首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Up to now, out of approximately 20 antisense oligodeoxyribonucleotides (as ODN) selected and tested against a given target gene, only one species shows substantial suppression of target gene expression. In part, this seems to be related to the general assumption that the structures of local target sequences or antisense nucleic acids are unfavorable for efficient annealing. Experimental approaches to find effective as ODN are extremely expensive when including a large number of antisense species and when considering their moderate success. Here, we make use of a systematic alignment of computer-predicted secondary structures of local sequence stretches of the target RNA and of semi-empirical rules to identify favorable local target sequences and, hence, to design more effective as ODN. The intercellular adhesion molecule 1 (ICAM-1) gene was chosen as a target because it had been shown earlier to be sensitive to antisense-mediated gene suppression. By applying the protocol described here, 10 ICAM-1-directed as ODN species were found that showed substantially improved inhibition of target gene expression in the endothelial cell line ECV304 when compared with the most effective published as ODN. Further, 17 out of 34 antisense species (50%) selected on the theoretical basis described here showed significant (>50%) inhibition of ICAM-1 expression in mammalian cells.  相似文献   

2.
The biological activity of siRNA seems to be influenced by local characteristics of the target RNA, including local RNA folding. Here, we investigated quantitatively the relationship between local target accessibility and the extent of inhibition of the target gene by siRNA. Target accessibility was assessed by a computational approach that had been shown earlier to be consistent with experimental probing of target RNA. Two sites of ICAM-1 mRNA predicted to serve as accessible motifs and one site predicted to adopt an inaccessible structure were chosen to test siRNA constructs for suppression of ICAM-1 gene expression in ECV304 cells. The local target-dependent effectiveness of siRNA was compared with antisense oligonucleotides (asON). The concentration dependency of siRNA-mediated suppression indicates a >1000-fold difference between active siRNAs (IC50 ≈ 0.2–0.5 nM) versus an inactive siRNA (IC50 ≥ 1 µM) which is consistent with the activity pattern of asON when relating target suppression to predicted local target accessibility. The extremely high activity of the siRNA si2B (IC50 = 0.24 nM) indicates that not all siRNAs shown to be active at the usual concentrations of >10–100 nM belong to this highly active species. The observations described here suggest an option to assess target accessibility for siRNA and, thus, support the design of active siRNA constructs. This approach can be automated, work at high throughput and is open to include additional parameters relevant to the biological activity of siRNA.  相似文献   

3.
A number of theoretical and experimental approaches to design biologically active antisense oligonucleotides (AS-ON) have proven their usefulness. This includes systematic computational strategies that are based on the understanding of antisense mechanisms. Here, we investigate in detail the relationship between computational parameters of the local target search for the theoretical design of AS-ON and the hit rate, that is, the biologic efficacy of AS-ON in cell culture. The computational design of AS-ON studied in this work is based on an established algorithm to predict structurally favorable local target sites along a given target RNA against which AS-ON are directed. Briefly, a sequence segment of a certain length (window) is used to predict a group of lowest-energy RNA secondary structures. Subsequently, this window is shifted along the target sequence by a certain step width. To date, those technical parameters of the systematic structural target analysis have been chosen arbitrarily. Here, we investigate their role for the successful design of AS-ON and suggest an optimized computer-based protocol for the selection of favorable local target sequences and, hence, an improved design of active AS-ON. Further, this study provides systematic insights into the structure- function relationship of AS-ON.  相似文献   

4.
The fission yeast Schizosaccharomyces pombe has recently been established as an experimental model for the study of antisense RNA-mediated gene suppression. To validate the use of S. pombe as a host for identifying antisense genes for use in human cells, it was important to determine if sequences identified in yeast were as equally effective in a human cell line. This report describes the comparison of a range of lacZ antisense RNAs targeting a lacZ gene expressed in HeLa cells in a comparable manner to its expression in S. pombe cells in earlier studies. In both cell types, the same lacZ gene target was expressed using the same promoter. Antisense genes were expressed episomally in both experimental systems and the levels of suppression determined. In all cases, the relative level of suppression of the lacZ gene was similar in the mammalian and yeast cells. This result indicates that, at least for lacZ antisense RNA, results obtained in fission yeast are predictive of their behavior in the mammalian cellular environment.  相似文献   

5.
6.
A fission yeast model was employed to investigate the influence of antisense gene location on the efficacy of antisense RNA-mediated target gene suppression. Fission yeast transformants were generated that contained the target lacZ gene at a fixed position and a single copy antisense lacZ gene integrated into various genomic locations, including the same locus as the target gene. No significant difference in lacZ suppression was observed when the antisense gene was integrated in close proximity to the target gene locus compared with other genomic locations, indicating that target and antisense gene colocalization is not a critical factor for efficient antisense RNA-mediated gene expression in vivo. Instead, increased lacZ downregulation correlated with an increase in antisense dose, with the steady-state levels of antisense RNA being dependent on genomic position effects and transgene copy number.  相似文献   

7.
This communication describes a two unit antisense RNA cassette system for use in gene silencing. Cassettes consist of a recognition unit and an inhibitory unit which are transcribed into a single RNA that carries sequences of non-contiguous complementarity to the chosen target RNA. The recognition unit is designed as a stem-loop for rapid formation of long- lived binding intermediates with target sequences and resembles the major stem-loop of a naturally occurring antisense RNA, CopA. The inhibitory unit consists of either a sequence complementary to a ribosome binding site or of a hairpin ribozyme targeted at a site within the chosen mRNA. The contributions of the individual units to inhibition was assessed using the lacI gene as a target. All possible combinations of recognition and inhibitory units were tested in either orientation. In general, inhibition of lacI expression was relatively low. Fifty per cent inhibition was obtained with the most effective of the constructs, carrying the recognition stem-loop in the antisense orientation and the inhibitory unit with an anti-RBS sequence. Several experiments were performed to assess activities of the RNAs in vitro and in vivo : antisense RNA binding assays, cleavage assays, secondary structure analysis as well as Northern blotting and primer extension analysis of antisense and target RNAs. The problems associated with this antisense RNA approach as well as its potential are discussed with respect to possible optimization strategies.  相似文献   

8.
The use of antisense oligodeoxyribonucleotides (ODN) or ribozymes to specifically suppress gene expression is simple in concept and relies on efficient binding of the antisense strand to the target RNA. Although the identification of target sites accessible to base pairing is gradually being overcome by different techniques, it remains a major problem in the antisense and ribozyme approaches. In this study we have investigated the potential of a recent experimental and theoretical approach to predict the local accessibility of murine DNA-methyltransferase (MTase) mRNA in a comparative way. The accessibility of the native target RNA was probed with antisense ODN in cellular extracts. The results strongly correlated with the theoretically predicted target accessibility. This work suggests an effective two-step procedure for predicting RNA accessibility: first, computer-aided selection of ODN binding sites defined by an accessibility score followed by a more detailed experimental procedure to derive information about target accessibility at the single nucleotide level.  相似文献   

9.
Interferon alpha (IFN-alpha) is used worldwide for the treatment of a variety of cancers. For pancreatic cancer, recent clinical trials using IFN-alpha in combination with standard chemotherapeutic drugs showed some antitumor activity of the cytokine, but the effect was not significant enough to enlist pancreatic cancer as a clinically effective target of IFN-alpha. In general, an improved therapeutic effect and safety are expected for cytokine therapy when given in a gene therapy context, because the technology would allow increased local concentrations of this cytokine in the target sites. In this study, we first examined the antiproliferative effect of IFN-alpha gene transduction into pancreatic cancer cells. The expression of IFN-alpha effectively induced growth suppression and cell death in pancreatic cancer cells, an effect which appeared to be more prominent when compared with other types of cancers and normal cells. Another strategy we have been developing for pancreatic cancer targets its characteristic genetic aberration, K-ras point mutation, and we reported that the expression of antisense K-ras RNA significantly suppressed the growth of pancreatic cancer cells. When these two gene therapy strategies are combined, the expression of antisense K-ras RNA significantly enhanced IFN-alpha-induced cell death (1.3- to 3.5-fold), and suppressed subcutaneous growth of pancreatic cancer cells in mice. Because the 2',5'-oligoadenylate synthetase/RNase L pathway, which is regulated by IFN and induces apoptosis of cells, is activated by double-strand RNA, it is plausible that the double-strand RNA formed by antisense and endogenous K-ras RNA enhanced the antitumor activity of IFN-alpha. This study suggested that the combination of IFN-alpha and antisense K-ras RNA is a promising gene therapy strategy against pancreatic cancer.  相似文献   

10.
基因药物研究现状和对策   总被引:5,自引:3,他引:2  
生物技术药物以人类体细胞的基因组、转录本组和蛋白质组三个层次生物大分子为目标 ,基因药物的研究主要针对致病基因的DNA和基因转录本mRNA两类生物大分子 .mRNA从结构上考虑是研发核酸药物的最理想靶标和策略之一 .反义寡核苷酸、特异水解基因mRNA的核酸酶(ribozyme和DNAzyme)以及具有干扰作用的双链RNA(siRNA)是药物设计的策略之二 .mRNA结构靶点研究是研发反mRNA基因药物的基础 ,mRNA分子具有高度折叠的二级及三级结构 ,阐明其可及性位点 ,筛选其结构靶位点序列是关键 .近年研究报道的靶点筛选有约 7种mRNA的实测新技术 ,以及计算机辅助软件预测分析 .但发展分子生物学实验新技术以分析、确认靶点是药物研发策略之三 .  相似文献   

11.
12.
Both siRNA and antisense oligodeoxynucleotides (ODNs) inhibit the expression of a complementary gene. In this study, fundamental differences in the considerations for RNA interference and antisense ODNs are reported. In siRNA and antisense ODN databases, positive correlations are observed between the cost to open the mRNA target self-structure and the stability of the duplex to be formed, meaning the sites along the mRNA target with highest potential to form strong duplexes with antisense strands also have the greatest tendency to be involved in pre-existing structure. Efficient siRNA have less stable siRNA–target duplex stability than inefficient siRNA, but the opposite is true for antisense ODNs. It is, therefore, more difficult to avoid target self-structure in antisense ODN design. Self-structure stabilities of oligonucleotide and target correlate to the silencing efficacy of siRNA. Oligonucleotide self-structure correlations to efficacy of antisense ODNs, conversely, are insignificant. Furthermore, self-structure in the target appears to correlate with antisense ODN efficacy, but such that more effective antisense ODNs appear to target mRNA regions with greater self-structure. Therefore, different criteria are suggested for the design of efficient siRNA and antisense ODNs and the design of antisense ODNs is more challenging.  相似文献   

13.
This review is devoted to analyzing design rules, as well as quality controls, in the development of highly effective and specific short interfering RNA (siRNA). Four crucial steps in the development of this siRNA are discussed, i.e., selecting target RNA and designing sense and antisense strands, as well as assessing the activity and specificity of corresponding siRNA. Special consideration is given to the principles of siRNA construction based on both structural and thermodynamical features and the nucleotide composition of siRNA, as well as structural and thermodynamical properties of target RNA and features of experimental performance. Bioinformatics resources for developing siRNA are also discussed. Information from this review can be useful for the development of highly effective and specific siRNA, short hairpin RNA (shRNA), and/or artificial microRNA (amiRNA) sequences for experimental gene therapy and functional genomics.  相似文献   

14.
15.
16.
Ribozymes have a great potential for developing specific gene silencing molecules. One of the main limitations to ensure the efficient application of ribozymes is to achieve effective binding to the target. Stem-loop domains support efficient formation of the kissing complex between natural antisense molecules and their target sequence. We have characterized catalytic antisense RNA hybrid molecules composed of a hammerhead ribozyme and a stem-loop antisense domain. A series of artificial RNA substrates containing the TAR-RNA stem-loop and a target for the hammerhead ribozyme were constructed and challenged with a catalytic antisense RNA carrying the TAR complementary stem-loop. The catalytic antisense RNA cleaves each of these substrates significantly more efficiently than the parental hammerhead ribozyme. Deletion of the TAR domain in the substrate abolishes the positive effect. These results suggest that the enhancement is due to the interaction of both complementary stem-loop motifs. A similar improvement was corroborated when targeting the LTR region of HIV-1 with either hammerhead- and hairpin-based catalytic antisense RNAs. Our results indicate that the TAR domain can be used as an anchoring site to facilitate the access of ribozymes to their specific target sequences within TAR-containing RNAs. Finally, we propose the addition of stable stem-loop motifs to the ribozyme domain as a rational way for constructing catalytic antisense RNAs.  相似文献   

17.
18.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

19.
20.
We have constructed a human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector expressing a 937-base antisense sequence against the HIV-1 envelope gene. Transduction of CD4(+) T lymphocytes with this vector results in expression of the therapeutic antisense sequence and subsequent inhibition of productive HIV-1 replication. In this report, we examined the effect of antisense-mediated suppression on the potential development of virus escape mutants using a permissive T-cell line cultured under conditions that over serial passages specifically allowed for generation and amplification of mutants selected for by antisense pressure. In the resulting virus clones, we found a significant increase in the number of deletions at the envelope target region (91% compared to 27.5% in wild-type HIV). Deletions were most often greater than 1 kb in length. These data demonstrate for the first time that during antisense-mediated suppression of HIV, mutants develop as a direct result of selective pressure on the HIV genomic RNA. Interestingly, in clones where deletions were not observed, there was a high rate of A-G transitions in mutants at the antisense target region but not outside this region, which is consistent with those mutations that are predicted as a result of antisense-mediated modification of double-stranded RNA by the enzyme double-stranded RNA-specific adenosine deaminase. These clones were not found to be escape mutants, as their replicative ability was severely attenuated, and they did not replicate in the presence of vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号