 h in the morning. This extended the nocturnal melatonin rise by 2-3 h in the morning and all 6 tammars gave birth on Day 31.2 +/- 1.0. A transient pulse of peripheral plasma prolactin (81.5 +/- 31.0 ng/ml) was detected at dawn during 15L:9D in all 6 tammars but was not observed in any of them 5 days after exposure to 12L:12D. Together these results do not support the time of day hypothesis but indicate that increase in duration of the nocturnal melatonin rise mediates the effects of decreased daylength on reactivation of the corpus luteum, and that the first detectable result of this may be the abolition of a transient prolactin pulse at the end of the dark phase.  相似文献   

15.
Alistair Dawson 《Ibis》2004,146(3):493-500
In many species of birds there is a close relationship between the end of breeding and the start of moult. Late-breeding birds therefore often start to moult late, but then moult more rapidly. This is an adaptive mechanism mediated by decreasing day lengths that allows late-breeding birds to complete moult in time. This study asked how these birds complete moult of the primary feathers more rapidly, and the consequences of this on the mass of primary feathers. Common Starlings Sturnus vulgaris were induced to moult rapidly in one of two ways. In the first experiment, one group was exposed to artificially decreasing photoperiods from the start of moult, whereas the control group remained on a constant long photoperiod. The second experiment was a more realistic simulation. Two groups were allowed to moult in an outdoor aviary. One group started to moult at the normal time. In the other, the start of moult was delayed by 3 weeks with an implant of testosterone. The duration of moult was significantly reduced in both the group experiencing artificially decreasing photoperiods and the group in which the start of moult was delayed. The faster moult rate was achieved by moulting more feathers concurrently. The rate of increase in length of each of the primary feathers, and their final length, did not differ between groups. The rate at which total new primary feather mass was accumulated was greater in more rapidly moulting birds, but this was insufficient to compensate for the greater numbers of feathers being grown concurrently. Consequently, the rate of increase in mass of individual feathers, and the final feather mass, were less in the rapidly moulting birds. A 3-week delay in the start of moult is not an unrealistic scenario. That this caused a measurable decrease in feather mass suggests that late-breeding birds are indeed likely to suffer a real decrease in the quality of plumage grown during the subsequent moult.  相似文献   

16.
Moult data from 302 museum skins and 11 trapped birds from sub-Saharan Africa show the course of flight feather moult. Most birds seem to start flight-feather moult soon after arrival in their southern African non-breeding ranges. About 75% of the birds had started before mid-December, i.e., during the main arrival time of the species. The mode of moult scores 1 and 2 was reached on 7 December; the last birds with a score of zero occurred in the first days of January. The mode of moult scores 5 and 6 was reached on 27 February. Thus, the time elapsed between the days when 50% of the population had reached the first and last stages of recorded moult was about 82 days; nine days later 75% had reached this last stage before moult was completed. Thus, individual moult may be estimated to cover about 80–90 days. The main moulting period is between mid-November and mid-March, thus covering about four months. No temporal difference was detected between males and females. A tendency for an advancement of adults compared to young birds was not statistically significant. According to the progress of the moult, sexing of young birds in the field is possible for 50% of the birds towards the end of January and for most birds before mid-February.  相似文献   

17.
European starlings (Sturnus vulgaris) alter their physiology and behavior between seasons, becoming territorial during the spring/summer and flocking during the fall/winter. We used captive male starlings in breeding (photostimulated to 18L : 6D) and nonbreeding (11L : 13D) conditions to determine whether changing physiology and behavior alters their reaction to crowding. One or five intruders entered a resident's cage without human disturbance. A subcutaneous heart rate transmitter recorded cardiovascular output in residents. Corticosterone and testosterone were measured in plasma samples taken before and after the intrusion. While corticosterone concentrations did not change, heart rate changed significantly, indicating that these responses can be regulated independently. Long-day birds showed a significantly elevated heart rate response to the single-bird intrusion compared to short-day birds. Whereas five intruders elicited an identical peak response in both groups, long-day birds also demonstrated an equivalent response to one intruder. In addition, one intruder induced longer elevation in heart rate for long-day birds. Male starlings in breeding condition, therefore, demonstrate an increased sensitivity to additional conspecifics. This seasonal shift in response suggests that a higher tolerance for intrusion (i.e., considering a nearby starling as less stressful) may facilitate flocking behavior, while a lower tolerance may aid in territoriality.  相似文献   

18.
Most long-distance passerine migrants in Sweden moult on breeding grounds before leaving on autumn migration to winter quarters. However, birds laying second or replacement clutches, or just breeding late, have too little time for a normal moult on the breeding grounds. When time is limited the birds may respond by making various adjustments to the moult, for example by moulting more quickly or by suspending the moult. In this study, the relationship between the performance of post-nuptial remex moult in Common Whitethroats breeding on Gotland, southeast Sweden, and autumn migration departure was investigated. The majority (77%) of the birds had interrupted moult in either the primaries or secondaries. Interruption of moult was more common among birds with a later onset date, as was asymmetry in moult between wings. The interruption of moult led to a significant time gain and moult completion was, consequently, more synchronized than moult onset. The results from this study indicate, in accordance with other data, that an early start of autumn migration is important. An early start may be crucial to facilitate the crossing of the Sahara Desert once the dry season has begun.  相似文献   

19.
D. J. Pearson 《Ibis》1984,126(1):1-15
Moult data were collected during 1967–80 from some 6900 Little Stints in the southern Kenyan rift valley.
Adults typically moulted from summer to winter body and head plumage during September and early October, soon after arrival. The complete pre-winter wing and tail moult began in most adults between mid-September and early October. Some birds finished by December, but others continued until February and March. Individual duration was usually between 100 and 150 days. Adults which completed this moult early often remoulted outer primaries between January and early April.
Young birds acquired first-winter body plumage during October and early November. Some 90% had a complete pre-winter wing and tail moult. This usually began between December and early February, and finished during March or early April, taking about 70–100 days. In about 10% of young birds, flight feather moult was restricted to the outer primaries and inner secondaries. Birds adopting this strategy typically began moult late, during January or February. Short periods of suspension were common during pre-winter wing moult, particularly in adults. The difference in moult speed between adult arid first-winter birds was attributable in the primary, secondary and tail tracts to differences in numbers of growing feathers.
Practically all birds completed a pre-summer moult involving the entire body and head plumage, most of the tertials, some or all of the tail feathers and many wing coverts. Most birds began this moult between early February and late March, and finished between mid-April and early May. It was typically later and more rapid in first-year birds than adults. In late birds, the onset of pre-summer moult was linked to the final stages of pre-winter moult.
The wing moult of the Little Stint in different wintering areas is discussed. First-winter moult strategy is compared with that in other small Calidris species.  相似文献   

20.
Four groups of castrated photorefractory starlings were transferred from a photoperiod of 18 h light/day (18 L) to photoperiods of 6 L, 8 L, 11 L or 12 L. A control group was kept on 18 L. Plasma concentrations of luteinizing hormone (LH) were low in all groups initially. The first significant increase in LH, which signals the recovery of photosensitivity, occurred after 4 weeks in the groups on 6 L and 8 L, after 8 weeks in the 11 L group and after 13 weeks in the 12 L group. There was no increase in the group on 18 L. The rate of recovery of photosensitivity is therefore inversely proportional to daylength, for daylengths between 8 L and 12 L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号