共查询到20条相似文献,搜索用时 0 毫秒
1.
Pyruvate, orthophosphate dikinase (EC 2.7.9.1) carries out its catalytic function in three successive partial reactions, the final step being the reaction of pyruvate with a stable phosphoenzyme intermediate to give phosphoenolpyruvate and free enzyme (Evans, H.J., and Wood, H. G. (1968), Proc. Natl. Acad. Sci. U.S.A. 61, 1448). Interactions of oxalate, a structural analog of enolpyruvate, with the phosphorylated form of the enzyme have been investigated by kinetic inhibition measurements and by magnetic resonance studies of manganous ion complexes with the enzyme. Oxalate inhibits the reaction catalyzed by pyruvate, phosphate dikinase, and the inhibition is linearly competitive with respect to pyruvate. The inhibitor constant for oxalate of 25 mu-M is fourfold lower than the Michaelis constant for pyruvate. The enhancement in the longitudinal relaxation rate of water protons (PRR) which occurs upon binding of Mn(II) to the enzyme has been used to monitor binding of oxalate to Mn(II)-enzyme complexes. PRR titrations indicate that the dissociation constant of oxalate from the Mn(II) complex of the free form of the enzyme is an order of magnitude weaker than the kinetically determined Ki. On the other hand, titrations of solutions which contain the phosphorylated form of the enzyme reveal a much stronger binding of oxalate. Moreover, the strength of oxalate binding to the phosphorylated enzyme is a function both of the species and of the concentration of monovalent cations in the solution. In the presence of Tl+, which has the most favorable activator constant for the final partial reaction, the dissociation constant for oxalate from its complex with the phosphorylated enzyme is less than 1 mu-M. Electron paramagnetic resonance (EPR) spectra for the enzyme-bound Mn(II) are sensitive to structural perturbations which occur upon binding of substrates or of oxalate to the enzyme. The EPR spectrum for the Mn(II)-phosphoenzyme-oxalate species is distinguished from spectra for other complexes of the enzyme by unusually narrow line widths and consequent resolution of fine structure from electronic quadrupole splitting. The narrow lines in the EPR spectrum are indicative of a rigid, pseudocrystalline environment for the bound Mn(II). The magnitude and frequency dependence of the PRR for the Mn(II)-phosphoenzyme-oxalate complex indicate that if any water molecules are bound to the Mn(II), their exchange with the bulk water is severely retarded. The kinetic and magnetic resonance studies support the hypothesis that oxalate mimics the reactive intermediate, enolpyruvate, in a complex with the phosphorylated enzyme which may resemble the structure of the transition state of the final partial reaction. 相似文献
2.
Osnat Herzberg Celia C H Chen Sijiu Liu Aleksandra Tempczyk Andrew Howard Min Wei Dongmei Ye Debra Dunaway-Mariano 《Biochemistry》2002,41(3):780-787
Crystals of pyruvate phosphate dikinase in complex with a substrate analogue inhibitor, phosphonopyruvate (K(i) = 3 microM), have been obtained in the presence of Mg(2+). The structure has been determined and refined at 2.2 A resolution, revealing that the Mg(2+)-bound phosphonopyruvate binds in the alpha/beta-barrel's central channel, at the C-termini of the beta-strands. The mode of binding resembles closely the previously proposed PEP substrate binding mode, inferred by the homology of the structure (but not sequence homology) to pyruvate kinase. Kinetic analysis of site-directed mutants, probing residues involved in inhibitor binding, showed that all mutations resulted in inactivation, confirming the key role that these residues play in catalysis. Comparison between the structure of the PPDK-phosphonopyruvate complex and the structures of two complexes of pyruvate kinase, one with Mg(2+)-bound phospholactate and the other with Mg(2+)-oxalate and ATP, revealed that the two enzymes share some key features that facilitate common modes of substrate binding. There are also important structural differences; most notably, the machinery for acid/base catalysis is different. 相似文献
3.
N F Phillips 《Biochemistry》1988,27(9):3314-3320
Pyruvate,phosphate dikinase from Propionibacterium shermanii is strongly inhibited by fluorescein 5'-isothiocyanate (FITC). The time course of inactivation is biphasic, but the dependence of the pseudo-first-order rate constants on the inhibitor concentration indicates the formation of a reversible complex with the enzyme prior to covalent modification. The substrate/product nucleotide pairs MgATP and MgAMP protected against inactivation, while in the absence of Mg2+, both the nucleotides were ineffective. Previously, an essential lysine at the ATP/AMP subsite of the enzyme from Bacteroides symbiosus had been implicated by use of the 2',3'-dialdehyde of AMP (oAMP) [Evans, C. T., Goss, N. H., & Wood, H. G. (1980) Biochemistry 19, 5809]. The inhibition by FITC was competitive with MgAMP, and a multiple inhibition analysis plot indicated that binding of oAMP and FITC was mutually exclusive. These observations suggest that FITC and oAMP bind at the nucleotide binding site and probably to the same reactive lysine that is modified by oAMP. With peptide mapping by high-performance liquid chromatography, FITC was found to be a suitable probe for isolating the peptide from the ATP/AMP subsite. 相似文献
4.
Isolation of pyrophosphohistidine from pyrophosphorylated pyruvate, phosphate dikinase 总被引:1,自引:0,他引:1
The pyrophosphoryl form of pyruvate, phosphate dikinase was prepared by incubation with adenosine 5'-[gamma-32P]triphosphate and isolated by gel chromatography. Previously a phosphorylated moiety had been isolated from the enzyme and was shown to be bound through a phosphoramidate linkage to the 3' nitrogen of a histidine residue [Spronk, A. M., Yoshida, H., & Wood, H. G. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 4415]. This histidine residue has been considered to be the pyrophosphoryl and phosphoryl carrier between the three subsites of this enzyme. Previous attempts to isolate the putative [32P]pyrophosphohistidine have been unsuccessful due to the lability of the [32P]pyrophosphoryl-enzyme. By stabilization of the [32P]pyrophosphoryl-enzyme with diazomethane, it has been possible to isolate a [32P]-pyrophosphohistidine from the hydrolysates. To our knowledge this work constitutes the first direct demonstration of a pyrophosphorylated histidyl residue in an enzyme. 相似文献
5.
Ye D Wei M McGuire M Huang K Kapadia G Herzberg O Martin BM Dunaway-Mariano D 《The Journal of biological chemistry》2001,276(40):37630-37639
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site. 相似文献
6.
7.
《Parasitology international》2014,63(1):80-86
In kinetoplastids such as Trypanosoma cruzi, glycolysis is compartmentalized in peroxisome-like organelles called glycosomes. Pyruvate phosphate dikinase (PPDK), an auxiliary enzyme of glycolysis, is also located in the glycosomes. We have detected that this protein is post-translationally modified by phosphorylation and proteolytic cleavage. On western blots of T. cruzi epimastigotes, two PPDK forms were found with apparent MW of 100 kDa and 75 kDa, the latter one being phosphorylated at Thr481, a residue present in a highly conserved region. In subcellular localization assays the 75 kDa PPDK was located peripherally at the glycosomal membrane. Both PPDK forms were found in all life-cycle stages of the parasite. When probing for both PPDK forms during a growth of epimastigotes in batch culture, an increase in the level of the 75 kDa form and a decrease of the 100 kDa one were observed by western blot analysis, signifying that glucose starvation and the concomitant switch of the metabolism to amino acid catabolism may play a role in the post-translational processing of the PPDK. Either one or both of the processes, phosphorylation and proteolytic cleavage of PPDK, result in inactivation of the enzyme. It remains to be established whether the phenomenon exerts a regulatory function. 相似文献
8.
Properties and mechanism of action of pyruvate, phosphate dikinase from leaves 总被引:8,自引:1,他引:8
下载免费PDF全文

1. Sugar-cane leaf pyruvate,P(i) dikinase was prepared free of enzymes that would interfere with studies on the stoicheiometry and mechanism of the reaction it catalyses. The reaction was unequivocally shown to involve the conversion of equimolar amounts of pyruvate, ATP and P(i) into phosphoenolpyruvate, AMP and PP(i). 2. The purified enzyme was stable at pH8.3 only if stored at about 20 degrees in the presence of Mg(2+) and a thiol-reducing reagent, care being taken to prevent the oxidation of the thiol. 3. The apparent Michaelis constants for phosphoenolpyruvate and PP(i) were 0.11mm and 0.04mm respectively and that for AMP was less than 4mum. 4. At pH8.3 the initial velocity of the reaction was about 6 times as fast in the direction towards phosphoenolpyruvate synthesis as in the reverse direction. 5. With the exception of ATP, all the products of the reaction in both directions were inhibitory. 6. The phosphate groups of PP(i) were derived from P(i) and from the terminal phosphate of ATP. 7. Isotope-exchange studies indicated that the reaction proceeds in the following steps:Enzyme+ATP+P(i) right harpoon over left harpoon Enzyme-P+AMP+PP(i)Enzyme-P+pyruvate right harpoon over left harpoon Enzyme+phosphoenolpyruvate 相似文献
9.
Purification, molecular, and catalytic properties of pyruvate phosphate dikinase from the maize leaf 总被引:23,自引:0,他引:23
T Sugiyama 《Biochemistry》1973,12(15):2862-2868
10.
Assaying for pyruvate,orthophosphate dikinase activity: Necessary precautions with phosphoenolpyruvate carboxylase as coupling enzyme 总被引:1,自引:0,他引:1
Phosphoenolpyruvate carboxylase (EC 4.1.1.31), used as a coupling enzyme in the assay of the pyruvate, orthophosphate dikinase (EC 2.7.9.1) forward reaction, is a serious limiting factor for the overall rate when added at a level of 0.2–0.3 unit/ml of assay medium. Nonlimiting assay conditions are obtained by either increasing the level of the coupling enzyme to 3 units/ml or adding 6mM glucose-6-phosphate as an activator/stabilizer of phosphoenolpyruvate carboxylase.Abbreviations G-6-P
glucose-6-phosphate
- LDH
lactate dehydrogenase
- MDH
malate dehydrogenase
- PEP
phosphoenolpyruvate
- PEPCase
phosphoenolpyruvate carboxylase
- PVP
polyvinylpyrrolidone
- PPDK
pyruvate, orthophosphate dikinase
- U
unit of enzyme activity (mol/min) 相似文献
11.
Action spectrum for light activation of pyruvate, phosphate dikinase in maize leaves 总被引:1,自引:0,他引:1
Light activation of pyruvate, phosphate dikinase was investigatedusing leaf discs of dark pretreated maize (Zea mays L. var.Golden Gross Bantam) leaves. The action spectrum resembled theabsorption spectrum of the leaf, having two peaks at 436 and671 nm and a minimum at 503 nm. This similarity suggests involvementof chlorophyll in the light activation as a photoreceptor. Lightactivation was markedly inhibited by 3-(p-chlorophenyl)-1,1-dimethyl urea. We thus inferred that activation of the enzymewas closely correlated to the photosynthetic electron transportsystem. (Received July 3, 1974; ) 相似文献
12.
Pyruvate phosphate dikinase (PPDK) catalyzes the reversible reaction: ATP + P(i) + pyruvate <--> AMP + PP(i) + PEP using Mg2+ and NH4+ ions as cofactors. The reaction takes place in three steps, each mediated by a carrier histidine residue located on the surface of the central domain of this three-domain enzyme: (1) E-His + ATP <--> E-His-PP.AMP, (2) E-His-PP.AMP + P(i) <--> E-His-P + AMP + PP(i), (3) E-His-P + pyruvate <--> E-His + PEP. The first two partial reactions are catalyzed at an active site located on the N-terminal domain, and the third partial reaction is catalyzed at an active site located on the C-terminal domain. For catalytic turnover, the central domain travels from one terminal domain to the other. The goal of this work is to determine whether the two connecting linkers direct the movement of the central domain between active sites during catalytic turnover. The X-ray crystal structure of the enzyme suggests interaction between the two linkers that may result in their coordinated movement. Mutations were made at the linkers for the purpose of disrupting the linker-linker interaction and, hence, synchronized linker movement. Five linker mutants were analyzed. Two of these contain 4-Ala insertions within the solvated region of the linker, and three have 3-residue deletions in this region. The efficiencies of the mutants for catalysis of the complete reaction as well as the E-His + ATP <--> E-His-PP.AMP partial reaction at the N-terminal domain and the E-His + PEP <--> E-His-P + pyruvate reaction at the C-terminal domain were measured to assess linker function. Three linker mutants are highly active catalysts at both active sites, and the fourth is highly active at one site but not the other. These results are interpreted as evidence against coordinated linker movement, and suggest instead that the linkers move independently as the central domain travels between active sites. It is hypothesized that while the linkers play a passive role in central domain-terminal domain docking, their structural design minimizes the conformational space searched in the diffusion process. 相似文献
13.
14.
15.
Sequence of the phosphothreonyl regulatory site peptide from inactive maize leaf pyruvate, orthophosphate dikinase 总被引:2,自引:0,他引:2
C A Roeske R M Kutny R J Budde R Chollet 《The Journal of biological chemistry》1988,263(14):6683-6687
The regulatory site peptide sequence of phosphorylated inactive pyruvate, orthophosphate dikinase from maize leaf tissue was determined by automated Edman degradation analysis of 32P-labeled peptides purified by reversed-phase high performance liquid chromatography. The overlapping phosphopeptides were products of a digestion of the [beta-32P]ADP-inactivated dikinase with either trypsin or Pronase E. The sequence is Thr-Glu-Arg-Gly-Gly-Met-Thr(P)-Ser-His-Ala-Ala-Val-Val-Ala-Arg. The phosphothreonine residue, which appeared as either an anomalous proline or an unidentifiable phenylthiohydantoin derivative during sequencing, was verified by two-dimensional phosphoamino acid analysis of the phosphopeptides and by resequencing the tryptic peptide after dephosphorylation with exogenous alkaline phosphatase. This sequence, starting at position 4, is completely homologous to the previously published sequence of the tryptic dodecapeptide harboring the catalytically essential (phospho)histidyl residue in the active-site domain of the dikinase from the nonphotosynthetic bacterium, Bacteroides symbiosus (Goss, N.H., Evans, C.T., and Wood, H.G. (1980) Biochemistry 19, 5805-5809). These comparative results indicate that the regulatory phosphothreonine causing complete inactivation of maize leaf dikinase is separated from the critical active-site (phospho)histidine by just one intervening residue in the primary sequence. 相似文献
16.
Motti CA Bourne DG Burnell JN Doyle JR Haines DS Liptrot CH Llewellyn LE Ludke S Muirhead A Tapiolas DM 《Applied and environmental microbiology》2007,73(6):1921-1927
A total of 2,245 extracts, derived from 449 marine fungi cultivated in five types of media, were screened against the C(4) plant enzyme pyruvate phosphate dikinase (PPDK), a potential herbicide target. Extracts from several fungal isolates selectively inhibited PPDK. Bioassay-guided fractionation of one isolate led to the isolation of the known compound unguinol, which inhibited PPDK with a 50% inhibitory concentration of 42.3 +/- 0.8 muM. Further kinetic analysis revealed that unguinol was a mixed noncompetitive inhibitor of PPDK with respect to the substrates pyruvate and ATP and an uncompetitive inhibitor of PPDK with respect to phosphate. Unguinol had deleterious effects on a model C(4) plant but no effect on a model C(3) plant. These results indicate that unguinol inhibits PPDK via a novel mechanism of action which also translates to an herbicidal effect on whole plants. 相似文献
17.
Chabrière E Charon MH Volbeda A Pieulle L Hatchikian EC Fontecilla-Camps JC 《Nature structural biology》1999,6(2):182-190
Oxidative decarboxylation of pyruvate to form acetyl-coenzyme A, a crucial step in many metabolic pathways, is carried out in most aerobic organisms by the multienzyme complex pyruvate dehydrogenase. In most anaerobes, the same reaction is usually catalyzed by a single enzyme, pyruvate:ferredoxin oxidoreductase (PFOR). Thus, PFOR is a potential target for drug design against certain anaerobic pathogens. Here, we report the crystal structures of the homodimeric Desulfovibrio africanus PFOR (data to 2.3 A resolution), and of its complex with pyruvate (3.0 A resolution). The structures show that each subunit consists of seven domains, one of which affords protection against oxygen. The thiamin pyrophosphate (TPP) cofactor and the three [4Fe-4S] clusters are suitably arranged to provide a plausible electron transfer pathway. In addition, the PFOR-pyruvate complex structure shows the noncovalent fixation of the substrate before the catalytic reaction. 相似文献
18.
19.
20.
Pyruvate phosphate dikinase (PPDK) is a multidomain protein that catalyzes the interconversion of ATP, pyruvate, and phosphate with AMP, phosphoenolpyruvate (PEP), and pyrophosphate using its central domain to transport phosphoryl groups between two distant active sites. In this study, the mechanism by which the central domain moves between the two catalytic sites located on the N-terminal and C-terminal domains was probed by expressing this domain as an independent protein and measuring its structure, stability, and ability to catalyze the ATP/phosphate partial reaction in conjunction with the engineered N-terminal domain protein (residues 1-340 of the native PPDK). The encoding gene was engineered to express the central domain as residues 381-512 of the native PPDK. The central domain was purified and shown to be soluble, monomeric (13,438 Da), and stable (deltaG = 4.3 kcal/mol for unfolding in buffer at pH 7.0, 25 degrees C) and to possess native structure, as determined by multidimensional heteronuclear NMR analysis. The main chain structure of the central domain in solution aligns closely with that of the X-ray structure of native PPDK (the root-mean-square deviation is 2.2 A). Single turnover reactions of [14C]ATP and phosphate, carried out in the presence of equal concentrations of central domain and the N-terminal domain protein, did not produce the expected products, in contrast to efficient product formation observed for the N-terminal central domain construct (residues 1-553 of the native PPDK). These results are interpreted as evidence that the central domain, although solvent-compatible, must be tethered by the flexible linkers to the N-terminal domain for the productive domain-domain docking required for efficient catalysis. 相似文献