首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The mobilization of newly synthesized 18S and 28S rRNAs, 4S RNA and poly(A)+ RNA into polysomes was studied in isolated cells ofXenopus laevis embryos between cleavage and neurula stages. Throughout these stages, 4S RNA and poly(A)+ RNA were mobilized immediately following their appearance in the cytoplasm. 18S rRNA however, stayed in the ribosomal subunit fraction for about 30 min until the 28S rRNA appeared, when the two rRNAs were mobilized together at an equimolar ratio. This mobilization, at a 1:1 molar ratio, appeared to be realized at initiation monome formation. Thus, the efficiency of the mobilization of two newly synthesized rRNAs, shortly after their arrival at the cytoplasm, differed considerably but difference disappeared once steady state was reached.The contribution of newly synthesized 18S and 28S rRNAs to polysomes remains small throughout early development. around 3% of newly synthesized 4S RNA is polysomal which is the same distribution observed for unlabeled 4S RNA. Less than 10% of the newly synthesized cytoplasmic poly(A)+ RNA was mobilized into polysomes during cleavage, but in later stages the proportion increased to around 20%–25%. These results show that newly synthesized RNAs are utilized for protein synthesis at characteristic rates soon after they are synthesized during early embryonic development. On the basis of the data presented here and elsewhere we discuss quantitative aspects of the utilization of newly synthesized and maternal RNAs during early embryogenesis.  相似文献   

3.
The metabolism of high-molecular-weight RNA in the nuclear and cytoplasmic fractions of newborn and adult rat brain was investigated after the intracranial administration of [32P]Pi. In young brain, a considerable proportion of the newly synthesized radioactive RNA is transferred to the cytoplasm, in contrast with the adult brain, where there appears to be a high intranuclear turnover. Electrophoretic analysis of the newly synthesized RNA showed that processing of the rRNA precursor to yield the 28S and 18S rRNA may be more rapid in the adult than in the young, although most of the adult rRNA in the nucleus is not transferred to the cytoplasm. In young brain, processing is probably tightly coupled to transport of rRNA into the cytoplasm, so that 28S and 18S rRNA are not subjected to possible degradation within the nucleus. Polyadenylated RNA turns over in concert with high-molecular-weight RNA in the nuclei of the adult rat brain. In the cytoplasm the polyadenylated RNA has a higher turnover rate relative to rRNA. In the young brain the polyadenylated RNA is transferred to the cytoplasm along with rRNA, although polyadenylated RNA is transported into the cytoplasm at a faster rate. The nuclear and cytoplasmic polyadenylated RNA species of young brain are larger than their corresponding adult counterparts. These results suggest that there are considerable changes in the regulation of the nucleo-cytoplasmic relationship of rRNA and polyadenylated RNA during the transition of the brain from a developing replicative phase to an adult differentiated and non-dividing state.  相似文献   

4.
The 5'-termini of purified rat liver nucleolar and cytoplasmic 28S ribosomal RNA (rRNA) are precisely located within the homologous rDNA sequence by S1 nuclease protection mapping using an appropriate rDNA restriction fragment. The 5'-termini of nucleolar 28S rRNA are heterogeneous in length. The bulk of the nucleolar 28S rRNA map within two CTC motifs in rDNA located in the internal transcribed spacer 2 at the 50-60 and 5-15 bp upstream from the site of the homogeneous 5'-terminus of the cytoplasmic 28S rRNA. These results provide direct proof that nucleolar 28S rRNA molecules contain excess sequences at their 5'-termini and require further processing to generate the mature cytoplasmic 28S rRNA.  相似文献   

5.
Two independent systems and several analytical procedures have been used to establish that isolated mammalian nuclei selectively transport mature RNA polymerase I and II products. Murine myeloma nuclei retain physiologic restriction in our transport assay as assessed by the transport of the immunoglobulin kappa light chain mRNA and 18S and 28S rRNAs. Nearly 50% of the total kappa exons are transported as structurally intact mature mRNA molecules while less than 8% of either pulse-labeled or steady state kappa intron sequences are detected in the transported fraction. Ribosomal external transcribed spacer sequences also are absent in transported RNA. Release of cytoplasmic RNA from the outer nuclear membrane during the transport assay accounts for less than 10% of transported RNA. Nuclei isolated from adenovirus-infected HeLa cells at 20 hours post infection retain cellular actin mRNA and transport viral poly A+RNA. Ribosomal RNA is transported from infected nuclei although at a reduced rate compared to transport from mock-infected nuclei. Inhibition of transport of host mRNA is paralleled by the absence of pulse-labeled actin mRNA in the cytoplasm of infected cells. The implications of our transport data in relationship to intranuclear RNA trafficking are discussed.  相似文献   

6.
Total low molecular weight nuclear RNAs of mouse ascites cells have been labeled in vitro and used as probes to search for complementary sequences contained in nuclear or cytoplasmic RNA. From a subset of hybridizing lmw RNAs, two major species of 58,000 and 35,000 mol. wt. have been identified as mouse 5 and 5.8S ribosomal RNA. Mouse 5 and 5.8S rRNA hybridize not only to 18 and 28S rRNA, respectively, but also to nuclear and cytoplasmic poly(A+) RNA. Northern blot analysis and oligo-dT cellulose chromatography have confirmed the intermolecular base-pairing of these two small rRNA sequences to total poly(A+) RNA as well as to purified rabbit globin mRNA. 5 and 5.8S rRNA also hybridize with positive (coding) but not negative (noncoding) strands of viral RNA. Temperature melting experiments have demonstrated that their hybrid stability with mRNA sequences is comparable to that observed for the 5S:18S and 5.8S:28S hybrids. The functional significance of 5 and 5.8S rRNA base-pairing with mRNAs and larger rRNAs is unknown, but these interactions could play important coordinating roles in ribosome structure, subunit interaction, and mRNA binding during translation.  相似文献   

7.
The concentrations, in copies per cell, of viral RNA sequences complementary to different regions of the genome were determined at 8, 18 and 32 hours after infection of human cells with adenovirus type 2: separated strands of fragments of 32P-labelled adenovirus 2 DNA, generated by cleavage with restriction endonucleases EcoR1, Hpa1 and BamH1, were added to reaction mixtures at sufficient concentrations to drive hybridizations with infected or transformed cell RNA. Under these conditions, the fraction of 32P-labelled DNA entering hybrid is directly proportional to the absolute amount of complementary RNA in the reaction.At 8 hours after infection in the presence of cytosine arabinoside, “early” viral messenger RNA sequences are present at a frequency of 300 to 1000 copies per cell. The abundance of early mRNA sequences in different lines of adenovirus 2-transformed rat cells is markedly lower than their concentration in lytically infected cells. Moreover, the abundance of early mRNA in a given transformed rat cell line reflects the number of copies of its template DNA sequences per diploid quantity of cell DNA. After the onset of the late phase of the lytic cycle, the abundance of one early mRNA species, that coding for a single-stranded DNA binding protein required for viral DNA replication, is amplified. Viral RNA sequences complementary to regions of the genome coding for other early mRNA sequences remain at the level observed at 8 hours after infection.Exclusively “late” viral mRNA sequences are present over a range of concentrations, 500 to 10,000 copies per cell, depending on the region of the genome. By 18 hours after infection, the nucleus contains approximately three times as much total, viral RNA as the cytoplasm. The abundant nuclear, viral RNA sequences at 18 hours are transcribed from a contiguous region, 65% of the genome in length. In some cases, viral RNA sequences complementary to mRNA sequences are very abundant in the nucleus. When cytoplasmic and nuclear fractions are mixed and incubated under annealing conditions, some mRNA sequences will anneal with more abundant, anti-messenger nuclear RNA sequences to form double-stranded RNA. Such annealing of nuclear, viral RNA to early, cytoplasmic mRNA sequences probably accounts for the inability to detect, by filter hybridization, certain classes of early mRNA sequences during the late stage of infection.  相似文献   

8.
The intricate production of ribosomal RNA is well defined in yeast, but its complexity in higher organisms is barely understood. We recently showed that down-regulation of nucleolar protein RNA helicase II/Gualpha (RH-II/Gualpha or DDX21) in Xenopus oocytes inhibited processing of 20 S rRNA to 18 S and contributed to degradation of 28 S rRNA (Yang, H., Zhou, J., Ochs, R. L., Henning, D., Jin, R., and Valdez, B. C. (2003) J. Biol. Chem. 278, 38847-38859). Since no nucleolar RNA helicase has been functionally characterized in mammalian cells, we used short interfering RNA to search for functions for RH-II/Gualpha and its paralogue RH-II/Gubeta in rRNA production. Silencing of RH-II/Gualpha by more than 80% in HeLa cells resulted in an almost 80% inhibition of 18 and 28 S rRNA production. This inhibition could be reversed by exogenous expression of wild type RH-II/Gualpha. A helicase-deficient mutant form having ATPase activity was able to rescue the production of 28 S but not 18 S rRNA. A phenotype exhibiting inhibition of 18 S and 28 S rRNA production was also observed when the paralogue RH-II/Gubeta was overexpressed. Both down-regulation of RH-II/Gualpha and overexpression of RH-II/Gubeta slowed cell proliferation. The opposite effects of the two paralogues suggest antagonistic functions.  相似文献   

9.
10.
Mouse L-cell nucleoli were isolated from sonicated nuclei by centrifugation and extensively treated with pancreatic DNase or micrococcal nuclease to obtain "core nucleoli." Core nucleoli still contained the precursors to rRNA and about 1% of the total nuclear DNA, which remained tightly bound even after the removal of some chromatin proteins with 2 M NaCl. The core nucleolar DNA electrophoresed in a series of discrete bands, 20 to about 200 base pairs in length. Hybridization tests with specific DNA probes showed that the DNA was devoid of sequences complementary to mouse satellite, mouse Alu-like, and 5S RNA sequences. It also lacked sequences coding for cytoplasmic rRNA species, since it did not hybridize to the 18S to 28S portion of rDNA in Northern blot analyses and none of it was protected by hybridization to a 100-fold excess of total cytoplasmic RNA in S1 nuclease assays. However, the core nucleolar DNA did hybridize to nontranscribed and external transcribed spacer rDNA sequences. We infer that specific portions of rDNA are protected from DNase action by a tight association with nucleolar structural proteins.  相似文献   

11.
The biosynthesis of a hypermodified nucleotide, similar to or identical with 3-(3-amino-3-carboxypropyl)-1-methylpseudouridine monophosphate, present in Saccharomyces carlsbergensis 17S and HeLa-cell 18S rRNA, was investigated with respect to the sequence of reactions required for synthesis and their timing in ribosome maturation. In both yeast and HeLa cells methylation precedes attachment of the 3-amino-3-carboxypropyl group. In yeast the methylated precursor nucleotide was tentatively characterized as 1-methylpseudouridine. This precursor nucleotide was demonstrated in both 37S and most of the cytoplasmic 18S pre-rRNA (rRNA precursor) molecules. The synthesis of the hypermodified nucleotide is completed just before the final cleavage of 18S pre-rRNA to give 17S rRNA, so that the final addition of the 3-amino-3-carboxypropyl group is a cytoplasmic event. Comparable experiments with HeLa cells indicated that formation of 1-methylpseudouridine occurs at the level of 45S RNA and addition of the 3-amino-3-carboxypropyl group occurs in the cytoplasm on newly synthesized 18S RNA.  相似文献   

12.
13.
The effect of hypertonic conditions on RNA synthesis in cultured chick embryo cells was examined. The appearance of newly synthesized 28 S, 18 S, and 4 S and 5 S RNA into the cytoplasm was found to be decreased by hypertonic conditions. The appearance of newly synthesized poly(A)+ RNA into the cytoplasm was also found to be depressed. To examine the behavior of a specific mRNA, nuclear and cytoplasmic levels of procollagen alpha 2(I) mRNA were measured during high salt treatment. While nuclear levels of this mRNA were found to increase, those of the cytoplasm fell markedly. S1 nuclease digestion studies of an intron flanked by two exons revealed that the pro alpha 2(I) collagen nuclear RNA that accumulated under hypertonic conditions was spliced. The nuclear accumulation of mRNA appears therefore to be due to a hypertonic block of nuclear-cytoplasmic transport, and not to an inhibition of RNA splicing.  相似文献   

14.
The steady-state content of globin-coding sequences in nuclear and cytoplasmic RNA of pigeon erythroid cells was estimated by hybridization in the excess of nuclear 28S RNA and cytoplasmic poly(A) + RNA with [3H]DNA, synthesized on globin mRNA. Sequences of 9S globin mRNA are found in 0.06% of molecules of non-ribosomal 28S nuclear RNA (pre-mRNA) of erythroblasts and in 0.5% of molecules of non-ribosomal 28S nuclear RNA of reticulocytes. The content of globin mRNA in erythroblast cytoplasm is, respectively lower than in that of reticulocytes.  相似文献   

15.
The low molecular weight of RNAs of adenovirus 2-infected cells   总被引:16,自引:0,他引:16  
The cytoplasm of HeLa cells infected with adenovirus type 2 contains many species of low molecular weight RNA, including several of viral origin. In addition to a 9 S messenger RNA, the viral genome gives rise to two species of virus-associated RNA: the major species is 5.5 S RNA or virus-associated RNAI, and the minor species is 5.2 S RNA or virus-associated RNAII. Virus-associated RNAI occurs in the cytoplasm in several electrophoretically separable forms, and its sequences are also present in high molecular weight nuclear RNA but not in cytoplasmic mRNA. The structure of virus-associated RNAII is shown to be distinct from that of the major species, and the position of its gene is mapped on the viral genome. The two virus-associated RNA genes are located on the r strand near position 30 of the adenovirus type 2 physical map, and are separated by a spacer of about 75 base-pairs.  相似文献   

16.
The nucleolus is a nuclear domain involved in the biogenesis of ribosomes, as well as in many other important cellular regulatory activities, such as cell cycle control and mRNA processing. Many viruses, including herpesviruses, are known to exploit the nucleolar compartment during their replication cycle. In a previous study, we demonstrated the preferential targeting and accumulation of the human cytomegalovirus (HCMV) UL83 phosphoprotein (pp65) to the nucleolar compartment and, in particular, to the nucleolar matrix of lytically infected fibroblasts; such targeting was already evident at very early times after infection. Here we have investigated the possible effects of rRNA synthesis inhibition upon the development of HCMV lytic infection, by using either actinomycin D or cisplatin at low concentrations, that are known to selectively inhibit RNA polymerase I activity, whilst leaving RNA polymerase II function unaffected. Following the inhibition of rRNA synthesis by either of the agents used, we observed a significant redistribution of nucleolar proteins within the nucleoplasm and a simultaneous depletion of viral pp65 from the nucleolus; this effect was highly evident in both unextracted cells and in nuclear matrices in situ. Of particular interest, even a brief suppression of rRNA synthesis resulted in a very strong inhibition of the progression of HCMV infection, as was concluded from the absence of accumulation of HCMV major immediate‐early proteins within the nucleus of infected cells. These data suggest that a functional relationship might exist between rRNA synthesis, pp65 localization to the nucleolar matrix and the normal development of HCMV lytic infection. J. Cell. Biochem. 108: 415–423, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
HEp-2 cells were pulse-labeled at different times after infection with herpes simplex virus, and nuclear ribonucleic acid (RNA) and cytoplasmic RNA were examined. The data showed the following: (i) Analysis by acrylamide gel electrophoresis of cytoplasmic RNA of cells infected at high multiplicities [80 to 200 plaque-forming units (PFU)/cell] revealed that ribosomal RNA (rRNA) synthesis falls to less than 10% of control (uninfected cell) values by 5 hr after infection. The synthesis of 4S RNA also declined but not as rapidly, and at its lowest level it was still 20% of control values. At lower multiplicities (20 PFU), the rate of inhibition was slower than at high multiplicities. However, at all multiplicities the rates of inhibition of 18S and 28S rRNA remained identical and higher than that of 4S RNA. (ii) Analysis of nuclear RNA of cells infected at high multiplicities by sucrose density gradient centrifugation showed that the synthesis and methylation of 45S rRNA precursor continued at a reduced but significant rate (ca. 30% of control values) at times after infection when no radioactive uridine was incorporated or could be chased into 28S and 18S rRNA. This indicates that the inhibition of rRNA synthesis after herpesvirus infection is a result of two processes: a decrease in the rate of synthesis of 45S RNA and a decrease in the rate of processing of that 45S RNA that is synthesized. (iii) Hybridization of nuclear and cytoplasmic RNA of infected cells with herpesvirus DNA revealed that a significant proportion of the total viral RNA in the nucleus has a sedimentation coefficient of 50S or greater. The sedimentation coefficient of virus-specific RNA associated with cytoplasmic polyribosomes is smaller with a maximum at 16S to 20S, but there is some rapidly sedimenting RNA (> 28S) here too. (iv) Finally, there was leakage of low-molecular weight (4S) RNA from infected cells, the leakage being approximately three-fold that of uninfected cells by approximately 5 hr after infection.  相似文献   

18.
Effect of heat shock on RNA metabolism in HeLa cells   总被引:14,自引:0,他引:14  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号