首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
New drugs are urgently needed for the treatment of tropical and subtropical parasitic diseases, such as African sleeping sickness, Chagas' disease, leishmaniasis and malaria. Enzymes in polyamine biosynthesis and thiol metabolism, as well as polyamine transporters, are potential drug targets within these organisms. In the present review, the current knowledge of unique properties of polyamine metabolism in these parasites is outlined. These properties include prozyme regulation of AdoMetDC (S-adenosylmethionine decarboxylase) activity in trypanosomatids, co-expression of ODC (ornithine decarboxylase) and AdoMetDC activities in a single protein in plasmodia, and formation of trypanothione, a unique compound linking polyamine and thiol metabolism in trypanosomatids. Particularly interesting features within polyamine metabolism in these parasites are highlighted for their potential in selective therapeutic strategies.  相似文献   

2.
Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.  相似文献   

3.
Trypanosomatids cause widespread disease in humans and animals. Treatment of many of these diseases is hampered by the lack of efficient and safe drugs. New strategies for drug development are therefore urgently needed. It has long been known that the single mitochondrion of trypanosomatids exhibits many unique features. Recently, the mitochondrial translation machinery of trypanosomatids has been the focus of several studies, which revealed interesting variations to the mammalian system. It is the aim of this article to review these unique features and to discuss them in the larger biological context. It is our opinion that some of these features represent promising novel targets for chemotherapeutic intervention that should be studied in more detail.  相似文献   

4.
Pathways involved in environmental sensing in trypanosomatids   总被引:6,自引:0,他引:6  
Digenetic parasites, such as those of the order Kinetoplastida, must respond to extracellular and intracellular signals as they adapt to new environments within their different hosts. Evidence for signal transduction has been obtained for Trypanosoma brucei, T. cruzi and Leishmania, as reviewed here by Marilyn Parsons and Larry Ruben. Although the broad picture suggests similarities with the mammalian host, there are large gaps in our understanding of these processes; this probably contributes to a perception of differences. Nonetheless, current evidence suggests that the trypanosomatids might lack certain classes of signalling molecules found in other organisms.  相似文献   

5.
The trypanosomatids combine a relatively uniform morphology with ability to parasitise a very diverse range of hosts including animals, plants and other protists. Along with their sister family, the biflagellate bodonids, they are set apart from other eukaryotes by distinctive organisational features, such as the kinetoplast-mitochondrion and RNA editing, isolation of glycolysis enzymes in the glycosome, use of the flagellar pocket for molecular traffic into and out of the cell, a unique method of generating cortical microtubules, and bizarre nuclear organisation. These features testify to the antiquity and isolation of the kinetoplast-bearing flagellates (Kinetoplastida). Molecular sequencing techniques (especially small subunit ribosomal RNA gene sequencing) are now radically reshaping previous ideas on the phylogeny of these organisms. The idea that the monogenetic (MG) trypanosomatids gave rise to the digenetic (DG) genera is losing ground to a view that, after the bodonids, the African trypanosomes (DG) represent the most ancient lineage, followed by Trypanosoma cruzi (DG), then Blastocrithidia (MG), Herpetomonas (MG) and Phytomonas (DG), with Leptomonas (MG), Crithidia (MG), Leishmania (DG) and Endotrypanum (DG) forming the crown of the evolutionary tree. Vast genetic distances (12% divergence) separate T. brucei and T. cruzi, while the Leishmania species are separated by very short distances (less than 1% divergence). These phylogenetic conclusions are supported by studies on RNA editing and on the nature of the parasite surface. The trypanosomatids seem to be able to adapt with ease their energy metabolism to the availability of substrates and oxygen, and this may give them the ability to institute new life cycles if host behaviour patterns allow. Sexual processes, though present in at least some trypanosomatids, may have played only a minor part in generating diversity during trypanosomatid evolution. On the other hand, the development of altruistic behaviour on the part of some life cycle stages may be a hitherto unconsidered way of maximising fitness in this group. It is concluded that, owing to organisational constraints, the trypanosomatids can undergo substantial molecular variation while registering very little in the way of morphological change.  相似文献   

6.
地球上大多数生物存在内源性的昼夜节律生物钟,它使得生物个体能够预知环境中由于地球自转产生的周期性昼夜变化。这种预知性使得生物个体的内在生理节律与周围环境的变化周期保持一致,从而能够更有效地从周围环境中摄取能量,在体内更高效地利用能量,亦即更好的适应环境以获得进化上的优势。生物钟能够广泛调控哺乳动物的睡眠、进食和代谢等多个方面的行为和生理功能,生物钟的破坏与多种代谢疾病相关;同时代谢过程和进食行为也能反过来调控生物钟。近年来对生物钟的不断研究加深了人们对肥胖和糖尿病等代谢疾病的理解,为这些疾病的治疗提供了新的思路和方法。本文主要综述哺乳动物生物钟与能量代谢之间的关系及研究进展。  相似文献   

7.
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.  相似文献   

8.
The treatment of infections caused by fungi and trypanosomatids is difficult due to the eukaryotic nature of these microbial cells,which are similar in several biochemical and genetic aspects to host cells.Aggravating this scenario,very few antifungal and anti-trypanosomatidal agents are in clinical use and,therefore,therapy is limited by drug safety considerations and their narrow spectrum of activity,efficacy and resistance. The search for new bioactive agents against fungi and trypanosomatids has been expanded because progress in biochemistry and molecular biology has led to a better understanding of important and essential pathways in these microorganisms including nutrition,growth, proliferation,signaling,differentiation and death.In this context,proteolytic enzymes produced by these eukaryotic microorganisms are appointed and,in some cases,proven to be excellent targets for searching novel natural and/or synthetic pharmacological compounds,in order to cure or prevent invasive fungal/trypanosomatid diseases.With this task in mind,our research group and others have focused on aspartic-type proteases,since the activity of this class of hydrolytic enzymes is directly implicated in several facets of basic biological processes of both fungal and trypanosomatid cells as well as due to the participation in numerous events of interaction between these microorganisms and host structures.In the present paper,a concise revision of the beneficial effects of aspartic protease inhibitors,with emphasis on the aspartic protease inhibitors used in the anti-human immunodeficiency virus therapy,will be presented and discussed using our experience with the following microbial models:the yeast Candida albicans,the filamentous fungus Fonsecaea pedrosoi and the protozoan trypanosomatid Leishmania amazonensis.  相似文献   

9.
Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR‐associated gene 9) system has been transformative in biology. Originally discovered as an adaptive prokaryotic immune system, CRISPR/Cas9 has been repurposed for genome editing in a broad range of model organisms, from yeast to mammalian cells. Protist parasites are unicellular organisms producing important human diseases that affect millions of people around the world. For many of these diseases, such as malaria, Chagas disease, leishmaniasis and cryptosporidiosis, there are no effective treatments or vaccines available. The recent adaptation of the CRISPR/Cas9 technology to several protist models will be playing a key role in the functional study of their proteins, in the characterization of their metabolic pathways, and in the understanding of their biology, and will facilitate the search for new chemotherapeutic targets. In this work we review recent studies where the CRISPR/Cas9 system was adapted to protist parasites, particularly to Apicomplexans and trypanosomatids, emphasizing the different molecular strategies used for genome editing of each organism, as well as their advantages. We also discuss the potential usefulness of this technology in the green alga Chlamydomonas reinhardtii.  相似文献   

10.
《PloS one》2013,8(4)
Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.  相似文献   

11.
Antimicrobial peptides (AMPs) are multifunctional components of the innate systems of both insect and mammalian hosts of the pathogenic trypanosomatids Leishmania and Trypanosoma species. Structurally diverse AMPs from a wide range of organisms have in vitro activity against these parasites acting mainly to disrupt surface-membranes. In some cases AMPs also localize intracellularly to affect calcium levels, mitochondrial function and induce autophagy, necrosis and apoptosis. In this review we discuss the work done in the area of AMP interactions with trypanosomatid protozoa, propose potential targets of AMP activity at the cellular level and discuss how AMPs might influence parasite growth and differentiation in their hosts to determine the outcome of natural infection.  相似文献   

12.
Trypanosomatid parasites are responsible for various human diseases, such as sleeping sickness, animal trypanosomiasis, or cutaneous and visceral leishmaniases. The few available drugs to fight related parasitic infections are often toxic and present poor efficiency and specificity, and thus, finding new molecular targets is imperative. Aminoacyl-tRNA synthetases (aaRSs) are essential components of the translational machinery as they catalyze the specific attachment of an amino acid onto cognate tRNA(s). In trypanosomatids, one gene encodes both cytosolic- and mitochondrial-targeted aaRSs, with only three exceptions. We identify here a unique specific feature of aaRSs from trypanosomatids, which is that most of them harbor distinct insertion and/or extension sequences. Among the 26 identified aaRSs in the trypanosome Leishmania tarentolae, 14 contain an additional domain or a terminal extension, confirmed in mature mRNAs by direct cDNA nanopore sequencing. Moreover, these RNA-Seq data led us to address the question of aaRS dual localization and to determine splice-site locations and the 5′-UTR lengths for each mature aaRS-encoding mRNA. Altogether, our results provided evidence for at least one specific mechanism responsible for mitochondrial addressing of some L. tarentolae aaRSs. We propose that these newly identified features of trypanosomatid aaRSs could be developed as relevant drug targets to combat the diseases caused by these parasites.  相似文献   

13.
The bis(glutathionyl)spermidine trypanothione exclusively occurs in parasitic protozoa of the order Kinetoplastida, such as trypanosomes and leishmania, some of which are the causative agents of several tropical diseases. The dithiol is kept reduced by the flavoenzyme trypanothione reductase and the trypanothione system replaces in these parasites the nearly ubiquitous glutathione/glutathione reductase couple. Trypanothione is a reductant of thioredoxin and tryparedoxin, small dithiol proteins, which in turn deliver reducing equivalents for the synthesis of deoxyribonucleotides as well as for the detoxification of hydroperoxides by different peroxidases. Depending on the individual organism and the developmental state, the parasites also contain significant amounts of glutathione, mono-glutathionylspermidine and ovothiol, whereby all four low molecular mass thiols are directly (trypanothione and mono-glutathionylspermidine) or indirectly (glutathione and ovothiol) maintained in the reduced state by trypanothione reductase. Thus the trypanothione system is central for any thiol regeneration and trypanothione reductase has been shown to be an essential enzyme in these parasites. The absence of this pathway from the mammalian host and the sensitivity of trypanosomatids toward oxidative stress render the enzymes of the trypanothione metabolism attractive target molecules for the rational development of new drugs against African sleeping sickness, Chagas' disease and the different forms of leishmaniasis.  相似文献   

14.
ABSTRACT. Plant trypanosomatids cause lethal vascular wilting in palms of the Arecaceae family. Infections, affecting plants in South and Central America, can result in significant economic loss. The study of trypanosomatids that cause these diseases has been complicated due to the inability to culture these organisms for in vitro analyses. To develop a protocol that would facilitate studies of trypanosomatids, continuous in vitro cultures of phloemic trypanosomatids were established from apical stems of diseased coconut trees collected in endemic and non-endemic regions of Brazil (the states of Bahia and Rio de Janeiro, respectively). Although attempts at establishing axenic cultures were unsuccessful, it was found that trypanosomatid co-cultures could be successfully established and maintained. The procedure was to preculture media with 104 Aedes albopictus cells in Grace's medium supplemented with 10% heat-inactivated fetal bovine serum (without antibiotics or fungicides) for 3 d before adding 106 trypanosomatids/ml harvested from either fresh apical stem extracts or with 2 mm3 fragments of coconut apical stems. By day 7 under these conditions the parasites grew exponentially. Using this strategy, two isolates were identified and have been maintained in our laboratory for over 400 passages, demonstrating the efficacy of this culturing procedure. In situ the organisms were observed in vascular bundles and inside sieve elements of the phloem of diseased palms. In vitro parasites retained their mobility. Morphometric analysis revealed differences between Bahia and Rio de Janeiro isolates.  相似文献   

15.
From 10 trypanosomatids genera six comprise monogenetic parasites of insects and for the rest of four genera insects may serve as vectors. The invertebrate host is an essential element of trypanosomatids life cycle, but from more than 900 recognised vertebrate hosts only about 500 species of insects have been discovered to be the hosts of homoxenous trypanosomatids. Nothing or very little is known about insect trypanosomatids in many extensive areas such as South East Asia, Australia, Japan and some others. Each new region explored brings many new findings. Recently flagellates were found in new insect species and families. The border of parasites distribution was expanded till Central Asia, Far East and North over the Polar Circle. As paleogeographical events are now under contemplating in trypanosomatids phylogeny researches so northern insect trypanosomatids may attract some attention as the elements of postglacial fauna which is definitely young. Very broad host specificity of insect trypanosomatids and high probability to isolate non-specific parasite show causes that only the investigation of a culture may solve the question 'what parasite was really isolated?'. Examination of cell morphotypes in the host has clearly demonstrated that they are not sufficient for classification and may lead us to be mistaken. The number of insect trypanosomatid cultures is inadequate for characterisation of the diversity of insects trypanosomatids. Trypanosoma is actually the only trypanosomatid genus which is out of questions. Insect trypanosomatids comprise the most diversified part of trypanosomatids evolutionary tree. Recent ssrRNA phylogenetic analysis and morphological data show that three insect isolates represent new lineages on trypanosomatid evolutionary tree, as well as dendrograms derived from PCR data demonstrated some new groups of isolates. Therefore, the more insect trypanosomatids are involved in laboratory investigations--the more new clusters or/and new lineages are appearing on the tree.  相似文献   

16.

Background

Target repurposing utilizes knowledge of “druggable” targets obtained in one organism and exploits this information to pursue new potential drug targets in other organisms. Here we describe such studies to evaluate whether inhibitors targeting the kinase domain of the mammalian Target of Rapamycin (mTOR) and human phosphoinositide-3-kinases (PI3Ks) show promise against the kinetoplastid parasites Trypanosoma brucei, T. cruzi, Leishmania major, and L. donovani. The genomes of trypanosomatids encode at least 12 proteins belonging to the PI3K protein superfamily, some of which are unique to parasites. Moreover, the shared PI3Ks differ greatly in sequence from those of the human host, thereby providing opportunities for selective inhibition.

Methodology/Principal Findings

We focused on 8 inhibitors targeting mTOR and/or PI3Ks selected from various stages of pre-clinical and clinical development, and tested them against in vitro parasite cultures and in vivo models of infection. Several inhibitors showed micromolar or better efficacy against these organisms in culture. One compound, NVP-BEZ235, displayed sub-nanomolar potency, efficacy against cultured parasites, and an ability to clear parasitemia in an animal model of T. brucei rhodesiense infection.

Conclusions/Significance

These studies strongly suggest that mammalian PI3/TOR kinase inhibitors are a productive starting point for anti-trypanosomal drug discovery. Our data suggest that NVP-BEZ235, an advanced clinical candidate against solid tumors, merits further investigation as an agent for treating African sleeping sickness.  相似文献   

17.
For a vast majority of living organisms, haem is an essential compound that is synthesised through a conserved biosynthetic pathway. However, certain organisms are haem auxotrophs and need to obtain this molecule from exogenous sources. Kinetoplastid flagellates represent an interesting group of species, as some of them lost the complete pathway while others possess only the last three biosynthetic steps. We decided to supplement a current view on the phylogeny of these important pathogens with the expected state of haem synthesis in representative species. We propose a scenario in which the ancestor of all trypanosomatids was completely deficient of the synthesis of haem. In trypanosomatids other than members of the genus Trypanosoma, the pathway was partially rescued by genes encoding enzymes for the last three steps, supposedly obtained by horizontal transfer from a γ-proteobacterium. This event preceded the diversification of the non-Trypanosoma trypanosomatids. Later, some flagellates acquired a β-proteobacterial endosymbiont which supplied them with haem precursors. On the other hand, the medically important trypanosomes have remained fully deficient of haem synthesis and obtain this compound from the host.  相似文献   

18.
MCPs (metallocarboxypeptidases) of the M32 family of peptidases have been identified in a number of prokaryotic organisms, and only a few of them have been characterized biochemically. Members of this family are absent from eukaryotic genomes, with the remarkable exception of those of trypanosomatids. The genome of the CL Brener clone of Trypanosoma cruzi, the causative agent of Chagas' disease, encodes two such MCPs, with 64% identity between them: TcMCP-1 and TcMCP-2. Both genes, which are present in a single copy per haploid genome, were expressed in Escherichia coli as catalytically active polyHis-tagged recombinant enzymes. Despite their identity, the purified TcMCPs displayed marked biochemical differences. TcMCP-1 acted optimally at pH 6.2 on FA {N-(3-[2-furyl]acryloyl)}-Ala-Lys with a K(m) of 166 muM. Activity against benzyloxycarbonyl-Ala-Xaa substrates revealed a P1' preference for basic C-terminal residues. In contrast, TcMCP-2 preferred aromatic and aliphatic residues at this position. The K(m) value for FA-Phe-Phe at pH 7.6 was 24 muM. Therefore the specificities of both MCPs are complementary. Western blot analysis revealed a different pattern of expression for both enzymes: whereas TcMCP-1 is present in all life cycle stages of T. cruzi, TcMCP-2 is mainly expressed in the stages that occur in the invertebrate host. Indirect immunofluorescence experiments suggest that both proteins are localized in the parasite cytosol. Members of this family have been identified in other trypanosomatids, which so far are the only group of eukaryotes encoding M32 MCPs. This fact makes these enzymes an attractive potential target for drug development against these organisms.  相似文献   

19.
Methionine is an amino acid susceptible to being oxidized to methionine sulfoxide (MetSO). The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductase (MSR), an enzyme present in almost all organisms. In trypanosomatids, the study of antioxidant systems has been mainly focused on the involvement of trypanothione, a specific redox component in these organisms. However, no information is available concerning their mechanisms for repairing oxidized proteins, which would be relevant for the survival of these pathogens in the various stages of their life cycle. We report the molecular cloning of three genes encoding a putative A-type MSR in trypanosomatids. The genes were expressed in Escherichia coli, and the corresponding recombinant proteins were purified and functionally characterized. The enzymes were specific for L-Met(S)SO reduction, using Trypanosoma cruzi tryparedoxin I as the reducing substrate. Each enzyme migrated in electrophoresis with a particular profile reflecting the differences they exhibit in superficial charge. The in vivo presence of the enzymes was evidenced by immunological detection in replicative stages of T. cruzi and Trypanosoma brucei. The results support the occurrence of a metabolic pathway in Trypanosoma spp. involved in the critical function of repairing oxidized macromolecules.  相似文献   

20.
Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号