首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactose metabolism in Erwinia chrysanthemi.   总被引:18,自引:11,他引:7       下载免费PDF全文
Wild-type strains of the phytopathogenic enterobacterium Erwinia chrysanthemi are unable to use lactose as a carbon source for growth although they possess a beta-galactosidase activity. Lactose-fermenting derivatives from some wild types, however, can be obtained spontaneously at a frequency of about 5 X 10(-7). All Lac+ derivatives isolated had acquired a constitutive lactose transport system and most contained an inducible beta-galactosidase. The transport system, product of the lmrT gene, mediates uptake of lactose in the Lac+ derivatives and also appears to be able to mediate uptake of melibiose, raffinose, and galactose. Two genes encoding beta-galactosidase enzymes were detected in E. chrysanthemi strains. That mainly expressed in the wild-type strains was the lacZ product. The other, the lacB product, is very weakly expressed in these strains. These enzymes showed different affinities for the substrates o-nitrophenyl-beta-D-galactopyranoside and lactose and for the inhibitors isopropyl-beta-D-thiogalactopyranoside and galactose. The lmrT and lacZ genes of E. chrysanthemi, together with the lacI gene coding for the regulatory protein controlling lacZ expression, were cloned by using an RP4::miniMu vector. When these plasmids were transferred into Lac- Escherichia coli strains, their expression was similar to that in E. chrysanthemi. The cloning of the lmrT gene alone suggested that the lacZ or lacB gene is not linked to the lmrT gene on the E. chrysanthemi chromosome. One Lac+ E. chrysanthemi derivative showed a constitutive synthesis of the beta-galactosidase encoded by the lacB gene. This mutation was dominant toward the lacI lacZ cloned genes. Besides these mutations affecting the regulation of the lmrT or lacB gene, the isolation of structural mutants unable to grow on lactose was achieved by mutagenic treatment. These mutants showed no expression of the lactose transport system, the lmrT mutants, or the mainly expressed beta-galactosidase, lacZ mutants. The lacZ mutants retained a very low beta-galactosidase level, due to the lacB product, but this level was low enough to permit use of the lacZ mutants for the construction of gene fusions with the Escherichia coli lac genes.  相似文献   

2.
Structural properties of two similar beta-galactosidase fragments were investigated to determine how they influence the fragments' degradation rate in Escherichia coli. Both fragments resulting from a C-terminal nonsense mutation in lacZ, the CSH11 polypeptide and its 90 kDa degradative intermediate, exist predominantly as monomer subunits instead of in the tetrameric form characteristic of the native enzyme. However, both fragments appear to produce trace amounts of dimers and tetramers. The tetramer and higher molecular weight aggregates formed by the wild-type subunit confer greater protection for the enzyme's N-terminal auto-alpha polypeptide than does the monomer state of the beta-galactosidase fragments. The thermally induced aggregation of both beta-galactosidase fragments correlates with their sensitivity to alpha-chymotrypsin. The relatively low thermal stability of the 90 kDa degradative intermediate appears to be the cause of the significant increase in its proteolytic susceptibility at moderately high temperatures.  相似文献   

3.
Thirty-two missenese mutations were found among more than 200 independently induced mutations in the lacZ gene of Escherichia coli. Twenty of these missense mutations were induced by nitrosguandine, and 12 were induced by aminopurine. The lacZ structural protein was endogenously degradable in seven of the mutant strains; the mutations in these strains were found to lie at only three sites in the lacZ gene. Five of the seven independent mutations were at a single site, and some heterogeneity in the degradation of the lacZ protein was observed within these mutant strains.  相似文献   

4.
5.
Deg phenotype of Escherichia coli lon mutants.   总被引:60,自引:31,他引:29       下载免费PDF全文
Deg. one of the Escherichia coli systems for degrading abnormal polypeptides (e.g., nonsense fragments), is also involved in the degradation of some classes of missense proteins. Both missense proteins of beta-galactosidase and temperature-sensitive phage products appear to be degraded by the Deg system. Mutations in the Deg system are indistinguishable from mutations classically called lon or capR; all map near proC, all are mucoid, defective in protein degradation, sensitive to radiomimetic agents, and defective in P1 lysogenization. All are able to propagate temperature-sensitive phage better than lon+ parental strains. Mutations that suppress the radiation sensitivity of these strains (sul) also suppress the P1 lysogenization defect, but do not affect mucoidy or the degradation defect.  相似文献   

6.
Escherichia coli mutants defective in protease III were isolated by enzyme assays of heavily mutagenized colones. One mutant produced thermolabile enzyme, and it is presumed to have a mutation in the structural gene of protease III. Two other mutants mapping at the same site had less than 5% of the wild-type protease III level. The genetic locus of these mutations, designated ptr, was located at approximately 60 min on the E. coli linkage map based on its high frequency (70%) of contransduction by P1 with argA. Strains with less than 5% of the wild-type protease III activity grew normally and degraded nonsense fragments of beta-galactosidase at wild-type rates.  相似文献   

7.
Positions of early nonsense and deletion mutations in lacZ.   总被引:4,自引:1,他引:3       下载免费PDF全文
The positions of three Escherichia coli lacZ operator-proximal nonsense mutations and one deletion mutation have been determined. The nonsense mutations were suppressed with supF, resulting in the production of active beta-galactosidase by each strain. Amino acid sequencing identified the positions of the tyrosine residues inserted by supF, and thereby established that nonsense mutations lacZ2, lacZ2246, and lacZU131 are at sites corresponding to amino acids 23, 36, and 41 of beta-galactosidase, respectively. The deletion mutant, lacZM112, produced a dimeric beta-galactosidase protein missing amino acid residues 23 through 31 of the native enzyme.  相似文献   

8.
The SOS-function-inducing activity of chemical mutagens in Escherichia coli   总被引:4,自引:0,他引:4  
The SOS-function-inducing activities of 42 chemical mutagens were investigated in Escherichia coli K12. The induction of the SOS function was assayed by monitoring the beta-galactosidase activity in the sulA::lacZ fusion strain PQ37 . To correct for the inhibitory effects of test chemicals on mRNA or protein synthesis, the level of the constitutive alkaline phosphatase was assayed in parallel. Most of the mutagens reported to be mutagenic to the Ames' Salmonella tester strains showed the SOS-function-inducing activity. The inducible SOS repair may be responsible for not only base-change mutations but also frameshift mutations. However, 9-aminoacridine, ethidium bromide and 4-nitro-o-phenylenediamine did not induce the SOS function, suggesting that the mutagenesis induced by these mutagens may occur independently of SOS repair. Present results support the SOS mutagenesis model that error-prone SOS repair plays an important role in mutagenesis induced by most chemical mutagens.  相似文献   

9.
The Lactobacillus bulgaricus beta-galactosidase gene was cloned on a ca. 7-kilobase-pair HindIII fragment in the vector pKK223-3 and expressed in Escherichia coli by using its own promoter. The nucleotide sequence of the gene and approximately 400 bases of 3'- and 5'-flanking sequences was determined. The amino acid sequence of the beta-galactosidase, deduced from the nucleotide sequence of the gene, yielded a monomeric molecular mass of ca. 114 kilodaltons, slightly smaller than the E. coli lacZ and Klebsiella pneumoniae lacZ enzymes but larger than the E. coli evolved (ebgA) beta-galactosidase. The cloned beta-galactosidase was found to be indistinguishable from the native enzyme by several criteria. From amino acid sequence alignments, the L. bulgaricus beta-galactosidase has a 30 to 34% similarity to the E. coli lacZ, E. coli ebgA, and K. pneumoniae lacZ enzymes. There are seven regions of high similarity common to all four of these beta-galactosidases. Also, the putative active-site residues (Glu-461 and Tyr-503 in the E. coli lacZ beta-galactosidase) are conserved in the L. bulgaricus enzyme as well as in the other two beta-galactosidases mentioned above. The conservation of active-site amino acids and the large regions of similarity suggest that all four of these beta-galactosidases evolved from a common ancestral gene. However, these enzymes are quite different from the thermophilic beta-galactosidase encoded by the Bacillus stearothermophilus bgaB gene.  相似文献   

10.
The spoIID gene, which is involved in Bacillus subtilis sporulation, was fused to the beta-galactosidase gene, lacZ, of Escherichia coli so that the expression of beta-galactosidase would be under the control of the spoIID locus. When the fused product was inserted into the B. subtilis chromosome, production of beta-galactosidase indicated that the spoIID gene was expressed 1.5 h after the start of sporulation. When the spoIID::lacZ fusion was inserted into the chromosome of sporulation mutants, all strains carrying spo0 lesions and those with mutations in spoIIA, spoIIE and spoIIG loci failed to make beta-galactosidase. The proposed provisional order of expression of operons governing stage II is spoIIA----[spoIIG, spoIIE]----[spoIID, spoIIB, spoIIF].  相似文献   

11.
In order to study the regulation of a large block of contiguous genes at the rfa locus of Escherichia coli K-12 which are involved in synthesis and modification of the lipopolysaccharide core, the transposon TnlacZ was used to generate in-frame lacZ fusions to the coding regions of five genes (rfaQ, -G, -P, -B and -J) within this block. The beta-galactosidase activity of strains in which these fusions had been crossed into the chromosomal rfa locus was significantly decreased when the rfaH11 (sfrB11) allele was introduced and was restored to wild-type levels when these strains were lysogenized with a lambda phage carrying wild-type rfaH. This indicates that the positive regulatory function encoded by rfaH is required throughout this block of genes. In addition, expression of the lacZ fusion to rfaJ was reduced by growth at 42 degrees C, and this correlated with a temperature-induced change in the electrophoretic profile of the core lipopolysaccharide.  相似文献   

12.
We constructed in-frame translational fusions of the Escherichia coli lacZ gene with four genes (sspA, sspB, sspD, and sspE) which code for small, acid-soluble spore proteins of Bacillus subtilis, and integrated these fusions into the chromosomes of various B. subtilis strains. With single copies of the fusions in wild-type B. subtilis, beta-galactosidase was synthesized only during sporulation, with the amounts accumulated being sspB much greater than sspE greater than or equal to sspA greater than or equal to sspD. Greater than 97% of the beta-galactosidase was found in the developing forespore, and the great majority was incorporated into mature spores. Less than 2% of the maximum amount of beta-galactosidase was made when these fusions were introduced into B. subtilis strains blocked in stages 0 and II of sporulation, as well as in some stage III mutants. Other stage III mutants, as well as stage IV and V mutants, had no effect on beta-galactosidase synthesis. Increasing the copy number of the sspA-, sspD-, or sspE-lacZ fusions (up to 17-fold for sspE-lacZ) in wild-type B. subtilis resulted in a parallel increase in the amount of beta-galactosidase accumulated (again only in sporulation and with greater than 95% in the developing forespore), with no significant effect on wild-type small, acid-soluble spore protein production. Similarly, the absence of one or more wild-type ssp genes or the presence of multiple copies of wild-type ssp genes had no effect on the expression of the lacZ fusions tested. These data indicate that these ssp-lacZ fusions escape the autoregulation seen for the intact sspA and sspB genes. Strikingly, the kinetics of beta-galactosidase synthesis were identical for all four ssp-lacZ fusions and paralleled those of glucose dehydrogenase synthesis. Similarly, all asporogenous mutants tested had identical effects on both glucose dehydrogenase and ssp-lacZ fusion expression.  相似文献   

13.
14.
15.
Mutants of Escherichia coli containing genetic fusions of lacZ to the pck (phosphoenolpyruvate carboxykinase) locus were isolated by using Mu d(lacZ Ampr) bacteriophage. Synthesis of beta-galactosidase in these strains is regulated by cyclic AMP and glucose (catabolite repression). Synthesis of beta-galactosidase by pck-lacZ fusions was induced in log-phase cells growing on gluconeogenic media, was repressed by glucose, and was also induced up to 100-fold at the onset of stationary phase in LB medium. This stationary-phase induction required cyclic AMP and some other unknown regulatory signal.  相似文献   

16.
In the divE mutant, which has a temperature-sensitive mutation in the tRNA1(Ser) gene, the synthesis of beta-galactosidase is dramatically decreased at the non-permissive temperature. In Escherichia coli, the UCA codon is only recognized by tRNA1(Ser). Several genes containing UCA codons are normally expressed at 42 degrees C in the divE mutant. Therefore, it is unlikely that the defect is due to the general translational deficiency of the mutant tRNA1(Ser). In this study, we constructed mutant lacZ genes, in which one or several UCA codons at eight positions were replaced with other serine codons such as UCU or UCC, and we examined the expression of these mutant genes in the divE mutant. We found that a single UCA codon at position 6 or 462 was sufficient to cause the same level of reduced beta-galactosidase synthesis as that of the wild-type lacZ gene, and that the defect in beta-galactosidase synthesis was accompanied by a low level of lacZ mRNA. It was also found that introduction of an rne-1 pnp-7 double mutation restored the expression of mutant lacZ genes with only UCA codons at position 6 or 462. A polarity suppressor mutation in the rho gene had no effect on the defect in lacZ gene expression in the divE mutant. We propose a model to explain these results.  相似文献   

17.
18.
The mechanism by which large premature termination fragments of beta-galactosidase were degraded in Escherichia coli was studied using quantitative immunoprecipitation techniques. Two different lacZ nonsense mutants which produced apparent primary translation products of 96,000 and 109,000 daltons, respectively, were both shown to produce a second beta-galactosidase-related polypeptide of Mr = 90,000. These 90,000-dalton polypeptides appeared to be the same in both strains since they co-migrated when analyzed as a mixture on sodium dodecyl sulfate-polyacrylamide gels and were indistinguishable when analyzed by one-dimensional peptide mapping. Pulse-chase experiments established a stoichiometric precursor-product relationship between the primary mutant gene products (called the A polypeptides) and the common 90,000-dalton polypeptide (called the B polypeptide). No intermediates were detected between the A and B polypeptides. We propose that there is a common pathway for the degradation of these different large fragments of beta-galactosidase. According to this model, the first step would be a specific endoproteolytic cleavage of the primary translation product which produces the 90,000-dalton polypeptide as a common intermediate. The kinetic analysis demonstrated a first order decay of both A and B polypeptides but, surprisingly, the first order rate constant for the decay of A appeared dependent upon the induction regimen. This result suggested that degradation may possibly be autoregulated either by the intracellular level of A or by other intermediates in the degradation pathway.  相似文献   

19.
20.
S Mito  Q M Zhang    S Yonei 《Journal of bacteriology》1993,175(9):2645-2651
Gene fusions in Escherichia coli that showed increased beta-galactosidase expression in response to treatment with a superoxide radical (O2-) generator, methyl viologen (MV), were obtained. These fusions were constructed by using a Mud(Ap lac) phage to insert the lactose structural genes randomly into the E. coli chromosome. Ampicillin-resistant colonies were screened for increased expression of beta-galactosidase on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates containing MV at 1.25 micrograms/ml. Other O2- generators, menadione and plumbagin, also induced beta-galactosidase activity in these fusion strains. The induction by these drugs occurred only under aerobic conditions. Hyperoxygenation also elicited an induction of the fusions. On the other hand, no significant induction was observed with hydrogen peroxide and cumene hydroperoxide. The induction of these fusions by MV was not dependent on the peroxide stress control mediated by the oxyR gene or on the recA-dependent SOS system. These fusions were named soi (superoxide inducible)::lacZ. The induction of beta-galactosidase was significantly reduced by introducing a soxS::Tn10 locus into the fusion strains, indicating that the soi genes are members of the soxRS regulon. Five of the fusions were located in 6 to 26 min of the E. coli genetic map, while three fusions were located in 26 to 36 min, indicating that these fusions are not related to genes already known to be inducible by O2- under the control of soxRS. At least five mutants containing the soi::lacZ fusion were more sensitive to MV and menadione than the wild-type strain, suggesting that the products of these soi genes play an important role in protection against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号