首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented from optical measurements of the atomic hydrogen density and the gas temperature in a reactor for depositing diamond films from the plasmas of pulsed and continuous microwave discharges at a fixed mean microwave power. The results obtained make it possible to explain the fact that the growth rate of diamond films in the plasma of a pulsed microwave discharge is larger than that in a continuous microwave discharge.  相似文献   

2.
Some results from studies of microwave discharges in heavy hydrocarbons are presented. Microwave energy was introduced into liquid hydrocarbon via a coaxial line. The pressure above the liquid surface was equal to the atmospheric pressure. The discharge was ignited in a mixture of argon and hydrocarbon vapor. Argon was supplied through a channel in the central conductor of the coaxial line. The emission spectra of discharges in different liquid hydrocarbons were studied. It is shown that the emission spectra mainly consist of sequences of Swan bands, while radiation of other plasma components is on the noise level. Spectra of plasma emission are presented for discharges in liquid n-heptane, nefras, and C-9 oil used to produce chemical fibers. The rotational (gas) and vibrational temperatures are determined by processing the observed spectra.  相似文献   

3.
Results are presented from numerical simulations of pulse-periodic and continuous microwave discharges in hydrogen that are used in CVD reactors for chemical vapor deposition of diamond films. Attention is focused on the processes that should be taken into account in order to construct the simplest possible adequate numerical model. It is shown that the processes of vibrational excitation of hydrogen molecules, as well as chemical reactions, play an important role in the establishment of energy balance within the discharges. The results of numerical simulations are compared to the experimental data.  相似文献   

4.
Results are presented from experimental studies of the plasma effect on the generation of microwave radiation in systems with a virtual cathode. Using a triode with a virtual cathode as an example, it is shown that the cathode and anode plasmas reduce the generation efficiency; in particular, the power of the generated microwave radiation decreases and the radiation frequency and the microwave pulse duration change appreciably. It is demonstrated that, at high microwave powers, the power radiated into free space can be reduced by the plasma generated at the surface of the output window. This plasma appears due to discharges developing on the window surface under the combined action of bremsstrahlung, UV radiation, electrons and ions arriving from the beam formation zone, and the microwave electric field.  相似文献   

5.
A review is given on microwave discharges in liquid dielectrics—a relatively new direction in the physics and application of low-temperature plasma. The main types of experimental devices are described, and available information on the plasma parameters obtained by emission spectroscopy is presented. Examples of application of discharges in liquid dielectrics, such as solution of ecological problems and production of hydrogen, nanomaterials, and diamonds, are considered.  相似文献   

6.
The structure of electrode microwave (2.45 GHz) discharges in hydrogen with electrodes of various shapes and sizes at pressures of 1–8 torr and incident powers of 2–150 W is studied. It is found that the discharges exhibit a common feature that is independent of the antenna-electrode design: near the electrode surface, there is a thin bright sheath surrounded by a less bright, sharply bounded region, which is usually shaped like a sphere. It is suggested that the structure observed arises because the microwave field maintaining the discharge is strongly nonuniform. Near the electrode, there exists a thin dense plasma sheath with a high electron density gradient. A strong dependence of the electron-impact excitation coefficient on the electric field makes the effect even more pronounced. As the electron density decreases due to dissociative recombination, the microwave field gradient decreases and the discharge emission intensity tends to a nearly constant value. Presumably, in the boundary region of the discharge, there exists a surface wave, which increases the emission intensity at the periphery of the discharge.  相似文献   

7.
Bacterial and fungal spore contamination in different industries has a greater economic impact. Because of the remarkable resistance of spores to most physical and chemical microbicidal agents, their inactivation need special attention during sterilization processes. Heat and chemical sporicides are not always well suited for different sterilization/decontamination applications and carries inherent risks. In recent years, novel nonthermal agents including nonthermal plasmas are emerging as effective sporicides against a broad spectrum of bacterial and fungal spores. The present review discusses various aspects related to the inactivation of spores using nonthermal plasmas. Different types of both low pressure plasmas (e.g., capacitively coupled plasma and microwave plasma) and atmospheric pressure plasmas (e.g., dielectric barrier discharges, corona discharges, arc discharges, radio-frequency-driven plasma jet) have been successfully applied to destroy spores of economic significance. Plasma agents contributing to sporicidal activity and their mode of action in inactivation are discussed. In addition, information on factors that affect the sporicidal action of nonthermal plasmas is included.  相似文献   

8.
New types of beam-plasma devices generating intense stochastic microwave radiation in the interaction of electron beams with hybrid plasma waveguides were developed and put into operation at the National Science Center Kharkov Institute of Physics and Technology (Ukraine). The objective of the paper is to discuss the results of theoretical and experimental studies and numerical simulations of the normal and oblique incidence of linearly polarized electromagnetic waves on an interface between a vacuum and an overcritical plasma. The main results of the reported investigations are as follows: (i) for the parameter values under analysis, the transmission coefficient for microwaves with a stochastically jumping phase is one order of magnitude greater than that for a broadband regular electromagnetic wave with the same spectral density; (ii) the electrons are heated most efficiently by obliquely incident waves with a stochastically jumping phase and, in addition, the electron distribution function has a high-energy tail; and (iii) necessary conditions for gas breakdown and for the initiation of a microwave discharge in stochastic fields in a light source are determined. The anomalously large transmission coefficient for microwaves, the anomalous character of the breakdown conditions, the anomalous behavior of microwave gas discharges, and the anomalous nature of collisionless electron heating, are attributed to stochastic jumps in the phase of microwave radiation.  相似文献   

9.
Plasma Physics Reports - An analysis of a set of experiments on studying subthreshold microwave self/non-self-sustained (SNSS) discharges made it possible to estimate the volume of the active zone...  相似文献   

10.
Experimental data are obtained on the conditions for the stratification of spherical direct-current discharges and on the properties of the strata. The experiments were aimed at studying discharges in both molecular and inert gases at low pressures and were carried out with a steel chamber whose wall served as a cathode. An anode was placed at the center of the chamber. The discharge stratification was observed to be especially pronounced in media containing a small admixture of the vapor of a high-molecular substance (e.g., acetone). In discharges in pure inert gases, no strata were observed. The current-voltage characteristics of discharges at different pressures were obtained. The discharges were found to be unsteady: current pulses with a duration of about 1 microsecond and a characteristic repetition rate of about 1 kHz were detected against a steady current background and were found to correlate with the pulses of the integral emission from the discharge. The radius of each of the strata was determined as a function of its number and of the gas pressure and discharge current. The radial profiles of the time-averaged floating potential were measured in experiments with stratified discharges and with uniform discharges in argon.  相似文献   

11.
Results from experimental studies of multipactor discharges on the surfaces of various dielectrics placed in a high-Q cylindrical microwave cavity excited at the TE013 mode in the X-band are presented. The thresholds for the onset and maintenance of a multipactor discharge on quartz, polycrystalline diamond, lithium fluoride, and Teflon surfaces possessing different roughness are determined. It is shown that, in such a resonance system, a steady multipactor discharge can operate without transition into the stage of microwave breakdown of the desorbed gas. It is found that, due to long-term action of the discharge, a thin carbon-containing film is deposited on the dielectric surface, which leads to an increase in the breakdown threshold.  相似文献   

12.
Electrode microwave discharges in nitrogen at pressures of 1–16 Torr and input microwave powers of 30–180 W have been studied by space-resolved emission spectroscopy. It is shown that the discharge is highly nonuniform. The relative intensities of the first and second positive nitrogen bands, as well as of the first negative band of nitrogen ions, are found to vary significantly throughout a discharge because, in different discharge regions, emitting particles are excited by different mechanisms. The gas temperature was determined by the method of the unresolved rotational structure of different sequences of the emission spectra of the second positive system of nitrogen.  相似文献   

13.
The excitation of microwave discharges in fine semiconductor powders and powder mixtures of metals and dielectrics is studied. The plasma is produced due to local sparks generated in microsecond microwave pulses. The time delay in the onset of a discharge amounts to several milliseconds for intensities on the order of 10 kW/cm2. As the discharge develops, both microwave absorption and the discharge glow intensity increase. Intense nonuniform heating of the powder is observed.  相似文献   

14.
Ignition of a stoichiometric CH4: O2 mixture by a laser spark excited in the reactor volume is studied experimentally. It is found that the spark initiates a feebly radiating incomplete-combustion wave, which is much faster than the combustion wave, but is substantially slower than the detonation wave. With a time delay of 500–700 μs, a bright optical flash occupying the entire chamber volume is observed, which indicates fast (involving branching chain reactions) ignition of the gas mixture. A conclusion is drawn regarding the common nature of the process of ignition of a combustible gas mixture by a laser spark excited in the reactor volume and the previously investigated initiation of combustion by laser sparks excited at solid targets, high-power microwave discharges, and high-current gliding discharges.  相似文献   

15.
Pulse gymnotids extract information about the environment using the pulsed discharge of an electric organ. Cutaneous electroreceptor organs transduce and encode the changes that objects imprint on the self-generated transcutaneous electric field. This review deals with the role of a neural circuit, the fast electrosensory path of pulse gymnotids, in the streaming of self generated electrosensory signals. The activation of this path triggers a low-responsiveness window slightly shorter than the interval between electric organ discharges. This phenomenon occurs at the electrosensory lateral line lobe where primary afferent terminals project on the somata of spherical neurons. The main subservient mechanism of the low-responsiveness window rely on the intrinsic properties of spherical neurons (dominated by a voltage dependent, low-threshold, non-inactivating and slowly-deactivating K(+) conductance) determining the cell to respond with a single spike followed by a long refractory period. Externally generated signals that randomly occur within the interval between self-generated discharges are likely blocked by the low responsiveness window. Repetitive signals, as those emitted by conspecifics with a slightly lower rate, occur progressively at longer delays beyond the duration of the low responsiveness window. Transient increases of the discharge rate relocate the interference within the low-responsiveness window. We propose that this combination of sensory filtering and electromotor control favors the self-generated signals in detriment of other, securing the continuity of the electrolocation stream.  相似文献   

16.
A spherical glow discharge with a pointlike anode is considered in a self-consistent drift-diffusion approximation. The model includes the time-dependent continuity equations for ions and electrons in the drift-diffusion approximation and Poisson’s equation for the radial electric field. In finding steady-state distributions, Ohm’s law is used to relate the discharge voltage and discharge current. Steady-state distributions of the plasma parameters across the discharge gap, current-voltage characteristics, and cathode characteristics for an abnormal spherical discharge in molecular nitrogen are obtained. In a subnormal glow-discharge regime, oscillations in the conduction current, potential, and other discharge parameters are revealed. Similar regimes are also observed in conventional discharges in tubes.  相似文献   

17.
Results are presented from one-dimensional quasistatic simulations of steady microwave discharges in a spherically symmetric electrode system in nitrogen at pressures of 1–8 Torr. The computational model includes the equation for calculating the electric field strength in the quasistatic approximation, Poisson’s equation, the balance equations describing the kinetics of charged and neutral plasma particles, and the time-independent homogeneous Boltzmann equation for electrons. The processes involving vibrationally excited particles are taken into account by the familiar analytic expression for the vibrational distribution of molecules in the diffusion approximation. It is shown that, because of the electric field nonuniformity, the physical properties (in particular, the plasma ion composition) are different in different discharge regions.  相似文献   

18.
19.
A mathematical model is constructed that describes the development of the beam-plasma instability in a traveling-wave tube amplifier in the presence of a neutral gas. Steady solutions are derived for conditions of microwave discharges in a magnetized plasma-filled traveling-wave tube amplifier, and their stability is investigated. It is shown that the steady-state amplification regime may become unstable and change to the self-modulation regime. The relationships between the amplifier parameters at the instability threshold are obtained, and the frequencies of the excited ion acoustic waves are determined. The results of numerical modeling are found to agree well with the analytical results.  相似文献   

20.
The possibility of improving the environmental characteristics of the atmosphere with the help of freely localized microwave discharges is analyzed. Theoretical and experimental studies devoted to cleaning the troposphere of ozone-destroying pollutants and creating an artificial ozone layer in the stratosphere are reviewed. Results from the studies of the possibility of the plasmochemical utilization of the accumulated chlorofluorocarbons, capable of depleting the ozone layer, are presented. The results of theoretical and experimental modeling are used to predict the plasmochemical consequences of creating artificial ionized regions in the atmosphere for the purpose of long-range radio and TV communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号