首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The auditory spiracle of tettigoniid Orthoptera influences hearing threshold and, for the most part, individuals with larger auditory spiracles have lower hearing thresholds; they are more sensitive. Hearing thresholds of both sexes of the bushcricket, Requena verticalis Walker (Orthoptera; Tettigoniidae; Listroscelidinae), were measured at the male call's carrier frequency and were found to correlate with spiracle dimension. In turn, spiracle dimension correlates with the size of the insect as measured by pronotum length. The best frequency of hearing is close to 16 kHz and this appears to be independent of size. Males show a higher variation in threshold than females and this was reflected in a trend toward lower variance in spiracle size in females.
To test the effects of size on sensitivity, spiracle size was manipulated by partially blocking it. Blocking the spiracle decreases sensitivity to high rather than low frequencies. As in other tettigoniids, the spiracle and associated auditory system act as a high-pass filter. Within and between sex differences in hearing sensitivity were compared with differences in male call intensity. It is argued that sensitivity to sounds associated with mating should be as much under sexual selection as the sexual calls of males.  相似文献   

2.
In contrast to studies of sex-specific weaponry and other sexually selected traits, there has been no examination of Darwin's (1871, p. 418) suggestion that elaborations or enlargements of “the organs of sense” function to enhance mating success. In certain katydids the size of thoracic spiracles, which are a main input into the hearing system, determines auditory sensitivity of females. Here we present evidence that sexual dimorphism in the spiracle size of a pollen katydid, Kawanaphila nartee, is a result of sexual selection on females competing to locate nuptial-gift giving males. In field experiments in which female K. nartee were attracted to a calling male, we show a pairing advantage to females with larger auditory spiracles. The spiracle-size advantage was not a correlated result of a larger body size or mass of winners. Finally, there was no spiracle-size advantage or body-mass advantage for mating females in a later stage of competition when experimental females struggled for access to a silent male. We suggest that research on the detection of displays has lagged behind work on the displays themselves; the focus has been on the species specificity of signal perception rather than on the fitness consequences of variation in the ability to detect cues from mates or predators.  相似文献   

3.
One‐size‐fits‐all and related hypotheses predict that static allometry slopes for male genitalia will be consistently lower than 1.0 and lower than the slopes for most other body parts (somatic traits). We examined the allometry of genitalic and somatic morphological traits in males and females of two species of noctuid moths, Spodoptera exigua (Hübner, [1808]) and Helicoverpa armigera (Hübner, [1808]). The relationship between genitalic traits and body size was generally strongly negative‐allometric in males but with no significant differences from 1.00 in females of the two species examined. However, in females, the slope of genital traits was also lower than the slopes for somatic traits. The relationship between somatic traits and the body size indicator was approximately isometric in most cases in males, except in four traits in S. exigua, in which the slopes showed slight negative allometry, and the hind tibia in H. armigera, in which the slope had positive allometry. However, in females, some somatic traits showed isometric and some other showed negative allometry in both species. The coefficients of variation (CV) for all structures in the males were low, not exceeding 10%. Genitalic traits showed significantly lower CV than somatic traits in males. In females, somatic traits showed lower CV than genitalic traits but with no significant difference in the H. armigera. Our observations of strongly negative allometry for genitalic traits in males are consistent with stabilizing selection on genital size and we suggest that male performance in interactions with females is the source of selection on male genital allometry. The difference in the degree of phenotypic variation between genitalic and somatic traits in the two studied species is attributed to the different developmental‐genetic architectures of these traits. Female genitalia showed a similar trend to the males, although the difference between genital and somatic traits was not significant in females. This finding suggests that selection is acting differently on male and female genitalia. Positive allometry of hind tibia in H. armigera may be a result of secondary sexual function.  相似文献   

4.
In Tettigoniidae (Orthoptera: Ensifera), hearing organs are essential in mate detection. Male tettigoniids usually produce calling songs by tegminal stridulation, whereas females approach the males phonotactically. This unidirectional communication system is the most common one among tettigoniids. In several tettigoniid lineages, females have evolved acoustic replies to the male calling song which constitutes a bidirectional communication system. The genus Poecilimon (Tettigoniidae: Phaneropterinae) is of special interest because the ancestral state of bidirectional communication, with calling males and responding females, has been reversed repeatedly to unidirectional communication. Acoustic communication is mediated by hearing organs that are adapted to the conspecific signals. Therefore, we analyse the auditory system in the Tettigoniidae genus Poecilimon for functional adaptations in three characteristics: (i) dimension of sound‐receiving structures (tympanum and acoustic spiracle), (ii) number of auditory sensilla and (iii) hearing sensitivity. Profound differences in the auditory system correlate with uni‐ or bidirectional communication. Among the sound‐receiving structures, the tympana scale with body size, whereas the acoustic spiracle, the major sound input structure, was drastically reduced in unidirectional communicating species. In the unidirectional P. ampliatus group, auditory sensilla are severely reduced in numbers, but not in the unidirectional P. propinquus group. Within the P. ampliatus group, the number of auditory sensilla is further reduced in P. intermedius which lost acoustic signalling due to parthenogenesis. The auditory sensitivity correlated with the size of the acoustic spiracle, as hearing sensitivity was better with larger spiracles, especially in the ultrasonic range. Our results show a significant reduction in auditory structures, shaped by the differing sex roles during mate detection.  相似文献   

5.
When males are the larger sex, a positive allometric relationship between male and female sizes is often found across populations of a single species (i.e. Rensch’s rule). This pattern is typically explained by a sexual selection pressure on males. Here, we report that the allometric relationship was negative across populations of a shell-brooding cichlid fish Lamprologus callipterus, although males are extremely larger than females. Male L. callipterus collect and defend empty snail shells in each of which a female breeds. We found that, across six populations, male and female sizes are positively correlated with not only sexual and fecundity selection indices, but also with shell sizes. Given their different reproductive behaviours, these correlations mean that males are required to be more powerful, and thus larger, to transport larger shells, while female bodies are reduced to the shell size to enable them to enter the shells. Among the three size selections (sexual selection, fecundity selection and shell size), shell size explained the allometry, suggesting that females are more strongly subject to size selection associated with shell size availability than males. However, the allometry was violated when considering an additional population where size-selection regimes of males differed from that of other populations. Therefore, sexual size allometry will be violated by body size divergence induced by multiple selection regimes.  相似文献   

6.
Males of the bean bug species Riptortus pedestris possess larger hindlegs than females. Observations of male-male interactions showed that the enlarged hindlegs are used as weapons in male fights, and that males with larger hindlegs win fights more frequently. Morphological analysis based on the positive allometry test showed that the femora of larger males are relatively bigger than those of smaller males, but femora of larger females are not relatively larger than those of smaller females. These results suggest that sexual selection in R. pedestris favors larger hindlegs for male fighting. In addition, the thorax and abdomen lengths were larger in the male than in the female. The males often lift their abdomen with their back to the opponent for displays against an opponent. As a result, abdominal size may be under stronger selection in the male than in the female, as for the exaggerated hindlegs.  相似文献   

7.
Within any given clade, male size and female size typically covary, but male size often varies more than female size. This generates a pattern of allometry for sexual size dimorphism (SSD) known as Rensch's rule. I use allometry for SSD among populations of the water strider Aquarius remigis (Hemiptera, Gerridae) to test the hypothesis that Rensch's rule evolves in response to sexual selection on male secondary sexual traits and an alternative hypothesis that it is caused by greater phenotypic plasticity of body size in males. Comparisons of three populations reared under two temperature regimes are combined with an analysis of allometry for genital and somatic components of body size among 25 field populations. Contrary to the sexual-selection hypothesis, genital length, the target of sexual selection, shows the lowest allometric slope of all the assayed traits. Instead, the results support a novel interpretation of the differential-plasticity hypothesis: that the traits most closely associated with reproductive fitness (abdomen length in females and genital length in males) are "adaptively canalized." While this hypothesis is unlikely to explain Rensch's rule among species or higher clades, it may explain widespread patterns of intraspecific variation in SSD recently documented for many insect species.  相似文献   

8.
Intraspecific sexual differences, high variation, and positive allometry of sexually-selected external display structures are common. Many sexually-selected anatomical specializations occur in the avian vocal tract but intraspecific variation and allometry have been investigated little. The tracheal bulla bulla syringealis occurs in males of most duck species. We quantified variation and size-scaling of the bulla, plus sexual differences in size of trachea, bronchi, and vocal muscles, for 62 common eiders Somateria mollissima and 51 king eiders S. spectabilis. Trends were similar in both species. Bullar ossification and definitive size occurred early in life: bullar size did not differ between first-year and older males. Bullar size did not vary more than size of other body parts (CVs of 3.4–7.0% for bullar length and breadth). Bullar size scaled to body size with negative allometry or isometry. Vocal muscles were 10–50% thicker in males than females, a much greater sexual difference than in body size (CVs of 3–6% on linear body-size variables). Vocal muscles were larger on the left side in both sexes and bilateral asymmetry was slightly more pronounced in males. Low variation and a trend towards negative allometry suggest that bullar size is under stabilizing selection; if bullar size affects vocal attributes of voice, then the latter cannot be condition-dependent. We recommend comparative research on vocal communication, vocal individuality and vocal-tract anatomy and function in eiders and other ducks.  相似文献   

9.
Summary Sexual dimorphism of the ear of an undescribed species of zaprochiline tettigoniid is described. The internal trachea, dedicated to hearing in other tettigoniids, is unmodified in the male but fully developed in the female. The external auditory spiracle is also lost in the male. In contrast, there is no difference between the sexes in the number of sensilla within the hearing organ. The male is 10 dB less sensitive than the female. The characteristic frequency of the hearing organ at 35 kHz does not match the carrier frequency of the male's call at 51 kHz. As a result of this mismatch the female is remarkably insensitive to the male's call (threshold at 75 dB SPL), and the male is even less sensitive (thresholds80 dB SPL). In nature this provides a maximum hearing range of the male of less than 50 cm.  相似文献   

10.
Sexual selection is a powerful force that influences the evolution of a variety of traits associated with female mate choice and male–male competition. Although other factors have been implicated, sexual selection may be particularly important in the evolution of the genitalia. Traits under sexual selection typically have high phenotypic variance and positive allometry relative to non-sexual traits. Here, we test the hypothesis that the baculum (os penis) of the muskrat (Ondatra zibethicus) is under sexual selection by examining phenotypic variance and allometry relative to non-sexual traits. Muskrats were sampled from Ontario, Canada, and a variety of traits measured. Measurements included baculum length and width, and three non-sexual traits (skull length, skull width, hind foot length). We used coefficient of variation (CV) and allometric slopes calculated using reduced major axis regression to test our hypotheses. Baculum traits had significantly higher CV’s relative to non-sexual traits. Baculum traits also showed positive allometry, whereas all non-sexual traits had negative allometric relationships. In addition, baculum width had higher CV’s and steeper allometric slopes than baculum length, indicating that, in muskrat, baculum width may be more influenced by sexual selection than baculum length. Positive allometry of the baculum is consistent with other examples of mammalian genitalia, but contrasts with negative allometry found in many insects. Other examples of positive allometry and high phenotypic variance of the baculum have suggested that females may use the baculum as an indicator of male quality. “Good genes” indicator traits may be particularly important in species that mate in an environmental context that prohibits female assessment of male quality. Muskrats mate aquatically, and thus females may be unable to properly assess males prior to copulation.  相似文献   

11.
In mammals, ‘female‐biased’ sexual size dimorphism (SSD), in which females are larger than males, is uncommon. In the present study, we examined Sylvilagus, a purported case of female‐biased SSD, for evolutionary correlations among species between SSD, body‐size, and life‐history variables. We find that: (1) although most species are female‐biased, the degree and direction of SSD vary more than was previously recognized and (2) the degree of SSD decreases with increasing body size. Hence, Sylvilagus provides a new example, unusual for a female‐biased taxon, in which allometry for SSD is consistent with ‘Rensch's Rule’. As a corollary to Rensch's Rule, we observe that changes in SSD in Sylvilagus are typically associated with larger, more significant changes in males than females. Female‐biased SSD could be produced by selection for larger females, smaller males, or both. Although larger female size may be related to high fecundity and the extremely rapid fetal and neonatal growth in Sylvilagus, we find little evidence for a correlation between SSD and various fecundity‐related traits in among‐species comparisons. Smaller male size may confer greater reproductive success through greater mobility and reduced energetic requirements. We propose that a suite of traits (female dispersion, large male home ranges, reduced aggression, and a promiscuous mating system) has favoured smaller males and thus influenced the evolution of SSD in cottontails. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 141–156.  相似文献   

12.
The genus Kawanaphila (Tettigoniidae: Zaprochilinae) is unusual among the Tettigoniidae in the possession of sexually dimorphic auditory organs. We examined the auditory system and acoustic behaviour of two previously unstudied species in this genus to test whether reduced hearing in males is consistently associated with reduced male–male competition. Kawanaphila yarraga (Rentz, 1993) and K. mirla (Rentz, 1993) are both sexually dimorphic with respect to their auditory system, but to different degrees. Males of both species produce songs consisting of trains of brief (< 1 ms) pure-tone sound pulses at ultrasonic frequencies (K. yarraga, 40 kHz;K. mirla, 70 kHz). In both species, female hearing is more sensitive than that of males by 10 dB. In addition, male K. mirla are most sensitive at lower frequencies than females. Male and female K. yarraga differed only in sensitivity, not in tuning. The two species also differ in their degree of sexual dimorphism in auditory anatomy. Kawanaphila mirla males lack some auditory specializations of the prothoracic tracheal system, which are present in the normal tettigoniid condition in females. In K. yarraga males these structures are present, but reduced in size relative to females. The acoustic behaviour of males of the two species is consistent with this pattern of relative auditory sensitivity. Males of both species interact acoustically by altering the timing of their sound output to synchronize with neighbouring males. However, K. mirla males only interact in this way over very short distances (< 5 m), whereas K. yarraga males interact with neighbours up to at least 10 m distant. These results indicate that, although males of the two species differ in hearing sensitivity, the nature of their responses to conspecific calls are similar to one another and to those of other acoustic insects. This suggests that acoustically mediated male–male competition may be maintained even while selection favours a reduction in male auditory sensitivity.  相似文献   

13.
The mobility hypothesis could explain the evolution of female‐biased size dimorphism if males with a smaller body size and longer legs have an advantage in scramble competition for mates. This hypothesis is tested by performing a selection analysis in the wild on Micrarchus hystriculeus (Westwood) (Phasmatodea), a sexually size dimorphic stick insect endemic to New Zealand. This analysis examined the form and strength of sexual selection on body size, leg lengths (front, mid and hind), and clasper size (a genitalic trait), and also quantified the degree of phenotypic variation and the allometric scaling pattern of these traits. By contrast to the mobility hypothesis, three lines of evidence were found to support significant stabilizing sexual selection on male hind leg length: a significant nonlinear selection gradient, negative static allometry, and a low degree of phenotypic variation. Hind leg length might be under stabilizing selection in males if having average‐sized legs facilitates female mounting or improves a male's ability to achieve the appropriate copulation position. As predicted, a negative allometric scaling pattern and low phenotypic variation of clasper size is suggestive of stabilizing selection and supports the ‘one‐size‐fits‐all’ hypothesis. Opposite to males, the mid and hind leg lengths of females showed positive static allometry. Relatively longer mid and hind leg lengths in larger females might benefit individuals via the better support of their larger abdomens. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 471–484.  相似文献   

14.
Recent interest in sperm competition has led to a re‐evaluation of the ‘cheap sperm’ assumption inherent in many studies of sexual selection. In particular, mounting evidence suggests that male sperm availability can be increased by the presence of females. However, there is little information on how this interacts with male traits presumably affected by female mate choice, such as larger size. This study examines the effects on male sperm availability of female presence, male body size, and female body size in the sailfin molly, Poecilia latipinna. Individual males of variable body sizes were isolated in divided tanks for 3 d, after which time either a female or no female was added to the other side of the tank. Prior to the treatments, larger males had more stripped sperm than smaller males. Female presence significantly increased the amount of sperm males primed, but this effect was strongest in small males. Furthermore, males showed a greater priming response in the presence of larger females than in the presence of smaller females. These results demonstrate that the presence of sexually mature females increases the amount of sperm males have for insemination. Furthermore, traits that indicate female fecundity may be used by males as cues in male mate choice.  相似文献   

15.
Unisexual reproduction is a widespread phenomenon in invertebrates and lower vertebrates. If a former sexual reproducing species becomes parthenogenetic, we expect traits that were subject to sexual selection to diminish. The bushcricket Poecilimon intermedius is one of the few insect species with obligate but diploid parthenogenetic reproduction. We contrasted characters that are involved in mating in a sexually sibling species with the identical structures in the parthenogenetic P. intermedius. Central for sexual communication are male songs, while receptive females approach the males phonotactically. Compared to its sister-species P. ampliatus, the morphology of the hearing organs (acoustic spiracle, crista acustica) and the function of hearing (acoustic threshold) are reduced in P. intermedius. Nonetheless, hearing is clearly maintained in the parthenogenetic females. Natural selection by acoustic hunting bats, pleiotropy or a developmental trap may explain the well maintained hearing function.  相似文献   

16.
We investigate the association between female reproductive investment, absolute size, and sexual size dimorphism in spiders to test the predictions of the fecundity-advantage hypothesis. The relationships between absolute size and sexual size dimorphism and aspects of female reproductive output are examined in comparative analyses using phylogenetically independent contrasts. We provide support for the idea that allometry for sexual dimorphism is the result of variation in female size more so than male size. Regression analyses suggest selection for increased fecundity in females. We argue that fecundity selection provides the only general explanation for the evolution of sexual size dimorphism in spiders.  相似文献   

17.
From the elongated neck of the giraffe to the elaborate train of the peacock, extreme traits can result from natural or sexual selection (or both). The extreme chelicerae of the long‐jawed spiders (Tetragnatha) present a puzzle: do these exaggerated chelicerae function as weapons or genitalia? Bristowe first proposed that Tetragnatha chelicerae function as a holdfast because these spiders embrace chelicerae during mating. This hypothesis has remained untested until now. Here, we use functional allometry to examine how extreme chelicerae develop and perform in the long‐jawed spider Tetragnatha elongata. Similar to other Tetragnatha species, chelicerae were longer in adult males than in adult females. Overall, we confirm Bristowe's hypothesis: elongation only occurred in the adult stage. However, we propose that chelicerae function as more than a holdfast in T. elongata. Male chelicerae exhibited positive allometry, which suggests scaling as weapons rather than genitalia. However, fieldwork revealed that the operational sex ratio is female‐biased and both adult male–male competition and sexual cannibalism were rarely observed. Consequently, we propose that the positive allometry of male chelicerae may result from sexual selection to mechanically mesh with larger and more fecund females. Evidence for mechanical mesh includes multiple traits ranging from apophyses and grooves to guide teeth on the basal portion of the chelicerae. In contrast, we propose that chelicerae of females are analogous to the female peacock's tail: shortened by natural selection limiting the exaggeration of sexually selected traits. Indeed, females had increased foraging efficiency compared to males and exhibited negative cheliceral allometry. We discuss the implications for the evolution of elongated chelicerae in Tetragnatha.  相似文献   

18.
Under sexual selection, genitalia typically undergo rapid and divergent evolution across species and competition between the sexes over control of fertilisation may drive the co-evolution of male and female sexual traits. Sexual selection can, therefore, influence genitalia in three fundamental but non-mutually exclusive ways: (1) cryptic female choice, (2) sperm competition and (3) sexual conflict. Golden moles (Chrysochloridae) are a highly specialised family endemic to sub-Saharan Africa. We examined intra-specific genital allometry of both male and female subterranean Hottentot golden moles (Amblysomus hottentotus). Consistent with previous studies in mammals, we found positive allometry and a high coefficient of variation (CV) for male genitalia. The results for female reproductive tract length of A. hottentotus contrast with the findings of previous studies as isometry was recorded. Based on the allometric relationships of both males and females presented here, we suggest that the males do not sequester females and that in the absence of visual cues the female may use penis size as an indicator of phenotypic quality.  相似文献   

19.
We evaluated whether morphological traits in capelin, Mallotus villosus, that appear to be sexually selected (pectoral fin, pelvic fin, anal fin, lateral ridge) were larger and more variable in males than females compared with naturally selected morphological traits (eyes, dorsal fin). Photographs were obtained of 136 capelin captured at two spawning sites and standardised measurements were taken of six morphological traits. Males had larger traits than females for a given body size and this was most pronounced in the traits thought to be sexually selected. Body size explained much of the variation in female traits but less variation in male traits, suggesting alternative selection pressures are involved. We suggest that larger male body size aids in endurance rivalry and sexually dimorphic traits help males to remain in physical contact with females while spawning on the beach.  相似文献   

20.
Mating systems are shaped by a species' ecology, which sets the stage for sexual selection. Males of the gregarious parasitoid wasp Nasonia vitripennis compete to mate virgin females at the natal site, before females disperse. Males could increase their fitness by being larger and monopolizing female emergence sites or by emerging earlier pre-empting access to females. We consider sexual selection on male body size and development time in Nasonia, and a potential trade-off between the two traits. We explored sex-specific patterns of larval and pupal development, finding that smaller wasps developed slower than their host-mates. Using competition experiments between brothers, we found that earlier eclosing males mated more females independently of absolute and relative body size. Our data explain the lack of relationship between fitness and body size in male Nasonia and reinforce the importance of protandry in mating systems where access to mates is time-limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号