首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The classification of the hyperdiverse true bug family Miridae is far from settled, and is particularly contentious for the cosmopolitan subfamily Bryocorinae. The morphological diversity within the subfamily is pronounced, and a lack of explicit character formulation hampers stability in the classification. Molecular partitions are few and only a handful of taxa have been sequenced. In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist. A broad sample of taxa was examined from each of the bryocorine tribes. A broad range of outgroup taxa from most of the other mirid subfamilies was also examined to test for bryocorine monophyly, ingroup relationships and to determine character polarity. In total a matrix comprising 44 ingroup, 15 outgroup taxa and 111 morphological characters was constructed. The phylogenetic analysis resulted in a monophyletic subfamily Bryocorinae sensu Schuh (1976, 1995), except for the genus Palaucoris, which is nested within Cylapinae. The tribe Dicyphini sensu Schuh (1976, 1995) has been rejected. The subtribe Odoniellina is synonymized with the subtribe Monaloniina and the subtribes Dicyphina, Monaloniina and Eccritotarsina are now elevated to tribal level, with the Dicyphini now restricted in composition and definition. The genus Felisacus is highly autapomorphic and a new tribe – the Felisacini – is erected for the included taxa. This phylogeny of the tribes of the Bryocorinae comprises the following sister‐group relationships: Dicyphini ((Bryocorini + Eccritotarsini)(Felisicini + Monaloniini)).  相似文献   

2.
Abstract.  According to the most recent classifications proposed, the planthopper family Cixiidae comprises three subfamilies, namely Borystheninae, Bothriocerinae and Cixiinae, the latter with 16 tribes. Here we examine morphological characters to present the first phylogenetic reconstructions within Cixiidae derived from a cladistic analysis. We scored 85 characters of the head, thorax, and male and female genitalia for 50 taxa representative of all cixiid subfamilies and tribes and for six outgroup taxa. Analyses were based on maximum parsimony – using both equally weighted and successive weighting procedures – and Bayesian inferences. The monophyly of most currently accepted tribes and subfamilies was investigated through Templeton statistical tests of alternative phylogenetic hypotheses. The cladistic analyses recover the monophyly of Cixiidae, the subfamily Bothriocerinae, and the tribes Pentastirini, Mnemosynini, and Eucarpiini. Successive weighting and Bayesian inference recover the monophyly of the tribe Gelastocephalini, but only Bayesian inference supports the monophyly of Semoniini. The relationships recovered support the groups [Stenophlepsini (Borystheninae + Bothriocerinae)] arising from the tribe Oecleini, and [Andini + Brixiidini + Brixiini (polyphyletic) + Bennini]. Templeton tests reject the alternative hypothesis of a monophyletic condition for the tribe Pintaliini as presently defined.  相似文献   

3.
The systematic status of the family Calappidae and the phylogenetic relationships of its four component subfamilies are re-evaluated based on a cladistic analysis of 78 adult morphological characters. A single tree was produced (CI = 0.654). The monophyly of the Calappidae sensu lato is rejected. The data suggest that the Calappinae and Hepatinae form a single lineage which is closer to some xanthids than to the Matutinae or Orithyiinae. A close link between the Matutinae and some leucosiids and between the Orithyiinae. and some dorippids is also apparent, with a suggestion that these four taxa all belong to a single lineage. A revised classification of the Oxystomata emend , and Calappidae is proposed.  相似文献   

4.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   

5.
试图根据成虫形态学证据探讨长足虻科各亚科之间的系统关系,同时检验各个亚科的单系性.在比较形态学研究基础上,同时参考前人有关长足虻科高阶元分类的研究结果,筛选出42个来自头部、胸部(包括足和翅)、腹部、雌性和雄性外生殖器在亚科水平的分类特征,为了考察亚科的单系性,也包括亚科的自有衍征;运用支序分类的方法,首次分析并讨论了世界长足虻科17个亚科之间的系统发育关系.结果表明,长足虻科是一个严格的单系群,其支持的共同衍征为体色金绿,亚前缘脉端部与第1径脉中部愈合,前缘脉接近肩横脉处有1个缺刻,第2基室与盘室愈合,臀室短小、终止于径脉分叉点之前,雄性外生殖器明显向下或向前弯折,生殖背板具生殖孔,下生殖板与第9背板愈合.金长足虻亚科Sciapodinae腋瓣发达,中脉分叉,为最基部的支系,是最原始的亚科;而长足虻科的其他亚科构成一单系群,其共同衍征为腋瓣不明显,中脉不分叉.斜脉长足虻亚科Plagioneurinae也比较原始,是靠基部的支系,支持其单系性的特征为腹部第7~8节膜质化,生殖孔基位.异长足虻亚科Diaphorinae和锥长足虻亚科Rhaphiinae以及斯长足虻亚科Stolidosomatinae和合长足虻亚科Sympycninae分别构成姊妹群关系,斯长足虻亚科Stolidosomatinae的两个属Pseudosympycnus和Stolidosoma系统地位还有待进一步研究.此外,巴长足虻亚科Babindellinae、聚脉长足虻亚科Medeterinae和寇长足虻亚科Kowmunginae构成单系群,其共同衍征为臀脉短或不明显,无后顶鬃.研究所用标本大部分保存在中国农业大学昆虫标本馆,包括与美国史密森研究院和澳大利亚博物馆交换而来的标本,部分标本保存在比利时皇家科学院.  相似文献   

6.
本研究选取优茧蜂亚科Euphorinae(膜翅目Hymenoptera:茧蜂科Braconidae)的8族19属23种作为内群,茧蜂其它6个亚科的8属8种作外群,首次结合同源核糖体28S rDNA D2基因序列片段和41个形态学特征对该亚科进行了系统发育学研究。利用"圆口类"的内茧蜂亚科Rogadinae、茧蜂亚科Braconinae、矛茧蜂亚科Doryctinae的3个亚科为根,以PAUP*4.0和MrBayes3.0B4软件分别应用最大简约法(MP)和贝叶斯法对优茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了分析;并以PAUP*4.0对优茧蜂亚科的28S rDNA D2基因序列的片段的碱基组成与碱基替代情况进行了分析。结果表明:优茧蜂亚科的28S rDNA D2基因序列片段的GC%含量在40.00%~49.25%之间变动,而对于碱基替代情况来讲,优茧蜂亚科各个成员间序列变异位点上颠换(transversion)大于转换(transition);不同的分析和算法所产生的系统发育树都表明目前根据形态定义出的优茧蜂亚科Euphorinae不是一个单系群,而是一个与蚁茧蜂亚科Neoneurinae和高腹茧蜂亚科Cenocoelinae混杂在一起的并系群;在优茧蜂亚科内部,悬茧蜂族Meterorini和食甲茧蜂族Microctonini(排除猎户茧蜂属Orionis)为单系群,而宽鞘茧蜂族Centistini、大颚茧蜂族Cosmophorini、优茧蜂族Euphorini、瓢虫茧蜂族Dinocampini为并系群;悬茧蜂族Meterorini在优茧蜂亚科Euphorinae内位于基部位置的观点得到部分的支持,同时食甲茧蜂族Microctonini被判定为相对进化的类群。此外对于优茧蜂亚科内各属之间的相互亲缘关系,不同算法所得到的系统发育属的结果不完全一致,这表明优茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

7.
8.
9.
中国慈姑属系统发育的研究   总被引:2,自引:0,他引:2  
本文研究了中国慈姑属植物间的系统发育关系。选取了12个与该属系统发育有较重要关系的特征,将8个已知分类群与外类群刺果泽泻属进行了比较。应用数量分支分析的Farris-Wagner方法,建立了中国慈姑属系统发育分支图。讨论了各分类群间的系统发育关系、该属起源和数量分支分析方法等问题。  相似文献   

10.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

11.
A cladistic analysis of Curculionidae was performed using 49 characters (41 from larvae, three from pupae, and five from adults). Illustrations of characters of immatures are provided. The analysis involved 19 terminal units and a hypothetical ancestor determined by the outgroup comparison method used to root the tree. One most parsimonious cladogram was obtained based on the complete data set and the following phylogenetic hypothesis is proposed: Ithycerinae, Microcerinae, and Brachycrinae sensu stricto are broad-nosed weevils placed sequentially at the base of the cladogram. The remaining weevil subfamilies form two major natural groups: one constituted by the sister taxa Rhynchophorinae—Platypodinae; the other with Erirhininae at the base, as sister taxon of the "Curculionidae sensu stricto " which show an unresolved trichotomy involving Curculioninae, Cossoninae—Scolytinae, and the clade including the Entiminae and allied subfamilies. This latter clade of broad-nosed weevils has Thecesterninae at the base; the next branch is Amycterinae, the sister taxon of the clade comprising two groups: one constituted by Aterpinae, Rhytirrhininae, and Gonipterinae; the other is Entiminae whose units form two main clades: one constituted by the sister tribes Pachyrhynchini—Ectemnorhinini, and the other by Alophini, Sitonini, and Entimini. When the analysis was done using only immature characters, results congruent with those based on the complete data set were obtained, except for the placement of Erirhininae. According to the results the hypothesis of monophyly of broad-nosed weevils is not accepted; the Entiminae are justified as monophyletic and their natural classification into tribes is proposed and the phylogenetic position and relationships of higher taxa of Curculionidae are discussed. This paper shows the importance of immature characters in recognition of natural groups and relationships in Curculionidae.  相似文献   

12.
The phylogenetic relationships of the diving-beetle (Dytiscidae) subfamily Copelatinae are not well known. Some authors postulated a sister-group relationship between Copelatus Erichson and the remaining Dytiscidae, relying mainly on the absence of a mandibular channel in Copelatus. Other authors suggested a more derived position of the genus. Larval characters have been underutilized in phylogenetic studies, mainly because the larvae of many taxa within the family and, in particular, within Copelatinae are unknown. A comprehensive approach aimed to study the phylogenetic placement of a member of this subfamily based on larval characters has not been produced so far. In this study, the phylogenetic relationships of Copelatus are explored based on a cladistic analysis of 24 taxa and 120 chaetotaxic and morphological characters from larvae. For this purpose, larvae of Copelatus longicornis Sharp are described and illustrated in detail for the first time, with particular emphasis on morphometry and chaetotaxy, with the latter being unexplored until now. The results support a derived position of Copelatus within Dytiscidae, with a sister-group relationship between this genus and a clade formed by the subfamilies Lancetinae, Coptotominae, Laccophilinae, Colymbetinae, Matinae, and Dytiscinae, and part of Agabinae. No evidence was found for a sister-group relationship between Copelatus and the remaining Dytiscidae so that the absence of a mandibular channel in this genus is likely a reduction. Copelatus is supported by three apomorphies within Dytiscidae: mandibular channel absent, internal margin of the stipes with three robust spinulae, and seta MX8 inserted subapically on the galea. Handling editor: K. Martens  相似文献   

13.
Adenocaulon andEriachaenium are two problematic genera because their tribal and subfamilial placement in Asteraceae is uncertain. Previous cladistic analyses based on molecular data undertaken to analyze the relationships within Asteraceae, placeAdenocaulon in the tribe Mutisieae (Cichorioideae). This paper investigates cladistic relationships amongAdenocaulon andEriachaenium and tribes of subfamilies Cichorioideae and Asteroideae using morphological data. Thirty-eight characters were scored across 52 genera selected as exemplar taxa to represent the current classification system. In the analysis (one tree, length = 86, c.i. = 0.55, r.i. = 0.64)Adenocaulon andEriachaenium are sister taxa and appear as an isolated clade nested in Cichorioideae. A new, tentative position among the tribes of the paraphyletic Cichorioideae is proposed for these two isolated genera.  相似文献   

14.
The first comprehensive cladistic analysis of Miridae, the plant bugs, is presented based on analysis of 3935 base pairs of mitochondrial (16S, COI) and nuclear (18S, 28SD3) DNA for 91 taxa in seven subfamilies. Data were analysed using maximum likelihood (ML), parsimony and Bayesian inference (BI) phylogenetic frameworks. The phylogenetic results are compared with previous hypotheses of higher relationships in the family using alternative hypothesis tests. A Bayesian relaxed molecular clock is used to examine divergence times, and ancestral feeding habits are reconstructed using parsimony and a Bayesian approach. Clades recovered in all analyses are as follows: Cimicomorpha, Miroidea and Miridae; Bryocorinae: Bryocorini; Stenodemini; Mirinae; Deraeocorinae (Clevinemini + Deraeocorini); Cylapinae; Isometopinae; Bryocorinae: Dicyphini; Orthotylini; Phylinae (Phylini + Pilophorini), and Phylinae as sister group to all the remaining mirid taxa. These results are largely congruent with former hypotheses based on morphological data with respect to the monophyly of various subfamilies and tribes; however, our results indicate that the subfamily Bryocorinae is not monophyletic, as the two tribes, Dicypini and Bryocorini, were separated in the phylogenetic results. Divergence time estimates indicate that the radiation of the Miridae began in the Permian; most genus‐level radiations within subfamilies began in the late Cretaceous, probably in response to the angiosperm radiation. Ancestral feeding state reconstructions based on Bayesian and parsimony inference were largely congruent and both reconstructed phytophagy as the ancestral state of the Miridae. Furthermore, the feeding habits of the common ancestors of Mirinae + Deraeocorinae, Bryocorinae + Cylapinae + Isometopinae + Orthotylinae, and the remaining taxa excluding Phylinae, were inferred as phytophagous. Therefore, at least three shifts from phytophagy or polyphagy to predation occurred within the Miridae. Additionally, based on the mirid host‐plant records, we discovered several trends, such as a strong relationship between host‐plant ranges and a facultative feeding habit. © The Willi Hennig Society 2011.  相似文献   

15.
The phylogeny of the superfamily Chrysidoidea is reviewed. Relationships among the families proposed by Carpenter (1986) were confirmed by Brothers & Carpenter (1993) . The status of knowledge of phylogenetic relationships within families is assessed. Cladistic analyses have been undertaken only within Plumariidae (by Roig-Alsina 1994 ; a manual analysis of genera), Chrysididae (by Kimsey & Bohart 1991 ; a manual analysis of subfamilies and tribes, and genera within subfamilies) and Bethylidae (by Sorg 1988 ; a manual analysis of subfamilies, and genus groups within three of these; and by Polaszek & Krombein 1994 ; a quantitative cladistic analysis of the genera of Bethylinae). These analyeses are critically evaluated, and the current classifications within all the families examined cladistically. Generic relationships are investigated within Scolebythidae and Embolemidae; subfamily relationships are investigated within Sclerogibbidae and Dryinidae.  相似文献   

16.
Based on analysis of homologous character states and considering the molecular-biological data (Whiting et al., 2008), phylogenetic relationships of the tribes and subfamilies of the family Hystrichopsyllidae are discussed. In some cases, homologous states of the skeleton characters mark the clades revealed by the moleculargenetic analysis, but are shared by taxa from other clades. In contrast to the molecular-genetic data, morphological characters indicate the phylogenetic integrity of the family Hystrichopsyllidae. Morphological characters depict the subfamily Anomiopsyllinae as a monophyletic taxon (having synapomorphic states of the metaphragma, metasternite, and the mesosternal apodeme) closest to the subfamilies Neopsyllinae and Rhadinopsyllinae. The subfamilies Neopsyllinae, Rhadinopsyllinae, and Stenoponiinae have a non-thickened metasternite; the former two subfamilies also have in common a similar structure of articulation of the digitoid with the clasper, type of the metaphragma modification, and the presence of the sclerotized central sclerite. Homologous modifications of the metaphragma are also present in fleas of the subfamily Stenoponiinae. Close to this group are the subfamily Hystrichopsyllinae whose representatives also possess non-thickened metasternal apodemes, and the subfamily Listropsyllinae with its frontal sclerotized tubercle being a specialized modification of the frontal sclerotized fold. A specific feature shared by fleas of the subfamilies Hystrichopsyllinae and Listropsyllinae is the presence of the metasternal furca with high sharp processes and a high medial ridge. The closeness of these taxa is supported by the results of molecular-genetic analysis. The subfamilies Doratopsyllinae and Ctenophthalminae (tribes Ctenophthalmini and Carterettini) are united by the type of the attachment of the mesopleural rod to the special ridge at the upper margin of the mesopleuron. According to the molecular-genetic data, the tribe Neotyphloceratini is related to these subfamilies, even though its members have no ridge on the mesopleuron. The similarity in the structure of the furca (the presence of high dorsal processes with rounded apices and a high median ridge) and in the length ratio of the fulcrum lobes relates the subfamilies Ctenophthalminae and Dinopsyllinae.  相似文献   

17.
As the second largest and most diverse group in the superfamily Aphidoidea, the phylogeny of drepanosiphine aphids sensu lato (s.l.) is critical for discussing the evolution of aphids. However, the taxa composition and phylogenetic relationships of drepanosiphine aphids s.l. have not been fully elucidated to date. In this study, based on total-evidence analyses combining 4 molecular genes (3 mitochondrial, COI, tRNA-Leu/COII, and CytB; 1 nuclear, EF-1ɑ) and 64 morphological and biological characteristics, the phylogeny of this group was reconstructed for the first time at the subfamily level using different datasets, parsimonies and model-based methods. All of our phylogenetic inferences clearly indicated that the drepanosiphine aphids s.l. was not a monophyletic group and seemed to support the division of the drepanosiphine aphids s.l. into different groups classified at the subfamily level. Calaphidinae was also not a monophyletic group, and Saltusaphidinae was nested within this subfamily. Drepanosiphinae was not clustered with Chaitophorinae, which was inconsistent with the previous hypothesis of a close relationship between them, illustrating that their phylogeny remains controversial. Overall, some groups of drepanosiphine aphids s.l., including Phyllaphidinae, Macropodaphidinae, Pterastheniinae, Lizeriinae, Drepanosiphinae, Spicaphidinae, Saltusaphidinae, and Calaphidinae, clustered together and might constitute the actual drepanosiphine aphids s.l. To a certain extent, our results clarified the phylogenetic relationships among drepanosiphine aphids s.l. and confirmed their taxonomic status as subfamilies.  相似文献   

18.
Abstract. The phylogenetic relationships of tribes of the geometrid subfamily Sterrhinae (Lepidoptera) were studied, with special emphasis on finding delimiting characters for the tribe Scopulini. Two cladistic analyses were conducted for fifty‐nine species representing all previously recognized Sterrhinae tribes and covering the geographical range of the subfamily. In the first analysis, twelve putative synapomorphies of Scopulini, taken from the literature, were coded for actual specimens in order to test their ability to support the monophyly of the group. The resulting strict consensus cladogram was totally unresolved. In the second analysis, the twelve characters were combined with additional information from the morphology and ecology of adults and immature stages. Analysis of these ninety‐six characters resulted in a well‐resolved cladogram. The tribes were found to be monophyletic, except Cosymbiini and Rhodostrophiini. There are two main lineages within Sterrhinae: Cosymbiini + Rhodometrini + Timandrini and Rhodostrophiini + Cyllopodini + Sterrhini + Scopulini. Aletini and Problepsini lay within the concept of Scopulini. The association of the included Larentiinae taxa with the Cosymbiini + Rhodometrini + Timandrini lineage questions the monophyly of Sterrhinae. A majority of the recovered synapomorphic characters had been recognized previously, but several new phylogenetically informative characters were found, especially from the thorax. No unique characters diagnosing the tribe Scopulini were found, but many homoplastic synapomorphic features were found which diagnose parts of it. All recognized Sterrhinae genera are assigned tentatively to tribes and problematic cases are discussed.  相似文献   

19.
A comprehensive higher‐level phylogeny of diving beetles (Dytiscidae) based on larval characters is presented. Larval morphology and chaetotaxy of a broad range of genera and species was studied, covering all currently recognized subfamilies and tribes except for the small and geographically restricted Hydrodytinae, where the larva is unknown. The results suggest several significant conclusions with respect to the systematics of Dytiscidae including the following: monophyly of all currently recognized subfamilies, although Dytiscinae when considered in a broad context is rendered paraphyletic by Cybistrinae; currently recognized tribes are monophyletic except for Agabini, Hydroporini and Laccornellini; inter‐subfamily and inter‐tribe relationships generally show weak support, except for a few well supported clades; three distinct clades are recognized within Dytiscinae [Dytiscini sensu lato (i.e. including the genera Dytiscus Linnaeus and Hyderodes Hope), Hydaticini sensu lato, and Cybistrini]; and recognition of Pachydrini as a distinct tribe. Other less robust results include: Methlini sister to the rest of Hydroporinae; relative basal position of Laccornini, Hydrovatini and Laccornellini within Hydroporinae; close relationship of Agabinae and Copelatinae; Matinae nested deep within Dytiscidae, as sister to a large clade including Colymbetinae, Coptotominae, Lancetinae and Dytiscinae sensu lato; the sister‐group relationship of Agabetini and Laccophilini is confirmed. The results presented here are discussed and compared with previous phylogenetic hypotheses based on different datasets, and the evolution of some significant morphological features is discussed in light of the proposed phylogeny. All suprageneric taxa are diagnosed, including illustrations of all relevant synapomorphies, and a key to separate subfamilies and tribes is presented, both in traditional (paper) format and as an online Lucid interactive identification key.  相似文献   

20.
The relationships among ant subfamilies were studied by phylogenetic analysis of rDNA sequences of 15 species from seven subfamilies. PCR primers were designed on the basis of the rDNA sequence of the Australian bulldog ant, Myrmecia croslandi, previously determined. Phylogenetic trees were constructed using sequences of a fragment of 18S rDNA (1.8 kb), a fragment of 28S rDNA (0.7 kb excluding variable regions) and a combination of the 18S and 28S rDNAs, by neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML). rDNA sequences corresponding to the same fragments from three non-ant hymenopteran species (a sawfly, a bee and a wasp) were employed as outgroups. These trees indicated that the ant subfamilies were clustered singly, and, among the seven subfamilies examined, Ponerinae and six other subfamilies are in a sister-groups relationship. The relationship among the six subfamilies, however, was not clarified. The phylogenetic trees constructed in the present study are not in contradiction to the tree from cladistic analysis of morphological data by Baroni Urbani et al. (1992) and the tree from morphological and molecular data (Ward and Brady, 2003), but are inconsistent with the traditional phylogeny. The present results thus raise a question as to the status of some traditionally employed "key" morphological characters. The present results also call for a reexamination of Amblyopone traditionally treated as a member of Ponerinae as belonging to a new subfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号