首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirecombination roles. In addition, substrates containing defined types of mismatches (base-base mismatches; 1-, 4-, or 12-nt insertion/deletion loops; or 18-nt palindromes) were used to examine recognition of these mismatches in mitotic recombination intermediates. Msh2p was required for recognition of all types of mismatches, whereas Msh6p recognized only base-base mismatches and 1-nt insertion/deletion loops. Msh3p was involved in recognition of the palindrome and all loops, but also had an unexpected antirecombination role when the potential heteroduplex contained only base-base mismatches. In contrast to their similar antimutator roles, Pms1p consistently inhibited recombination to a lesser degree than did Msh2p. In addition to the yeast MutS and MutL homologs, the exonuclease Exo1p and the nucleotide excision repair proteins Rad1p and Rad10p were found to have roles in inhibiting recombination between mismatched substrates.  相似文献   

2.
In eukaryotic cells, DNA mismatch repair is initiated by a conserved family of MutS (Msh) and MutL (Mlh) homolog proteins. Mlh1 is unique among Mlh proteins because it is required in mismatch repair and for wild-type levels of crossing over during meiosis. In this study, 60 new alleles of MLH1 were examined for defects in vegetative and meiotic mismatch repair as well as in meiotic crossing over. Four alleles predicted to disrupt the Mlh1p ATPase activity conferred defects in all functions assayed. Three mutations, mlh1-2, -29, and -31, caused defects in mismatch repair during vegetative growth but allowed nearly wild-type levels of meiotic crossing over and spore viability. Surprisingly, these mutants did not accumulate high levels of postmeiotic segregation at the ARG4 recombination hotspot. In biochemical assays, Pms1p failed to copurify with mlh1-2, and two-hybrid studies indicated that this allele did not interact with Pms1p and Mlh3p but maintained wild-type interactions with Exo1p and Sgs1p. mlh1-29 and mlh1-31 did not alter the ability of Mlh1p-Pms1p to form a ternary complex with a mismatch substrate and Msh2p-Msh6p, suggesting that the region mutated in these alleles could be responsible for signaling events that take place after ternary complex formation. These results indicate that mismatches formed during genetic recombination are processed differently than during replication and that, compared to mismatch repair functions, the meiotic crossing-over role of MLH1 appears to be more resistant to mutagenesis, perhaps indicating a structural role for Mlh1p during crossing over.  相似文献   

3.
MutL homologs belong to a family of proteins that share a conserved ATP binding site. We demonstrate that amino-terminal domains of the yeast MutL homologs Mlh1 and Pms1 required for DNA mismatch repair both possess independent, intrinsic ATPase activities. Amino acid substitutions in the conserved ATP binding sites concomitantly reduce ATP binding, ATP hydrolysis, and DNA mismatch repair in vivo. The ATPase activities are weak, consistent with the hypothesis that ATP binding is primarily responsible for modulating interactions with other MMR components. Three approaches, ATP hydrolysis assays, limited proteolysis protection, and equilibrium dialysis, provide evidence that the amino-terminal domain of Mlh1 binds ATP with >10-fold higher affinity than does the amino-terminal domain of Pms1. This is consistent with a model wherein ATP may first bind to Mlh1, resulting in events that permit ATP binding to Pms1 and later steps in DNA mismatch repair.  相似文献   

4.
Saccharomyces cerevisiae MutL homologues Mlh1p and Pms1p form a heterodimer, termed MutLalpha, that is required for DNA mismatch repair after mismatch binding by MutS homologues. Recent sequence and structural studies have placed the NH(2) termini of MutL homologues in a new family of ATPases. To address the functional significance of this putative ATPase activity in MutLalpha, we mutated conserved motifs for ATP hydrolysis and ATP binding in both Mlh1p and Pms1p and found that these changes disrupted DNA mismatch repair in vivo. Limited proteolysis with purified recombinant MutLalpha demonstrated that the NH(2) terminus of MutLalpha undergoes conformational changes in the presence of ATP and nonhydrolyzable ATP analogs. Furthermore, two-hybrid analysis suggested that these ATP-binding-induced conformational changes promote an interaction between the NH(2) termini of Mlh1p and Pms1p. Surprisingly, analysis of specific mutants suggested differential requirements for the ATPase motifs of Mlh1p and Pms1p during DNA mismatch repair. Taken together, these results suggest that MutLalpha undergoes ATP-dependent conformational changes that may serve to coordinate downstream events during yeast DNA mismatch repair.  相似文献   

5.
The MutL protein is an essential component of the Escherichia coli methyl-directed mismatch repair system but has no known enzymatic function. In the yeast Saccharomyces cerevisiae, the MutL equivalent, an Mlh1p and Pms1p heterodimer, interacts with Msh2p bound to mismatch-containing DNA. Little is known of the functional domains of Mlh1p and Pms1p. In this report, we define the Mlh1p and Pms1p domains required for Mlh1p-Pms1p interaction. The Mlh1p-interactive domain of Pms1p is comprised of 260 amino acids near the carboxyl terminus while the Pms1p-interactive domain of Mlh1p resides in the final 212 residues. The two domains are sufficient for Mlh1p-Pms1p interaction, as determined by the two-hybrid assay and by in vitro protein affinity chromatography. Deletions within the domains completely eliminated Mlh1p-Pms1p interaction. Using site-directed mutagenesis, we altered a number of highly conserved residues in the Mlh1p and Pms1p proteins, including some alterations that mimic germline mutations observed for human hereditary nonpolyposis colorectal cancer. Alterations either in the consensus MutL box located in the amino-terminal portion of each protein or in the carboxyl-terminal homology motif of Mlh1p eliminated DNA mismatch repair function but had no effect on Mlh1p-Pms1p interaction. In addition, certain MLH1 and PMS1 mutant alleles caused a dominant negative mutator effect when overexpressed. We discuss the implications of these findings for the structural organization of the Mlh1p and Pms1p proteins and the importance of Mlh1p-Pms1p interaction.  相似文献   

6.
DNA mismatch repair (MMR) models have proposed that MSH (MutS homolog) proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH (MutL homolog) proteins (primarily Mlh1-Pms1 in baker's yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20-30nm) unstructured arms that connect two terminal globular domains. These arms can vary between 100 and 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker's yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR.  相似文献   

7.
The DNA mismatch repair machinery is involved in the correction of a wide variety of mutational intermediates. In bacterial cells, homodimers of the MutS protein bind mismatches and MutL homodimers couple mismatch recognition to downstream processing steps [1]. Eukaryotes possess multiple MutS and MutL homologs that form discrete, heterodimeric complexes with specific mismatch recognition and repair properties. In yeast, there are six MutS (Msh1-6p) and four MutL (Mlh1-3p and Pms1p) family members [2] [3]. Heterodimers comprising Msh2p and Msh3p or Msh2p and Msh6p recognize mismatches in nuclear DNA [4] [5] and the subsequent processing steps most often involve a Mlh1p-Pms1P heterodimer [6] [7]. Mlh1p also forms heterodimeric complexes with Mlh2p and Mlh3p [8], and a minor role for Mlh3p in nuclear mismatch repair has been reported [9]. No mismatch repair function has yet been assigned to the fourth yeast MutL homolog, Mlh2p, although mlh2 mutants exhibit weak resistance to some DNA damaging agents [10]. We have used two frameshift reversion assays to examine the roles of the yeast Mlh2 and Mlh3 proteins in vivo. This analysis demonstrates, for the first time, that yeast Mlh2p plays a role in the repair of mutational intermediates, and extends earlier results implicating Mlh3p in mismatch repair.  相似文献   

8.
The mismatch repair (MMR) system is critical not only for the repair of DNA replication errors, but also for the regulation of mitotic and meiotic recombination processes. In a manner analogous to its ability to remove replication errors, the MMR system can remove mismatches in heteroduplex recombination intermediates to generate gene conversion events. Alternatively, such mismatches can trigger an MMR-dependent antirecombination activity that blocks the completion of recombination, thereby limiting interactions between diverged sequences. In Saccharomyces cerevisiae, the MMR proteins Msh3, Msh6, and Mlh1 interact with proliferating cell nuclear antigen (PCNA), and mutations that disrupt these interactions result in a mutator phenotype. In addition, some mutations in the PCNA-encoding POL30 gene increase mutation rates in an MMR-dependent manner. In the current study, pol30, mlh1, and msh6 mutants were used to examine whether MMR-PCNA interactions are similarly important during mitotic and meiotic recombination. We find that MMR-PCNA interactions are important for repairing mismatches formed during meiotic recombination, but play only a relatively minor role in regulating the fidelity of mitotic recombination.  相似文献   

9.
DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair   总被引:3,自引:2,他引:1  
The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N-terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N-terminal domains (NTDs) independently bind to double-stranded and single-stranded DNA, in the absence of dimerization and with different affinities. Full-length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full-length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C-terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.  相似文献   

10.
Meiotic recombination in Saccharomyces cerevisiae involves the formation of heteroduplexes, duplexes containing DNA strands derived from two different homologues. If the two strands of DNA differ by an insertion or deletion, the heteroduplex will contain an unpaired DNA loop. We found that unpaired loops as large as 5.6 kb can be accommodated within a heteroduplex. Repair of these loops involved the nucleotide excision repair (NER) enzymes Rad1p and Rad10p and the mismatch repair (MMR) proteins Msh2p and Msh3p, but not several other NER (Rad2p and Rad14p) and MMR (Msh4p, Msh6p, Mlh1p, Pms1p, Mlh2p, Mlh3p) proteins. Heteroduplexes were also formed with DNA strands derived from alleles containing two different large insertions, creating a large "bubble"; repair of this substrate was dependent on Rad1p. Although meiotic recombination events in yeast are initiated by double-strand DNA breaks (DSBs), we showed that DSBs occurring within heterozygous insertions do not stimulate interhomologue recombination.  相似文献   

11.
MutLalpha, a heterodimer composed of Mlh1 and Pms2, is the major MutL activity in mammalian DNA mismatch repair. Highly conserved motifs in the N termini of both subunits predict that the protein is an ATPase. To study the significance of these motifs to mismatch repair, we have expressed in insect cells wild type human MutLalpha and forms altered in conserved glutamic acid residues, predicted to catalyze ATP hydrolysis of Mlh1, Pms2, or both. Using an in vitro assay, we showed that MutLalpha proteins altered in either glutamic acid residue were each partially defective in mismatch repair, whereas the double mutant showed no detectable mismatch repair. Neither strand specificity nor directionality of repair was affected in the single mutant proteins. Limited proteolysis studies of MutLalpha demonstrated that both Mlh1 and Pms2 N-terminal domains undergo ATP-induced conformational changes, but the extent of the conformational change for Mlh1 was more apparent than for Pms2. Furthermore, Mlh1 was protected at lower ATP concentrations than Pms2, suggesting Mlh1 binds ATP with higher affinity. These findings imply that ATP hydrolysis is required for MutLalpha activity in mismatch repair and that this activity is associated with differential conformational changes in Mlh1 and Pms2.  相似文献   

12.
The DNA mismatch repair (MMR) machinery in mammals plays critical roles in both mutation avoidance and spermatogenesis. Meiotic analysis of knockout mice of two different MMR genes, Mlh1 and Mlh3, revealed both male and female infertility associated with a defect in meiotic crossing over. In contrast, another MMR gene knockout, Pms2 (Pms2ko/ko), which contained a deletion of a portion of the ATPase domain, produced animals that were male sterile but female fertile. However, the meiotic phenotype of Pms2ko/ko males was less clear-cut than for Mlh1- or Mlh3-deficient meiosis. More recently, we generated a different Pms2 mutant allele (Pms2cre), which results in deletion of the same portion of the ATPase domain. Surprisingly, Pms2cre/cre male mice were completely fertile, suggesting that the ATPase domain of Pms2 is not required for male fertility. To explore the difference in male fertility, we examined the Pms2 RNA and found that alternative splicing of the Pms2cre allele results in a predicted Pms2 containing the C-terminus, which contains the Mlh1-interaction domain, a possible candidate for stabilizing Mlh1 levels. To study further the basis of male fertility, we examined Mlh1 levels in testes and found that whereas Pms2 loss in Pms2ko/ko mice results in severely reduced levels of Mlh1 expression in the testes, Mlh1 levels in Pms2cre/cre testes were reduced to a lesser extent. Thus, we propose that a primary function of Pms2 during spermatogenesis is to stabilize Mlh1 levels prior to its critical crossing over function with Mlh3.  相似文献   

13.
14.
15.
The DNA mismatch repair (MMR) factor Mlh1–Pms1 contains long intrinsically disordered regions (IDRs) whose exact functions remain elusive. We performed cross-linking mass spectrometry to identify interactions within Mlh1–Pms1 and used this information to insert FRB and FKBP dimerization domains into their IDRs. Baker''s yeast strains bearing these constructs were grown with rapamycin to induce dimerization. A strain containing FRB and FKBP domains in the Mlh1 IDR displayed a complete defect in MMR when grown with rapamycin. but removing rapamycin restored MMR functions. Strains in which FRB was inserted into the IDR of one MLH subunit and FKBP into the other subunit were also MMR defective. The MLH complex containing FRB and FKBP domains in the Mlh1 IDR displayed a rapamycin-dependent defect in Mlh1–Pms1 endonuclease activity. In contrast, linking the Mlh1 and Pms1 IDRs through FRB-FKBP dimerization inappropriately activated Mlh1–Pms1 endonuclease activity. We conclude that dynamic and coordinated rearrangements of the MLH IDRs both positively and negatively regulate how the MLH complex acts in MMR. The application of the FRB-FKBP dimerization system to interrogate in vivo functions of a critical repair complex will be useful for probing IDRs in diverse enzymes and to probe transient loss of MMR on demand.  相似文献   

16.
Mlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1. We show that site S2 is also involved in the interaction between human MLH1 and EXO1 or BLM. Binding at this site involves a common motif on Mlh1 partners that we called the MIP-box for the Mlh1 interacting protein box. Direct and specific interactions between yeast Mlh1 and peptides derived from Exo1, Ntg2, and Sgs1 and between human MLH1 and peptide derived from EXO1 and BLM were measured with Kd values ranging from 8.1 to 17.4 μM. In Saccharomyces cerevisiae, a mutant of Mlh1 targeted at site S2 (Mlh1-E682A) behaves as a hypomorphic form of Exo1. The site S2 in Mlh1 mediates Exo1 recruitment in order to optimize MMR-dependent mutation avoidance. Given the conservation of Mlh1 and Exo1 interaction, it may readily impact Mlh1-dependent functions such as cancer prevention in higher eukaryotes.  相似文献   

17.
Null mutations in DNA mismatch repair (MMR) genes elevate both base substitutions and insertions/deletions in simple sequence repeats. Data suggest that during replication of simple repeat sequences, polymerase slippage can generate single-strand loops on either the primer or template strand that are subsequently processed by the MMR machinery to prevent insertions and deletions, respectively. In the budding yeast Saccharomyces cerevisiae and mammalian cells, MMR appears to be more efficient at repairing mispairs comprised of loops on the template strand compared to loops on the primer strand. We identified two novel yeast pms1 alleles, pms1-G882E and pms1-H888R, which confer a strong defect in the repair of "primer strand" loops, while maintaining efficient repair of "template strand" loops. Furthermore, these alleles appear to affect equally the repair of 1-nucleotide primer strand loops during both leading- and lagging-strand replication. Interestingly, both pms1 mutants are proficient in the repair of 1-nucleotide loop mispairs in heteroduplex DNA generated during meiotic recombination. Our results suggest that the inherent inefficiency of primer strand loop repair is not simply a mismatch recognition problem but also involves Pms1 and other proteins that are presumed to function downstream of mismatch recognition, such as Mlh1. In addition, the findings reinforce the current view that during mutation avoidance, MMR is associated with the replication apparatus.  相似文献   

18.
Goldfarb T  Alani E 《Genetics》2005,169(2):563-574
The Saccharomyces cerevisiae mismatch repair (MMR) protein MSH6 and the SGS1 helicase were recently shown to play similarly important roles in preventing recombination between divergent DNA sequences in a single-strand annealing (SSA) assay. In contrast, MMR factors such as Mlh1p, Pms1p, and Exo1p were shown to not be required or to play only minimal roles. In this study we tested mutations that disrupt Sgs1p helicase activity, Msh2p-Msh6p mismatch recognition, and ATP binding and hydrolysis activities for their effect on preventing recombination between divergent DNA sequences (heteroduplex rejection) during SSA. The results support a model in which the Msh proteins act with Sgs1p to unwind DNA recombination intermediates containing mismatches. Importantly, msh2 mutants that displayed separation-of-function phenotypes with respect to nonhomologous tail removal during SSA and heteroduplex rejection were characterized. These studies suggest that nonhomologous tail removal is a separate function of Msh proteins that is likely to involve a distinct DNA binding activity. The involvement of Sgs1p in heteroduplex rejection but not nonhomologous tail removal further illustrates that subsets of MMR proteins collaborate with factors in different DNA repair pathways to maintain genome stability.  相似文献   

19.
Mismatch repair (MMR) corrects replication errors that would otherwise lead to mutations and, potentially, various forms of cancer. Among several proteins required for eukaryotic MMR, MutLα is a heterodimer comprised of Mlh1 and Pms1. The two proteins dimerize along their C-terminal domains (CTDs), and the CTD of Pms1 houses a latent endonuclease that is required for MMR. The highly conserved N-terminal domains (NTDs) independently bind DNA and possess ATPase active sites. Here we use two protein footprinting techniques, limited proteolysis and oxidative surface mapping, coupled with mass spectrometry to identify amino acids involved along the DNA-binding surface of the Pms1-NTD. Limited proteolysis experiments elucidated several basic residues that were protected in the presence of DNA, while oxidative surface mapping revealed one residue that is uniquely protected from oxidation. Furthermore, additional amino acids distributed throughout the Pms1-NTD were protected from oxidation either in the presence of a non-hydrolyzable analog of ATP or DNA, indicating that each ligand stabilizes the protein in a similar conformation. Based on the recently published X-ray crystal structure of yeast Pms1-NTD, a model of the Pms1-NTD/DNA complex was generated using the mass spectrometric data as constraints. The proposed model defines the DNA-binding interface along a positively charged groove of the Pms1-NTD and complements prior mutagenesis studies of Escherichia coli and eukaryotic MutL.  相似文献   

20.
Mlh1p forms three heterodimers that are important for mismatch repair (Mlh1p/Pms1p), crossing over during meiosis (Mlh1p/Mlh3p), and channeling crossover events into a specific pathway (Mlh1p/Mlh2p). All four proteins contain highly conserved ATPase domains and Pms1p has endonuclease activity. Studies of the functional requirements for Mlh1p/Pms1p in Saccharomyces cerevisae revealed an asymmetric contribution of the ATPase domains to repairing mismatches. Here we investigate the functional requirements of the Mlh1p and Mlh3p ATPase domains in meiosis by constructing separation of function mutations in Mlh3p. These mutations are analogous to mutations of Mlh1p that have been shown to lead to loss of ATP binding and/or ATP hydrolysis. Our data suggest that ATP binding by Mlh3p is required for meiotic crossing over while ATP hydrolysis is dispensable. This has been seen previously for Mlh1p. However, when mutations that affect ATP hydrolysis by both Mlh3p and Mlh1p are combined within a single cell, meiotic crossover frequencies are reduced. These observations suggest that the function of the Mlh1p/Mlh3p heterodimer requires both subunits to bind ATP but only one to efficiently hydrolyze it. Additionally, two different amino acid substitutions to the same residue (G97) in Mlh3p affect the minor mismatch repair function of Mlh3p while only one of them compromises its ability to promote crossing over. These studies thus reveal different functional requirements among the heterodimers formed by Mlh1p.CROSSING over during meiosis not only generates variation but is also important for providing the necessary interactions between homologous chromosomes that ensure correct segregation at division I of meiosis. Recombination is initiated by the production of programmed double-strand breaks (DSBs), catalyzed by the covalently attached Spo11p (Bergerat et al. 1997; Keeney et al. 1997), aided by a number of proteins (reviewed in Keeney and Neale 2006). DSBs are made at a much higher frequency than crossovers, and designation of only a subset to yield crossovers is thought to occur during early stages of DSB repair (Borner et al. 2004). At least two distinct pathways contribute to the production of crossover events in Saccharomyces cerevisiae. The major pathway is dependent on Msh4p/Msh5p and the mismatch repair proteins Mlh1p and Mlh3p (Ross-MacDonald and Roeder 1994; Hollingsworth et al. 1995; Hunter and Borts 1997; Wang et al. 1999; Abdullah et al. 2004) and the second pathway is dependent on Mus81p/Mms4p endonuclease (de los Santos et al. 2001, 2003).Mitotic mismatch repair (MMR) is the process by which mutations that arise during DNA replication and recombination are recognized and removed (reviewed in Kolodner 1996; Harfe and Jinks-Robertson 2000). Msh2p forms a heterodimer with Msh6p (MutSα) to repair base–base mismatches and small insertions and/or deletions and with Msh3p (MutSβ) to repair large insertions and/or deletions (reviewed in Jiricny 2006). Mlh1p forms heterodimers with Pms1p, Mlh2p, and Mlh3p to coordinate the removal of these mismatches (Prolla et al. 1994; Wang et al. 1999). Mlh1p/Pms1p (MutLα) are involved in the repair of all types of mismatches in combination with MutSα and MutSβ, and in the absence of either protein a mutator phenotype is observed (Habraken et al. 1997, 1998). Mlh1p/Mlh2p (MutLβ) and Mlh1p/Mlh3p (MutLγ) are involved in the MutSβ pathway only, which repairs frameshift mutations caused by insertions or deletions. Consequently mlh3Δ mutants only exhibit a weak mutator phenotype, due to a lesser involvement in mismatch repair and a partial overlap in function with Pms1p (Flores-Rozas and Kolodner 1998; Harfe et al. 2000).Although the MutL homologs interact primarily through their C-terminal domains (Pang et al. 1997; Ban and Yang 1998), it is thought that the N-terminal domains must also interact for the complex to be fully functional (Ban and Yang 1998). Binding of ATP causes the proteins to undergo conformational changes, which are essential for the interaction between the N termini (Ban et al. 1999; Tran and Liskay 2000; Sacho et al. 2008). ATP hydrolysis and subsequent release of ADP is required to allow the protein complex to return to its initial state, completing the cycle so that the subunits are ready to bind ATP again if required. Using mutants of MLH1 and PMS1 that are presumed to be defective for ATP binding and/or ATP hydrolysis, it has been shown that both of these functions are essential for fully effective mismatch repair (Tran and Liskay 2000). However, the ATP binding and ATP hydrolysis mutants of PMS1 exhibited lower mitotic mutation rates than the corresponding MLH1 ATPase mutants, suggesting that there is functional asymmetry within the Mlh1p/Pms1p heterodimer (Tran and Liskay 2000; Hall et al. 2002). Another example of the asymmetry in the contributions of these subunits to function can be seen in assays that measure recombination between diverged sequences (homeologous recombination). The Mlh1p ATPase activity has been shown to be more important for the suppression of homeologous recombination than Pms1p ATPase activity (Welz-Voegele et al. 2002). This functional asymmetry is supported by in vitro biochemical analysis that demonstrated Pms1p has a lower ATP binding affinity than Mlh1p (Hall et al. 2002).As mentioned above, Mlh1p/Mlh3p function in the Msh4p/Msh5p pathway for meiotic recombination (Hunter and Borts 1997; Santucci-Darmanin et al. 2000). The Msh4p/Msh5p complex is thought to act in the stabilization of Holliday junction intermediates to allow their resolution in a crossover configuration (Snowden et al. 2004). The Mlh1p/Mlh3p complex has been suggested to act in the resolution of these structures, either directly or indirectly. Human Pms2 and its yeast homolog, Pms1p, have been shown to possess a latent endonuclease activity, conferred by a motif that is conserved among some of the MutL homologs, including Mlh3p (Kadyrov et al. 2006, 2007). Mutations in the DHQA(X)2E(X)4E motif in yeast MLH3 cause defects in both mismatch repair and meiotic recombination equivalent to mlh3Δ, suggesting that Mlh3p may also possess an endonuclease activity that is important for the generation of crossovers (Nishant et al. 2008).ATP binding by Mlh1p has been shown to be important for both of its meiotic functions (crossing over and repair of heteroduplex DNA) (Pang et al. 1997; Tran and Liskay 2000; Hoffmann et al. 2003). In contrast, the ATP hydrolysis mutant mlh1-E31A/mlh1-E31A appears to have no effect on meiotic recombination (Tran and Liskay 2000; Hoffmann et al. 2003). This may partly be explained by in vitro studies demonstrating that this mutant exhibits a low level of ATPase activity (Hall et al. 2002).The meiotic functions of MLH1 can be functionally separated as shown by mutating the same residue, G98, to different amino acids (Hoffmann et al. 2003). The residue G98 is situated in the ATPase motif in the GFRGEAL box (GYRGDAL in Mlh3p), which forms the lid of the ATP binding pocket. Mutations in this motif are predicted to affect ATP binding and/or heterodimerization with Pms1p (Ban and Yang 1998; Ban et al. 1999). Mutating the residue G98 in the ATP binding lid to alanine resulted in defective repair of heteroduplex DNA while crossing over was unaffected, but when the same residue was mutated to valine both mismatch repair and crossover functions were defective (Hoffmann et al. 2003). The mlh1-G98V mutant disrupts the interaction of Mlh1p with Pms1p, while mlh1-G98A does not (Pang et al. 1997). This may contribute to the difference observed in the effect on crossing over as Mlh1p is thought to interact with Pms1p and Mlh3p through the same residues (Wang et al. 1999; Kondo et al. 2001). Consequently if the interaction with Pms1p is affected then it is likely that the interaction with Mlh3p is also disrupted.We constructed mlh3 mutants corresponding to the ATP binding and ATP hydrolysis mutants of mlh1 to explore the role of Mlh3p in meiotic recombination. We also constructed mlh3-G97A and mlh3-G97V mutants, equivalent to the mlh1-G98A/V pair that has been shown to differentially affect the mitotic and meiotic functions of Mlh1p. All mutants were assayed for mitotic mismatch repair, meiotic heteroduplex repair, crossing over, and chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号