首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Several hypotheses attempt to explain the latitudinal gradient of species diversity, but some basic aspects of the pattern remain insufficiently explored, including the effect of scales and the role of beta diversity. To explore such components of the latitudinal gradient, we tested the hypothesis of covariation, which states that the gradient of species diversity should show the same pattern regardless of the scale of analysis. The hypothesis implies that there should be no gradients of beta diversity, of regional range size within regions, and of the slope of the species-area curve. For the fauna of North American mammals, we found contrasting results for bats and non-volant species. We could reject the hypothesis of covariation for non-volant mammals, for which the number of species increases towards lower latitudes, but at different rates depending on the scale. Also, for this group, beta diversity is higher at lower latitudes, the regional range size within regions is smaller at lower latitudes, and z, the slope of the species-area relationship is higher at lower latitudes. Contrarily bats did not show significant deviations from the predictions of the hypothesis of covariation: at two different scales, species richness shows similar trends of increase at lower latitudes, and no gradient can be demonstrated for beta diversity, for regional range size, or for the slopes of the species-area curve. Our results show that the higher diversity of non-volant mammals in tropical areas of North America is a consequence of the increase in beta diversity and not of higher diversity at smaller scales. In contrast, the diversity of bats at both scales is higher at lower latitudes. These contrasting patterns suggest different causes for the latitudinal gradient of species diversity in the two groups that are ultimately determined by differences in the patterns of geographic distribution of the species.  相似文献   

2.
A long-standing observation in community ecology is that the scaling of species richness, as exemplified by species-area curves, differs on local and regional scales. This decoupling of scales may be largely due to sampling processes (the increasing constraint imposed by sampling fewer individuals at fine scales), as distinct from ecological processes, such as environmental heterogeneity, that operate across scales. Removal of the sampling constraint from fine-scale richness estimates should yield species-area curves that behave like those of the regions in which they are embedded, but an effective method for this removal has not been available. We suggest an approach that incorporates the manner in which small areas accumulate species over time as a way to remove the signature of sampling processes from fine-scale species-area curves. We report for three species-rich grasslands from two continents how local plant species richness is distributed through time at multiple, nested spatial scales, and we ask whether sampling-corrected curves reflect the spatial scaling of richness of each larger floristic province. Our analysis suggests that fine-scale values of richness are highly constrained by sampling processes, but once these constraints are removed, the spatial scaling of species richness is consistent from the scale of individuals to that of an entire province.  相似文献   

3.
The relationship between sampled area and the number of species within that area, the species–area relationship (SAR), is a major biodiversity pattern and one of a few law‐like regularities in ecology. While the SAR for isolated units (islands or continents) is assumed to result from the dynamics of species colonization, speciation and extinction, the SAR for contiguous areas in which smaller plots are nested within larger sample areas can be attributed to spatial patterns in the distribution of individuals. The nested SAR is typically triphasic in logarithmic space, so that it increases steeply at smaller scales, decelerates at intermediate scales and increases steeply again at continental scales. I will review current theory for this pattern, showing that all three phases of the SAR can be derived from simple geometric considerations. The increase of species richness with area in logarithmic space is generally determined by overall species rarity, so that the rarer the species are on average, the higher is the local slope z. Rarity is scale‐dependent: species occupy only a minor proportion of area at broad spatial scales, leading to upward accelerating shape of the SAR at continental scales. Similarly, species are represented by only a few individuals at fine spatial scales, leading to high SAR slope also at small areas. Geometric considerations reveal links of the SAR to other macroecological patterns, namely patterns of β‐diversity, the species–abundance distribution, and the relationship between energy availability (or productivity) and species richness. Knowledge of the regularities concerning nested SARs may be used for standardizing unequal areas, upscaling species richness and estimating species loss due to area loss, but all these applications have their limits, which also follow from the geometric considerations.  相似文献   

4.
A constant ratio between species richness estimated at the local and regional scale is interpreted as a proof of quasi-neutral unsaturated communities. Based on Zobel’s model of plant community (Zobel,Folia Geobot. 36: 3–8, 2001) we tested the methodology of the species-pool concept by comparing the saturated and unsaturated communities generated by spatially-explicit mechanistic simulations with known assembly rules. Tests show that local-regional species plots can be applied to distinguish saturated vs. unsaturated communities, however, the outcome of tests, i.e. the relationship between local and regional richness depends on the size of the areas compared. Independently from the mechanisms controlling diversity, trivial saturation will appear if one of the scales is either too small or too broad because species-area curves are bound at these extreme scales. Similarly, trivial unsaturaton will appear if the two scales compared are close to each other. The application of species-area curves is useful because they help to find scales for non-trivial relationships. Field tests reporting quasi-neutrality and unsaturated plant communities were performed at the intermediate scales of the corresponding species-area curves, and they were estimated from heterogeneous samples. Therefore, this field evidence might be biased by scaling artefacts. We propose to reanalyze the field evidence with solid scaling conventions and to restrict the concept of quasi-neutrality to subordinated functional groups based on the following hypotheses: (1) neutrality will appear within subordinated guilds as a consequence of the hierarchical structure of plant communities; (2) the lower a guild in the hierarchy the higher neutrality of within-layer processes detected; (3) quasi-neutrality found at the community level is not a proof of community-level neutrality but it is due to the higher number of subordinated species in the samples.  相似文献   

5.
We examined the species-area relationship for three historically distinct subsets of Lesser Antillean birds identified by molecular phylogenetic analysis of island and continental populations. The groups comprised recent colonists from continental or Greater Antillean source populations, old taxa having recently expanded distributions within the Lesser Antilles, and old endemic taxa lacking evidence of recent dispersal between islands. The number of young taxa was primarily related to distance from the source of colonists in South America. In a multiple regression, the logarithmic slope of the species-area relationship for this group was shallow (0.066+/-0.016). Old endemic taxa were restricted to islands with high elevation, and within this subset, species richness was related primarily to island area, with a steep slope (0.719+/-0.110). The number of recently spread endemic taxa was related primarily to island elevation, apparently reflecting the persistence of such populations on islands with large areas of forested and montane habitats. Historical analysis of the Lesser Antillean avifauna supports the dynamic concept of island biogeography of MacArthur and Wilson, rather than the more static view of David Lack, in that colonists exhibit dispersal limitation and extinction plays a role in shaping patterns of diversity. However, the avifauna of the Lesser Antilles is probably not in equilibrium at present, and the overall species-area relationship might reflect changing proportions of historically distinguishable subsets of species.  相似文献   

6.
Thomas D. Olszewski 《Oikos》2004,104(2):377-387
Biodiversity can be divided into two aspects: richness (the number of species or other taxa in a community or sample) and evenness (a measure of the distribution of relative abundances of different taxa in a community or sample). Sample richness is typically evaluated using rarefaction, which normalizes for sample size. Evenness is typically summarized in a single value. It is shown here that Hurlbert's probability of interspecific encounter (Δ1), a commonly used sample-size independent measure of evenness, equals the slope of the steepest part of the rising limb of a rarefaction curve. This means that rarefaction curves provide information on both aspects of diversity. In addition, regional diversity (gamma) can be broken down into the diversity within local communities (alpha) and differences in taxonomic composition among local communities (beta). Beta richness is expressed by the difference between the composite rarefaction curve of all samples in a region with the collector's curve for the same samples. The differences of the initial slopes of these two curves reflect the beta evenness thanks to the relationship between rarefaction and Δ1. This relationship can be further extended to help interpret species-area curves (SAC's). As previous authors have described, rarefaction provides the null hypothesis of passive sampling for SAC's, which can be interpreted as regional collector's curves. This allows evaluation of richness and evenness at local and regional scales using a single family of well-established, mathematically related techniques.  相似文献   

7.
Rezácová M  Neustupa J 《Protist》2007,158(1):29-37
The neutral dispersal model in protists was suggested as a general principle resulting in either cosmopolitan or ecologically restricted distribution of individual species. The high local diversity results in "flat" species-area curves of individual protist groups. We investigated the local and regional diversity of the genus Mallomonas in the alluvial plain of upper Luznice in the Czech Republic. About 86.5% of species previously reported from all types of freshwater biotopes within the country were found in our investigated localities. However, there was a considerable increase of species numbers in relation to the total area of available habitats on the continent and global scales. In three species found in our localities, the floristic data indicate a possible geographically restricted distributional pattern. Here, we discuss possible reasons for this phenomenon.  相似文献   

8.
Deterministic theories in community ecology suggest that local, niche-based processes, such as environmental filtering, biotic interactions and interspecific trade-offs largely determine patterns of species diversity and composition. In contrast, more stochastic theories emphasize the importance of chance colonization, random extinction and ecological drift. The schisms between deterministic and stochastic perspectives, which date back to the earliest days of ecology, continue to fuel contemporary debates (e.g. niches versus neutrality). As illustrated by the pioneering studies of Robert H. MacArthur and co-workers, resolution to these debates requires consideration of how the importance of local processes changes across scales. Here, we develop a framework for disentangling the relative importance of deterministic and stochastic processes in generating site-to-site variation in species composition (β-diversity) along ecological gradients (disturbance, productivity and biotic interactions) and among biogeographic regions that differ in the size of the regional species pool. We illustrate how to discern the importance of deterministic processes using null-model approaches that explicitly account for local and regional factors that inherently create stochastic turnover. By embracing processes across scales, we can build a more synthetic framework for understanding how niches structure patterns of biodiversity in the face of stochastic processes that emerge from local and biogeographic factors.  相似文献   

9.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

10.
Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.  相似文献   

11.
Understanding the local and regional patterns of species distributions has been a major goal of ecological and evolutionary research. The notion that these patterns can be understood through simple quantitative rules is attractive, but while numerous scaling laws exist (e.g., metabolic, fractals), we are aware of no studies that have placed individual traits and community structure together within a genetics based scaling framework. We document the potential for a genetic basis to the scaling of ecological communities, largely based upon our long-term studies of poplars (Populus spp.). The genetic structure and diversity of these foundation species affects riparian ecosystems and determines a much larger community of dependent organisms. Three examples illustrate these ideas. First, there is a strong genetic basis to phytochemistry and tree architecture (both above- and belowground), which can affect diverse organisms and ecosystem processes. Second, empirical studies in the wild show that the local patterns of genetics based community structure scale up to western North America. At multiple spatial scales the arthropod community phenotype is related to the genetic distance among plants that these arthropods depend upon for survival. Third, we suggest that the familiar species-area curve, in which species richness is a function of area, is also a function of genetic diversity. We find that arthropod species richness is closely correlated with the genetic marker diversity and trait variance suggesting a genetic component to these curves. Finally, we discuss how genetic variation can interact with environmental variation to affect community attributes across geographic scales along with conservation implications.  相似文献   

12.
植物物种多样性与岛屿面积的关系   总被引:2,自引:0,他引:2  
孙雀  卢剑波  张凤凤  徐高福 《生态学报》2009,29(5):2195-2202
由于水库蓄水导致千岛湖原有生境的破碎化和岛屿化.研究选取了50个岛屿,共设立样方70个.调查这些岛屿上乔木和灌木的种类及数量,选择9种曲线拟合岛屿面积与物种多样性指数之间的数学关系.结果发现:乔木、灌木和木本物种数与岛屿面积关系拟合较好的是对数函数、幂函数和S型曲线,其中对数函数为最优模型;乔木、木本Shannon-Wiener多样性指数与岛屿面积关系拟合较好的是S型曲线和逆函数,灌木Shannon-Wiener多样性指数与岛屿面积关系拟合不显著,乔木和木本Shannon-Wiener多样性指数与较小岛屿(y小于1 hm2)面积拟合呈S形曲线和逆函数,而灌木Shannon-Wiener多样性指数与较大岛屿(y大于1 hm2)面积拟合呈S形曲线和逆函数;均匀度、优势度指数与面积拟合关系不显著. 在岛屿面积较小时,物种多样性指数随着面积的增加而迅速增加,但在面积增加到一定限度时,物种多样性指数增加的速率就逐渐变缓.植物物种数增加速率的转折点约为4 hm2,乔木、木本Shannon-Wiener多样性指数增加速率的转折点约为1 hm2,对面积小于的1 hm2的岛屿进行拟合时发现,乔木、木本Shannon-Wiener多样性指数增加速率的转折点在0.15~0.2 hm2之间.  相似文献   

13.
The arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local-regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= alpha diversity) and regional species richness was estimated at the pasture level (= gamma diversity) with the 'first-order-Jackknife' estimator. Three related issues were addressed: (i). the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii). quantification of the relative contributions of alpha and beta diversity to regional diversity using additive partitioning; and (iii). the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing beta-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.  相似文献   

14.
Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site) and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a "neutral-like" pattern maintained by niche-differentiation.  相似文献   

15.
Colonization and extinction are primary drivers of local population dynamics, community structure, and spatial patterns of biological diversity. Existing paradigms of island biogeography, metapopulation biology, and metacommunity ecology, as well as habitat management and conservation biology based on those paradigms, emphasize patch size, number, and isolation as primary characteristics influencing colonization and extinction. Habitat selection theory suggests that patch quality could rival size, number, and isolation in determining rates of colonization and resulting community structure. We used naturally colonized experimental landscapes to address four issues: (a) how do colonizing aquatic beetles respond to variation in patch number, (b) how do they respond to variation in patch quality, (c) does patch context affect colonization dynamics, and (d) at what spatial scales do beetles respond to habitat variation? Increasing patch number had no effect on per patch colonization rates, while patch quality and context were critical in determining colonization rates and resulting patterns of abundance and species richness at multiple spatial scales. We graphically illustrate how variation in immigration rates driven by perceived predation risk (habitat quality) can further modify dynamics of the equilibrium theory of island biogeography beyond predator-driven effects on extinction rates. Our data support the importance of patch quality and context as primary determinants of colonization rate, occupancy, abundance, and resulting patterns of species richness, and reinforce the idea that management of metapopulations for species preservation, and metacommunities for local and regional diversity, should incorporate habitat quality into the predictive equation.  相似文献   

16.
Species–area relationships (SARs) are a key tool for understanding patterns of species diversity. A framework for the interpretation of SARs and their prediction under different landscape configurations remains elusive, however. This article addresses one of these configurations: how species' minimum-area requirements affect the shape of island or other isolate Species–area curves. We distinguish between two classes of SARs: sample-area curves, compiled entirely within larger contiguous areas, and isolate curves, compiled between isolated areas. We develop this conceptual and graphic model in order to illuminate landscape-scale diversity patterns, to discuss how various landscape and species characteristics affect outcomes, and to investigate the dynamics of local extinction under conditions of habitat fragmentation. Minimum-area effects on actual islands and other isolates predictably cause Species–area curves either to be sigmoid in arithmetic space or to be lowered for smaller areas. In order to illustrate the inherent shape of isolate curves, this study fits convex and sigmoid regression models to empirical isolate (island) data sets that cover the small scales expected to include inflection points.  相似文献   

17.
Studying the patterns in which local extinctions occur is critical to understanding how extinctions affect biodiversity at local, regional and global spatial scales. To understand the importance of patterns of extinction at a regional spatial scale, we use data from extirpations associated with a widespread pathogenic agent of amphibian decline, Batrachochytrium dendrobatidis ( Bd ) as a model system. We apply novel null model analyses to these data to determine whether recent extirpations associated with Bd have resulted in selective extinction and homogenization of diverse tropical American amphibian biotas. We find that Bd -associated extinctions in this region were nonrandom and disproportionately, but not exclusively, affected low-occupancy and endemic species, resulting in homogenization of the remnant amphibian fauna. The pattern of extirpations also resulted in phylogenetic homogenization at the family level and ecological homogenization of reproductive mode and habitat association. Additionally, many more species were extirpated from the region than would be expected if extirpations occurred randomly. Our results indicate that amphibian declines in this region are an extinction filter, reducing regional amphibian biodiversity to highly similar relict assemblages and ultimately causing amplified biodiversity loss at regional and global scales.  相似文献   

18.
红松属小兴安岭地区地带性植被优势种,该地区也是其分布的北缘。在景观尺度上开展红松的分布格局研究有利于进一步了解红松分布机理、未来迁移过程等问题,对其经营和保护有重要意义。将景观指数法与点格局分析法结合,设定8个空间尺度,利用红松存在/不存在数据,通过计算各空间尺度上红松聚集程度和景观指数,分析小兴安岭地区红松种群在多尺度上的分布格局。研究结果表明,小尺度上红松聚集分布明显,随机分布区多处于其聚集分布区的边缘,均匀分布区则散布在其聚集分布区内。景观指数研究表明,通过景观指数可判断红松聚集分布格局趋势,而不能判断均匀分布、随机分布格局趋势,因为它们在多尺度下景观指数波动大,不能用景观指数来描述分布格局。研究得出如下结论:1)红松主要分布在其分布区的核心区域内,在分布区边缘和过渡带上呈随机分布,2)存在/不存在数据能够用来分析种群的多尺度空间分布格局,3)空间尺度的变化会引起树种分布格局的变化,随机分布随尺度增加,边缘化程度加强,4)单一尺度上,景观格局指数不能完全描述种群分布格局;而在多尺度上,变化趋势稳定的景观指数表明聚集分布存在,而波动剧烈的景观指数常与随机分布和均匀分布联系在一起,5)地形因子中,红松对坡度和海拔两个因子变化敏感。  相似文献   

19.
Comparative biogeography of mammals on islands   总被引:1,自引:0,他引:1  
Insular faunas of terrestrial mammals and bats are examined on a worldwide basis to test the adequacy of equilibrium and historical legacy models as explanations for species-area relationships. Species numbers of bats on islands conform to predictions from equilibrium theory, whereby recurrent immigrations and extinctions influence species richness. By contrast, species numbers of terrestrial mammals on islands result from a historical legacy of very low immigration rates on oceanic islands (the faunas are colonization-limited) and by the fragmentation of once contiguous continental faunas to form relictual populations, which subsequently undergo extinctions, on landbridge islands (the faunas are extinction-limited). This explanation is supported by several lines of evidence: (1) z values (slopes of species-area curves) are lower for non-volant mammals on oceanic islands than for those on landbridge islands, but are the opposite for bats; (2) z values for non-volant mammals are lower than those for bats on oceanic islands, but are higher than those for bats on landbridge islands; and (3) landbridge island faunas are attenuated mainland faunas, whereas those on oceanic islands are ecologically incomplete. No support is found for alternative hypotheses to explain low species-area slopes for terrestrial mammals on oceanic islands.  相似文献   

20.
Geographic range, turnover rate and the scaling of species diversity   总被引:6,自引:0,他引:6  
The study of the relative roles of local and regional processes in determining the scaling of species diversity is a very active field in current ecology. The importance of species turnover and the species‐range‐size frequency distributions in determining how local and regional species diversity are linked has been recognised by recent approaches. Here we present a model, based on a system of fully nested sampling quadrats, to analyse species diversity at several scales. Using a recursive procedure that incorporates increasingly smaller scales and a multiplicative formula for relating local and regional diversity, the model allows the simultaneous depiction of alpha, beta and gamma diversity in a single “species‐scale plot”. Species diversity is defined as the number of ranges that are intersected by sampling quadrats of various sizes. The size, shape and location of individual species ranges determine diversity at any scale, but the average point diversity, measured at hypothetical zero‐area localities, is determined solely by the size of individual ranges, regardless of their shape and location. The model predicts that if the species‐area relationship is a power function, then beta diversity must be scale invariant if measured at constant scale increments. Applying the model to the mammal fauna of four Mexican regions with contrasting environmental conditions, we found that: 1) the species‐range‐size frequency distribution at the scale of the Mexican regions differs from the log‐normal pattern reported for the national and continental scales. 2) Beta diversity is not scale‐invariant within each region, implying that the species‐area relationship (SAR) does not follow a power function. 3) There is geographic variation in beta diversity. 4) The scaling of diversity is directly linked to patterns of species turnover rate, and ultimately determined by patterns in the geographic distribution of species. The model shows that regional species diversity and the average distribution range of species are the two basic data necessary to predict patterns in the scaling of species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号