首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
High pressure liquid chromatography with electrochemical detection (HPLC-ED) was employed in conjugation with a sensitive and specific salicylate hydroxylation assay to evaluate the immediate effects of hydroxyl radical (·OH) attack on four catechol intermediates of eumelanin, dopamine (3,4-dihydroxyphenylethylamine), its precursor dopa (3,4-dihydroxyphenylalanine), and their respective neurotoxic trihydroxyphenyl derivatives, 6-hydroxydopamine (2,4,5-trihydroxyphenylethylamine,6-OHDA) and 6-hydroxydopa(2,4,5-trihydroxyphenylalanine, TOPA). Semiquinone and quinone species were identified as the initial products of the oxidation of these four catechol substrates. The enhanced oxidations of the catechols when exposed to ·OH attack was accompanied by marked decreases in the level of each semiquinone species. Quinone levels were elevated in reactions involving ·OH attack on dopamine and 6-OHDA, but absent in reactions involving radical attack on dopa or TOPA, suggesting that dopaquinone (DOQ) and TOPA p-quinone (TOPA p-Q) are oxidized more rapidly by‘OH than are the quinones of dopamine and 6-OHDA. The formation of 6-OHDA p-quinone (6-OHDA p-Q) in incubations involving DA and ·OH suggest that the ·OH-mediated hydroxylation of DA may be a mechanism for generating this potentially cytotoxic trihydroxyphenyl. The results of this study demonstrate for the first time that semiquinone and quinone intermediates of eumelanin are the initial products derived from the ·OH-mediated oxidations of dopa, DA, TOPA, and 6-OHDA. These observations suggest that if ·OH is generated beyond the capabilities of cytoprotective mechanisms, the radical can rapidly oxidize catechol precursors, augment melanogenesis, and generate additional cytotoxic quinoid intermediates of eumelanin.  相似文献   

2.
B Kalyanaraman  J Nemec  B K Sinha 《Biochemistry》1989,28(11):4839-4846
Spectroscopic evidence for the radical-mediated metabolism of VP-16, VP-16 catechol, and VP-16 quinone during enzymatic oxidation and autoxidation has been obtained. Autoxidation of the catechol yields the primary semiquinone together with the primary molecular product VP-16 quinone, which subsequently undergoes hydrolytic oxidation to form secondary quinones and semiquinones. Both primary and secondary phenoxyl radicals were detected during peroxidatic oxidation of VP-16. Neither the primary nor the secondary radicals react with DNA at a detectable rate. Evidence for the production of hydroxyl radical during iron-catalyzed oxidation of VP-16 catechol was obtained. These free radical reactions may have implications for the mechanism of antitumor action of VP-16.  相似文献   

3.
Electron spin resonance spectroscopy has been used to demonstrate production of semiquinone-free radicals from the oxidation of the catechol estrogens 2- and 4-hydroxyestradiol and 2,6- and 4,6-dihydroxyestradiol. Radicals were generated either enzymatically (using horseradish peroxidase-H2O2 or tyrosinase-O2) or by autoxidation, and were detected as their complexes with spin-stabilizing metal ions (Zn2+ and/or Mg2+). In the peroxidase system, radicals are produced by one-electron oxidation of the catechol estrogen and their decay is by a second-order pathway, consistent with their disproportionation to quinone and catechol products. With tyrosinase-O2, radical generation occurs indirectly. Initial hydroxylation of phenolic estrogen (at either the 2- or 4-position) gives a catechol estrogen in situ; subsequent two-electron oxidation of the catechol to the quinone, followed by reverse disproportionation, leads to the formation of radicals. A competing mechanism for radical production involves autoxidation of the catechol. Results obtained from the estrogen systems have been compared with those from the model compound 5,6,7,8-tetrahydro-2-naphthol.  相似文献   

4.
Electron spin resonance spectroscopy has been used to detect, characterize, and to infer structures of o-semiquinones derived from stilbene catechol estrogens. Radicals were generated enzymatically using tyrosinase and were detected as their Mg2+ complexes. It is suggested that initial hydroxylation of stilbene estrogen gives a catechol estrogen in situ; subsequent two-electron oxidation of the catechol to the quinone, followed by reverse disproportionation, leads to the formation of radicals. Consistent with this mechanism, o-phenylenediamine, a quinone trapping agent, inhibits formation of o-semiquinones. A competing mechanism of radical production involves autoxidation of the catechol. Hydroxyl radicals are shown to be produced in this system via a mechanism involving reduction of iron and copper complexes by stilbene catechols. Possible differences in the reactivity of stilbene ortho- and para-semiquinones are discussed.  相似文献   

5.
Electron spin resonance spectroscopy has been used to demonstrate production of semiquinone free radicals from the oxidation of the catechol estrogens 2- and 4-hydroxyestradiol and 2,6- and 4,6-dihydroxyestradiol. Radicals were generated by horseradish peroxidase/H2O2 or tyrosinase/O2, or by autoxidation, and were detected as their complexes with spin-stabilizing metal ions (Zn2+ and/or Mg2+). Radical production occurs via one- or two-electron oxidation of catechol estrogens, depending on the type of activating system. Autoxidation of catechol estrogens produces superoxide and H2O2 at physiological pH values. The present results also indicate a difference in the reactivity of quinones derived from 2- and 4-hydroxyestradiol. The toxicological significance of these reactions is discussed.  相似文献   

6.
Li G  Zhang H  Sader F  Vadhavkar N  Njus D 《Biochemistry》2007,46(23):6978-6983
At alkaline pH, 4-methylcatechol oxidizes more rapidly than the related catecholamines: dopamine, norepinephrine, and epinephrine. This oxidation is not inhibited by superoxide dismutase or catalase, indicating that O2 itself is the oxidant, but the reduction potential of O2/O2-* is too low for it to oxidize 4-methylcatechol directly. Instead, O2 oxidizes the 4-methylcatechol semiquinone, which is formed by comproportionation of 4-methylcatechol and its o-quinone. Aniline reacts very quickly with the o-quinone and thus stops the comproportionation reaction that oxidizes 4-methylcatechol to the semiquinone. Oxidation of 4-methylcatechol then requires superoxide, and in the presence of aniline, oxidation of 4-methylcatechol by O2 is inhibited by superoxide dismutase. When catecholamines oxidize, the side chain amine inserts into the catechol o-quinone, forming a bicyclic compound. By eliminating the quinone, this ring closure prevents comproportionation and the consequent oxidation of catecholamines by O2. It also prevents reaction of the quinone with other compounds and the formation of potentially toxic products.  相似文献   

7.
Mitoxantrone has been reported to lack certain properties that characterize quinone containing antitumor agents that undergo enzymatic reduction. These properties are the stimulation of NADPH oxidation, the stimulation of oxygen consumption by microsomes and reductases and, the absence of oxygen free radicals during these reactions. Having these properties implies the presence of a futile redox cycle that requires the generation and the oxidation of a semiquinone free radical. It would follow that if mitoxantrone does not redox cycle in the presence of reductases, then the semiquinone free radical is not produced or, if it is formed, it reacts quickly to form diamagnetic products. However, using liver microsomes, there are reports of the formation of the mitoxantrone free radial anion. In this paper we investigated the mitoxantrone free radical anion generated electrochemically and found that in the presence of oxygen it behaved like other semiquinones. That is, it is oxidized to the parent compound (presumably generating oxygen free radicals), indicating the ability to redox cycle. The reduction potential to generate such free radical in aqueous medium is very high (-0.79 V) when compared to diaziquone (-0.36 V) and Adriamycin (-0.6 V). This suggests that mitoxantrone may not be a substrate for reductases. Under reductive conditions with purified NADPH cytochrome P-450 reductase which very easily reduces diaziquone and Adriamycin, mitoxantrone was not reduced. However, under the same conditions, mitoxantrone was oxidized by the prototype oxidase horseradish peroxidase with the production of a mitoxantrone free radical. This oxidation was accompanied by a drastic change in color and the formation of a dark precipitate. Because microsomes contain a variety of enzymes, we suggest that the previously observed free radical in microsomes is probably due to the oxidation of mitoxantrone. In this theory, this product is probably a polymer which would not require oxygen to be formed. Thus, under oxidative conditions, the mitoxantrone free radical cation will also display impaired redox activity.  相似文献   

8.
The mechanism of molecular oxygen activation is the subject of controversy in the copper amine oxidase family. At their active sites, copper amine oxidases contain both a mononuclear copper ion and a protein-derived quinone cofactor. Proposals have been made for the activation of molecular oxygen via both a Cu(II)-aminoquinol catalytic intermediate and a Cu(I)-semiquinone intermediate. Using protein crystallographic freeze-trapping methods under low oxygen conditions combined with single-crystal microspectrophotometry, we have determined structures corresponding to the iminoquinone and semiquinone forms of the enzyme. Methylamine reduction at acidic or neutral pH has revealed protonated and deprotonated forms of the iminoquinone that are accompanied by a bound oxygen species that is likely hydrogen peroxide. However, methylamine reduction at pH 8.5 has revealed a copper-ligated cofactor proposed to be the semiquinone form. A copper-ligated orientation, be it the sole identity of the semiquinone or not, blocks the oxygen-binding site, suggesting that accessibility of Cu(I) may be the basis of partitioning O2 activation between the aminoquinol and Cu(I).  相似文献   

9.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH- substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

10.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

11.
Melanins are colloidal pigments known to have a high affinity for metal ions. In this work, the nature of the metal-binding sites are determined and the binding affinities are quantified. Initial potentiometric titrations have been performed on synthetic dihydroxyindole (DHI) melanin solutions to determine the chemical speciation of quinole/quinone subunits. Two types of acidic functionalities are assignable: catechol groups, with pK(a) between 9 and 13, and quinone imines (QI), with pK(a) of 6.3. The presence of the quinone-imine tautomer has, to our knowledge, never been assessed in polymeric melanins. Melanin solutions obtained from N-methylated DHI lack the pK(a) 6.3 buffer, consistent with its inability to form the quinone-imine tautomer. EPR spectroscopy of the DHI-melanin samples demonstrates that the semiquinone radical is in too low a concentration to contribute to the bulk binding of metals. Changes in the titration curves after addition of Cu(II) and Zn(II) ions were analyzed to obtain the binding constants and stoichiometry of the metal-melanin complexes, using the BEST7 program. UV-Vis spectra at neutral and high pH are used to identify absorbances due to Cu-bound quinone imine and catechol groups. The derived binding constants were used to determine speciation of the Cu(II) and Zn(II) ions coordinated to the quinone imine and catechol groups at various pH. The mixed complexes, Zn(QI)(Cat)(-) and Cu(QI)(Cat)(-) are shown to dominate at physiological pH.  相似文献   

12.
Racemic RS‐4‐(4‐hydroxyphenyl)‐2‐butanol (rhododendrol, RD) was used as a topical skin‐whitening agent until it was recently reported to induce leukoderma. We then showed that oxidation of RD with mushroom tyrosinase rapidly produces RD‐quinone, which is quickly converted to RD‐cyclic quinone and RD‐hydroxy‐p‐quinone. In this study, we examined whether either or both of the enantiomers of RD can be oxidized by human tyrosinase. Using a chiral HPLC column, racemic RD was resolved optically to R(?)‐RD and S(+)‐RD enantiomers. In the presence of a catalytic amount of l ‐dopa, human tyrosinase, which can oxidize l ‐tyrosine but not d ‐tyrosine, was found to oxidize both R(?)‐ and S(+)‐RD to give RD‐catechol and its oxidation products. S(+)‐RD was more effectively oxidized than l ‐tyrosine, while R(?)‐RD was less effective. These results support the notion that the melanocyte toxicity of RD depends on its tyrosinase‐catalyzed conversion to toxic quinones and the concomitant production of reactive oxygen species.  相似文献   

13.
Cuticular phenoloxidase(s) from Sarcophaga bullata larvae oxidized a variety of o-diphenolic compounds. While catechol, 3,4-dihydroxybenzoic acid, dopa, dopamine, and norepinephrine were converted to their corresponding quinone derivatives, other catechols such as 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxyphenethyl alcohol, 3,4-dihydroxyphenyl glycol, 3,4-dihy-droxymandelic acid, and N-acetyldopamine were oxidized to their side-chain oxygenated products. In addition, the enzyme-catalyzed oxidation of the latter group of compounds accompanied the formation of colorless catecholcuticle adducts consistent with the operation of β-sclerotization. Radioactive trapping experiments failed to support the participation of 1,2-dehydro-N-acetyldopamine as a freely formed intermediate during phenoloxidase-mediated oxidation of N-acetyldopamine. When specifically tritiated substrates were provided, cuticular enzyme selectively removed tritium from [7-3H]N-acetyldopamine and not from either [8-3H] or [ring-3H]N-acetyldopamine during the initial phase of oxidation. The above results are consistent with the generation and subsequent reactions of quinone methides as the initial products of enzyme-catalyzed N-acetyldopamine oxidation and confirm our hypothesis that quinone methides and not 1,2-dehydro-N-acetyldopamine are the reactive intermediate of β-sclerotization of sarcophagid cuticle. Quinone methide sclerotization resolves a number of conflicting observations made by previous workers in this field.  相似文献   

14.
Molecular mechanisms of quinone cytotoxicity   总被引:9,自引:0,他引:9  
Quinones are probably found in all respiring animal and plant cells. They are widely used as anticancer, antibacterial or antimalarial drugs and as fungicides. Toxicity can arise as a result of their use as well as by the metabolism of other drugs and various environmental toxins or dietary constituents. In rapidly dividing cells such as tumor cells, cytotoxicity has been attributed to DNA modification. However the molecular basis for the initiation of quinone cytotoxicity in resting or non-dividing cells has been attributed to the alkylation of essential protein thiol or amine groups and/or the oxidation of essential protein thiols by activated oxygen species and/or GSSG. Oxidative stress arises when the quinone is reduced by reductases to a semiquinone radical which reduces oxygen to superoxide radicals and reforms the quinone. This futile redox cycling and oxygen activation forms cytotoxic levels of hydrogen peroxide and GSSG is retained by the cell and causes cytotoxic mixed protein disulfide formation. Most quinones form GSH conjugates which also undergo futile redox cycling and oxygen activation. Prior depletion of cell GSH markedly increases the cell's susceptibility to alkylating quinones but can protect the cell against certain redox cycling quinones. Cytotoxicity induced by hydroquinones in isolated hepatocytes can be attributed to quinones formed by autoxidation. The higher redox potential benzoquinones and naphthoquinones are the most cytotoxic presumably because of their higher electrophilicty and thiol reactivity and/or because the quinones or GSH conjugates are more readily reduced to semiquinones which activate oxygen.  相似文献   

15.
The rate of NADH oxidation by inverted membrane vesicles prepared from the halotolerant bacterium Ba1 of the Dead Sea is increased specifically by sodium ions, as observed earlier in whole cells. The site of this sodium effect is identified as the NADH: quinone oxidoreductase, similarly to the other such system known, Vibrio alginolyticus (H. Tokuda and T. Unemoto (1984) J. Biol. Chem. 259, 7785-7790). Sodium accelerates quinone reduction severalfold, but oxidation of the quinol, with oxygen as terminal electron acceptor, is unaffected. The sodium-dependent pathway of quinone reduction exhibits higher apparent affinity to extraneous quinone (Q-2) than the sodium-insensitive pathway, and is specifically inhibited by 2-heptyl-4-hydroxyquinoline N-oxide. ESR spectra of the membranes contain a feature at g = 1.98 which is tentatively identified as one originating from semiquinone. This feature is increased by NADH and decreased by addition of Na+, suggesting that, as proposed from different kinds of evidence for the V. alginolyticus system, sodium affects the semiquinone reduction step. As in the other system, the site of sodium stimulation in Ba1 probably corresponds to the site of sodium translocation, which was shown earlier (S. Ken-Dror, R. Shnaiderman, and Y. Avi-Dor (1984) Arch. Biochem. Biophys. 229, 640-649) to be linked directly to a redox reaction in the respiratory chain.  相似文献   

16.
Summary Preincubation with the copper-chelator, sodium diethyldithiocarbamate (DDC) and the presence of catalase in the incubation media allowed an accurate and reproducible differentiation of the role of tyrosinase from that of peroxidase in the oxidation of tyrosine and dopa in melanocytes, mast cells and eosinophils. These studies indicated that mammalian peroxidase in melanocytes, mast cells and eosinophils can mediate the conversion of tyrosine to melanin in the presence of dopa co-factor, as well as the conversion of dopa to melanin. With the methods employed, there was no evidence that tyrosinase in the preparations studied had significant ability to mediate the oxidation of tyrosine to melanin (even in the presence of dopa co-factor), although there was abundant evidence that it can mediate the conversion of dopa to melanin. Mammalian peroxidase may have roles in initiating melanin synthesis and catechol amine synthesis in vivo.Supported by USPHS Grant T1 AM 5,220, The General Research Support Fund, Boston City Hospital, and The Pathology Research Fund, St. Vincent Hospital.  相似文献   

17.
The biological activity of phenolic compounds ingested by caterpillars is commonly believed to result from their oxidation, although the products of oxidation have been well-characterized in only a few cases. The initial oxidation products of phenols (semiquinone or phenoxyl radicals) can be measured with electron paramagnetic resonance (EPR) spectrometry. In this study semiquinone radicals formed from tannic acid and gallic acid in the gut fluids of two species of caterpillars were measured. In Orgyia leucostigma, in which ingested phenols are not oxidized, semiquinone radicals were absent or at very low intensities. By contrast, in Malacosoma disstria, in which ingested phenols are oxidized, high semiquinone radical intensities were measured. In the absence of detectable levels of semiquinone radicals, ascorbyl radicals were detected in the EPR spectra instead. High molar ratios of ascorbate to phenols in an artificial diet produced ascorbyl radicals in the midgut fluids of both species, while diets containing low molar ratios produced semiquinone radicals. Similar results were obtained in M. disstria fed the leaves of red oak or sugar maple. The results of this study provide further evidence that ascorbate is an essential antioxidant that prevents the oxidation of phenols in the gut fluids of caterpillars, and demonstrate that EPR spectrometry is a valuable method for determining the degree of oxidative activation of phenols ingested by herbivorous insects.  相似文献   

18.
Copper amine oxidases (CAOs) catalyze the two-electron oxidation of primary amines to aldehydes, utilizing molecular oxygen as a terminal electron acceptor. To accomplish this transformation, CAOs utilize two cofactors: a mononuclear copper, and a unique redox cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ or TOPA quinone). TPQ is derived via posttranslational modification of a specific tyrosine residue within the protein itself. In this study, the structure of an amine oxidase from Hansenula polymorpha has been solved to 2.5 A resolution, in which the precursor tyrosine is unprocessed to TPQ, and the copper site is occupied by zinc. Significantly, the precursor tyrosine directly ligands the metal, thus providing the closest analogue to date of an intermediate in TPQ production. Besides this result, the rearrangement of other active site residues (relative to the mature enzyme) proposed to be involved in the binding of molecular oxygen may shed light on how CAOs efficiently use their active site to carry out both cofactor formation and catalysis.  相似文献   

19.
6-Tetrahydrobiopterin is known to bind to an allosteric site of tyrosinase to directly inhibit the enzyme. However, simultaneous measurements of ultraviolet-visible absorption spectra and oxygen consumption led us to conclude that the inhibition was due to oxidation of 6-tetrahydrobiopterin by dopaquinone. Immediately after addition of 6-tetrahydrobiopterin, tyrosinase stopped producing dopachrome from either tyrosine or dopa. Duration of inhibition was proportional to the concentration of added 6-tetrahydrobiopterin and the enzyme activity was fully restored after the inhibition. Surprisingly, there was a rapid consumption of oxygen during the inhibition period. In addition, absorption spectra indicated that the only reaction that occurred during the inhibition was oxidation of 6-tetrahydrobiopterin to 7,8-dihydrobiopterin. In the absence of tyrosine or dopa, tyrosinase did not oxidize 6-tetrahydrobiopterin, suggesting that a reaction intermediate between dopa and dopachrome was a target for the inhibition. We propose a new mechanism in which dopa is oxidized to dopaquinone and the latter, instead of producing dopachrome, is reduced back to dopa by 6-tetrahydrobiopterin.  相似文献   

20.
RS‐4‐(4‐Hydroxyphenyl)‐2‐butanol (rhododendrol, RD) was used as a skin‐whitening agent until it was reported to induce leukoderma in July 2013. To explore the mechanism underlying its melanocyte toxicity, we characterized the tyrosinase‐catalyzed oxidation of RD using spectrophotometry and HPLC. Oxidation of RD with mushroom tyrosinase rapidly produced RD‐quinone, which was quickly converted to 2‐methylchromane‐6,7‐dione (RD‐cyclic quinone) and RD‐hydroxy‐p‐quinone through cyclization and addition of water molecule, respectively. RD‐quinone and RD‐cyclic quinone were identified as RD‐catechol and RD‐cyclic catechol after NaBH4 reduction. Autoxidation of RD‐cyclic catechol produced superoxide radical. RD‐quinone and RD‐cyclic quinone quantitatively bound to thiols such as cysteine and GSH. These results suggest that the melanocyte toxicity of RD is caused by its tyrosinase‐catalyzed oxidation through production of RD‐cyclic quinone which depletes cytosolic GSH and then binds to essential cellular proteins through their sulfhydryl groups. The production of ROS through autoxidation of RD‐cyclic catechol may augment the toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号