首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The erythrocyte aggregation phenomenon is an important factor in capillary circulation. This phenomenon can be evaluated by a number of methods (microscopic observations, viscometry, light measurements) which cannot be applied simply to in vivo measurements. In contrast, ultrasound which propagates through soft tissues allows measurement of the mechanical properties of red blood cell (RBC) suspensions which depend on the aggregation phenomenon. We devised an apparatus in order to measure in vitro the ultrasonic backscattering intensity of RBC suspensions. First, with latex particles of different sizes, the ultrasonic backscattering coefficient has been measured in order to evaluate the apparatus response. Then, the ultrasonic backscattering coefficient of different aggregated erythrocyte suspensions has been measured and correlated with the erythrocyte sedimentation rate. Finally, the size of RBC aggregates of different suspensions has been evaluated.  相似文献   

2.
The dynamics of shear disaggregation of red blood cells in a flow channel   总被引:1,自引:0,他引:1  
S Chien  S S Feng  M Vayo  L A Sung  S Usami  R Skalak 《Biorheology》1990,27(2):135-147
Red blood cell (RBC) rouleaux were formed in a flow channel in the presence of 2 g/dl dextran (molecular weight 76,000). The partial separation of RBC rouleau doublets adhering to the floor of the flow channel in response to small oscillatory shear stresses was observed experimentally. Theoretical analyses on displacement and drag force were performed to determine whether the motion of the cell involves membrane rotation (i.e., rolling) or sliding. From the experimental data and the results of theoretical analyses, it is concluded that, under the conditions of the experiments, the RBCs in a doublet separate from each other by rolling, rather than sliding of the sheared cell.  相似文献   

3.
4.
P Snabre  H Baümler  P Mills 《Biorheology》1985,22(3):185-195
The aggregation behaviour of normal and heat treated (48.4 degrees C, 48.8 degrees C, 49.5 degrees C) red blood cells (RBCs) suspended in dextran-saline solutions (Dx 70, Dx 173) was investigated by a laser light reflectometric method over a wide range of bridging energies. The characteristic times of rouleau formation were found to be increased after RBC heat treatment. The disaggregation shear stress is not significantly different between normal RBCs and heat treated RBCs. The loss of cell deformability is nevertheless shown to improve slightly the dissociation efficiency of the flowing liquid in a shear flow resulting in a small reduction of the disaggregation shear rate after heat treatment. Heat treatment is also shown to alter the structure of RBC network at equilibrium. These results indicate that heat induced alterations of erythrocytes only affects the mechanical properties of the cell membrane without significant changes in the macromolecular bridging energy.  相似文献   

5.
Models of the microbial food web have generally used compartments aggregated by general body size and gross taxonomy. It has been assumed that these also reflect guilds or holons. Generally, results of simulation or analysis based on this structure have been reasonably well validated. Herein I summarize why the aggregations may be justified and what may be learned from disaggregation.  相似文献   

6.
Abstract The spontaneous aggregation of Candida albicans germ tubes, which occurs in medium 199, has been studied. The disaggregating activity of various substances, such as sugars, enzymes and sulphydryl compounds has been tested by addition of these substances to the culture medium. Glutathione and dithiothreitol were the most effective in inhibiting aggregation without disturbing germ tube formation.
In a buffer solution, pH 7, the previously aggregated tubes were irreversibly dispersed by pronase. In the presence of glutathione and dithiothreitol, the process was reversible, since after washing with distilled water, germ tubes aggregated immediately.  相似文献   

7.
Differences of red blood cell (RBC) aggregation among various mammalian species has been previously reported for whole blood, for RBC in autologous plasma, and for washed RBC re-suspended in polymer solutions. The latter observation implies the role of cellular factors, yet comparative studies of such factors are relatively limited. The present study thus investigated RBC aggregation and RBC electrophoretic mobility (EPM) for guinea pigs, rabbits, rats, humans and horses; RBC were re-suspended in isotonic 500 kDa dextran solutions for the EPM and aggregation measurements, with aggregation studies also done in autologous plasma. Salient results included: (1) species-specific RBC aggregation in both plasma and dextran (horse > human > rat > rabbit approximately = guinea pig) with a significant correlation between aggregation in the two media; (2) similar EPM values in PBS for rat, human and horse, a lower value for guinea pig, and a markedly reduced EPM for rabbit RBC; (3) EPM values in dextran with a rank order identical to that for cells in PBS; (4) relative EPM results indicating formation of a polymer-poor, low viscosity depletion layer at the RBC surface (greatest depletion for horse RBC). EPM-aggregation correlations were evident and generally consistent with the Depletion Model for aggregation, yet did not fully explain differences between species; additional studies at various ionic strengths and with various dextran fractions thus seem warranted.  相似文献   

8.
In the preceding two papers (1, 2), a population balance equation (PBE) mathematical model was developed, validated, and applied to the analysis of platelet aggregation kinetics under the influence of hydrodynamic shear stress. The present work involves the application of the model to the analysis of platelet reactions under shear stress in circumstances where disaggregation processes are of dominant importance: the disaggregation of aggregates formed in response to added agonists. Aggregation-disaggregation experiments were performed in the constant shear field of a rotational viscometer, and the evolution of the particle size distribution was determined by use of an electronic particle counter. The PBE model was used to simulate the experimental results. Exploratory calculations made it possible to reduce a rather complete, complex model to a more tractable form which retains the capability of simulating the experimental observations. For the experimental conditions studied, disaggregation by a splitting mechanism was found to be of dominant importance. The surface erosion mechanism can be neglected without significant impact on results. Physical reasoning confirmed by exploratory calculations showed that a discontinuous form of the breakage rate expression which incorporates a minimum friable particle size, gives significantly better results than a continuous expression. A simple step function void fraction parameter was found to be at least as successful as a more complicated, continuous function. The resulting simplified model has the potential of increasing our understanding of kinetics and mechanisms of platelet reactions, and of characterizing the state of platelet activity. Hence, it may be useful in efforts to understand thrombotic and hemostatic processes.  相似文献   

9.
A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution.  相似文献   

10.
11.
12.
Berli CL  Quemada D 《Biorheology》2001,38(1):27-38
A theoretical interpretation of simultaneous viscosity measurements and light backscattering experiments is carried out in the framework of the structural model for concentrated dispersions proposed previously by one of the authors. The work is mainly focused on erythrocyte aggregation, hence spherical as well as linear aggregates (rouleaux) were considered in the modeling. A connection between the structural parameters provided by each technique is established, in particular the characteristic shear rates for break up of aggregates. Theoretical predictions were then applied to experimental data of human blood collected from patients with different diseases in a hospital data bank. Finally, we conclude that the structural modeling proposed permits a reasonably good correlation between experimental data of viscometry and light backscattering from blood samples, leading to new perspectives in the analysis of the red blood cell aggregation phenomena.  相似文献   

13.
14.
The interaction of staphylococci, streptococci, meningococci, enterobacteria, leptospires and other microorganisms with red blood cells is considered. Three forms of the interaction of bacteria and red blood cells are discussed: adhesion, the influence of secretory factors on red blood cells, the action of pathogenic bacteria on hemoglobin. The applied aspects of the interaction of bacteria and red blood cells in the human body are presented in accordance with the results of clinical and laboratory studies.  相似文献   

15.
Hydrodynamic shear stress of sufficient intensity is known to cause platelet activation and aggregation and to alter the effects of biochemical platelet agonists and antagonists. In this work, a population balance equation (PBE) model is developed for analysis of platelet aggregation and disaggregation kinetics under the influence of a shear field. The model incorporates both aggregation and disaggregation by splitting and/or erosion mechanisms. This paper, the first of a series of three, deals with the formulation, simplification, and validation of the PBE and with the estimation of parameters involved in the PBE. These population parameters include collision efficiency, void fraction (related to the particle collision diameter), and the breakage rate coefficient. The platelet particle size distribution is determined experimentally, both initially and at some later times. The PBE can then be used to match satisfactorily the observed particle histograms, by appropriate choice of parameters of the model as functions of time, platelet size, and magnitude of physical or chemical stimuli. Besides providing information on adhesive forces and on the rates of aggregation and disaggregation, these parameters infer the physical properties of platelets and platelet aggregates. These properties are of potential value in increasing our understanding of the processes involved in thrombotic disease and/or therapy. A numerical procedure for solving the PBE is validated by application to simple cases for which analytical solutions are available. The model is applied to analysis of experiments, and parameter sensitivity studies are used to order the importance of the parameters and to reduce the complexity of the model. The simplified model is shown to give good agreement with experimental observations.  相似文献   

16.
Towards universal red blood cells   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
19.
Carnitine and acetylcarnitine in red blood cells   总被引:1,自引:0,他引:1  
Carnitine and acetylcarnitine were found to be present in human erythrocytes. Their presence was not as a factor of leucocyte contamination. Carnitine is present within the erythrocyte at a level comparable to that of the plasma, whilst acetylcarnitine is more concentrated within the cell. Red blood cell carnitine and acetylcarnitine do not freely exchange with plasma but intra-erythrocyte acetylcarnitine has a significant relationship to the plasma levels.  相似文献   

20.
NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号