首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of nitroethane as an intermediate in the oxidation of pyruvic oxime to nitrate by an Alcaligenes sp. was examined. Unlike pyruvic oxime, which serves as a sole source of C and N for the bacterium, nitroethane was incapable of supporting the growth of the microbe. Nitroethane was metabolized and diauxic growth did occur, however, if the nitroethane medium was amended with yeast extract. Alcaligenes sp. resting cells and cell-free extracts were prepared from nitroethane-yeast extract grown cultures and the maximum rate of nitrite synthesis when nitroethane was the substrate was 6.8 nmol min-1 mg cell protein-1, a 10-fold lower rate than that previously noted for pyruvic oxime oxidation. These cell-free extracts were unable to metabolize pyruvic oxime. Resting cells and cell-free extracts prepared from Alcaligenes sp. cells grown in a pyruvic oxime medium were, conversely, incapable of metabolizing nitroethane. Collectively, these results indicate that nitroethane is not an intermediate in the pathway of pyruvic oxime oxidation and that two separate enzyme systems exist in the Alcaligenes sp. for the metabolism of pyruvic oxime and nitroethane.  相似文献   

2.
Nitrite Formation from Hydroxylamine and Oximes by Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
Nitrite was formed from hydroxylamine and several oximes by intact cells and extracts of Pseudomonas aeruginosa. The activity was induced by the presence of oximes in the culture medium. Nitroalkanes were not intermediates in the conversion of acetaldoxime, acetone oxime, or butanone oxime to nitrite, since nitromethane inhibited the formation of nitrite from the nitro compounds but not from the corresponding oximes. The oxime apparently functions as a constant source of hydroxylamine during growth of the bacterium. Hydroxylamine at low concentration was converted stoichiometrically to nitrite by extracts of the bacterium; high concentrations were inhibitory. Nicotinamide adenine dinucleotide phosphate, oxygen, and other unidentified cofactors were necessary for the reaction. Actively nitrifying extracts possessed no hydroxylamine-cytochrome c reductase activity. Hyponitrite, nitrous oxide, and nitric oxide were not metabolized.  相似文献   

3.
Mechanism of Nitrification by Arthrobacter sp   总被引:5,自引:0,他引:5  
Resting cells of Arthrobacter sp. excrete as much as 60 mug of hydroxylamine-nitrogen per ml when supplied with ammonium. An organic carbon source in abundant supply is necessary for the oxidation. Resting cells oxidize hydroxylamine to nitrite and 1-nitrosoethanol, the former accumulating only when an exogenous carbon source is available. Cell-free extracts contain an enzyme catalyzing the formation of hydroxylamine from acetohydroxamic acid, a hydroxylamine-nitrite oxido-reductase, and an enzyme producing nitrite and nitrate from various primary nitro compounds. Nitrite is not produced from hydroxylamine by the extracts, but 1-nitrosoethanol is formed from hydroxylamine in the presence of acetate. 1-Nitrosoethanol is also produced from acetohydroxamic acid by these preparations. Nitrite was formed from hydroxylamine, however, by extracellular enzymes excreted by the bacterium.  相似文献   

4.
1. The assimilatory nitrite reductase of the N(2)-fixing bacterium Azotobacter chroococcum was prepared in a soluble form from cells grown aerobically with nitrate as the nitrogen source, and some of its properties have been studied. 2. The enzyme is a FAD-dependent metalloprotein (mol.wt. about 67000), which stoicheiometrically catalyses the direct reduction of nitrite to NH(3) with NADH as the electron donor. 3. NADH-nitrite reductase can exist in two either active or inactive interconvertible forms. Inactivation in vitro can be achieved by preincubation with NADH. Nitrite can specifically protect the enzyme against this inactivation and reverse the process once it has occurred. 4. A. chroococcum nitrite reductase is an adaptive enzyme whose formation depends on the presence of either nitrate or nitrite in the nutrient solution. 5. Tungstate inhibits growth of the microorganism very efficiently, by competition with molybdate, when nitrate is the nitrogen source, but does not interfere when nitrite or NH(3) is substituted for nitrate. The addition of tungstate to the culture media results in the loss of nitrate reductase activity but does not affect nitrite reductase.  相似文献   

5.
The addition of nitrate to cultures of Spirillum itersonii incubated under low aeration produced a diauxic growth pattern in which the second exponential phase was preceded by the appearance of nitrite in the medium. The organism also grew anaerobically in the presence of nitrate. Nitrate reductase activity could be demonstrated in cell-free extracts by use of reduced methyl viologen as the electron donor. The enzyme was located in the supernatant fraction after centrifugation of extracts for 2 hr at 40,000 x g, and it sedimented as a single peak when centrifuged in a sucrose gradient. Nitrate reductase activity was found in cells grown with low aeration without nitrate, but was increased about twofold by addition of nitrate. Enzyme activity was negligible in cells grown with high aeration. The proportion of soluble cytochrome c was increased two- to threefold in cells grown with nitrate. The specific activities of nitrate reductase and soluble cytochrome c rose when nitrate or nitrite was added to cell suspensions incubated with low aeration; nitrite was more effective than nitrate during the early stages of incubation. A nitrate reductase-negative mutant synthesized increased amounts of soluble cytochrome c in response to nitrate or to nitrite in the cell suspension system. It is concluded that enhanced synthesis of soluble cytochrome c does not require the presence of a functional nitrate reductase.  相似文献   

6.
A heterotrophic nitrifyingAlcaligenes sp., previously isolated from soil and shown to be very active in the aerobic oxidation of pyruvic oxime (and hydroxylamine) to nitrite, is now shown to be quite active as a denitrifier. The bacterium synthesized nitrite, nitrous oxide, and nitrogen gas from nitrate when grown anaerobically and could individually reduce nitrate, nitrite, nitric oxide, and nitrous oxide to nitrogen gas when these nitrogen-oxides were added to dense cell suspensions. No evidence was obtained for the release of nitric oxide during reduction of nitrate and nitrite. The specific rates of reduction of the nitrogen-oxide were similar to those of well-known laboratory strains of denitrifying bacteria. The induction of an entire set of denitrifying enzymes at normal levels in a heterotrophic nitrifier is novel. The nitrification-denitrification capability ofAlcaligenes sp. may confer certain advantages to this and analogous organisms in the environment.  相似文献   

7.
Francis K  Gadda G 《Biochemistry》2008,47(35):9136-9144
The deprotonation of nitroethane catalyzed by Neurospora crassa 2-nitropropane dioxygenase was investigated by measuring the formation and release of ethylnitronate formed in turnover as a function of pH and through mutagenesis studies. Progress curves for the enzymatic reaction obtained by following the increase in absorbance at 228 nm over time were visibly nonlinear, requiring a logarithmic approximation of the initial reaction rates for the determination of the kinetic parameters of the enzyme. The pH dependence of the second-order rate constant k cat/ K m with nitroethane as substrate implicates the presence of a group with a p K a of 8.1 +/- 0.1 that must be unprotonated for nitronate formation. Mutagenesis studies suggest that this group is histidine 196 as evident from the inability of a H196N variant form of the enzyme to catalyze the formation of ethylnitronate from nitroethane. Replacement of histidine 196 with asparagine resulted in an approximately 15-fold increase in the k cat/ K m with ethylnitronate as compared to the wild-type, which results from the inability of the mutant enzyme to undergo nonoxidative turnover. The results presented herein are consistent with a branched catalytic mechanism for the enzyme in which the ethylnitronate intermediate formed from the H196-catalyzed deprotonation of nitroethane partitions between release from the active site and oxidative denitrification to yield acetaldehyde and nitrite.  相似文献   

8.
66 representative strains of bacteria, yeasts and fungi were tested for their ability to grow in a semidefined medium containing 0.5% nitroethane as a nitrogen source. About half of them were found capable of growing in the medium. Hansenula beijerinckii, Candida utilis, and Penicillium chrysogenum were most active in assimilating nitroethane. 2-Nitropropane inhibited growth of most of the microorganisms tested in a medium containing 0.2% peptone and 0.2% glycerol. Hansenula mrakii was found to grow rapidly in the nitroethane-peptone medium after a lag phase. Nitrite was accumulated in the culture fluid after the phase of logarithmic multiplication, and increased with increase of the growth, followed by a decline after the maximum growth. The alkyl nitro compounds were oxidatively denitrified to form nitrite by the crude enzyme from Hansenula mrakii. Nitroethane was generally a poor substrate, but was the best inducer to produce the nitro compounds oxidizing enzyme. 2-Nitropropane and nitroethane were enzymatically oxidized to and acetone and acetaldehyde, respectively, which were isolated as 2,4-dinitrophenylhydrazones and identified. Nitrite formed was found to be reduced into ammonia by the intact cells and also the crude enzyme.  相似文献   

9.
Thauera selenatis grows anaerobically with selenate, nitrate or nitrite as the terminal electron acceptor; use of selenite as an electron acceptor does not support growth. When grown with selenate, the product was selenite; very little of the selenite was further reduced to elemental selenium. When grown in the presence of both selenate and nitrate both electron acceptors were reduced concomitantly; selenite formed during selenate respiration was further reduced to elemental selenium. Mutants lacking the periplasmic nitrite reductase activity were unable to reduce either nitrite or selenite. Mutants possessing higher activity of nitrite reductase than the wild-type, reduced nitrite and selenite more rapidly than the wild-type. Apparently, the nitrite reductase (or a component of the nitrite respiratory system) is involved in catalyzing the reduction of selenite to elemental selenium while also reducing nitrite. While periplasmic cytochrome C 551 may be a component of the nitrite respiratory system, the level of this cytochrome was essentially the same in mutant and wild-type cells grown under two different growth conditions (i.e. with either selenate or selenate plus nitrate as the terminal electron acceptors). The ability of certain other denitrifying and nitrate respiring bacteria to reduce selenite will also be described.  相似文献   

10.
Formation of Nitrate from 3-Nitropropionate by Aspergillus flavus   总被引:1,自引:1,他引:0       下载免费PDF全文
Extracts of the hyphae of a nitrifying strain of Aspergillus flavus formed nitrite and nitrate from 3-nitropropionate. Nicotinamide adenine dinucleotide phosphate and nicotinamide adenine dinucleotide enhanced the production of nitrate but not nitrite, whereas cysteine and diethyldithiocarbamate increased nitrite but diminished nitrate synthesis. Quinacrine reduced the extent of conversion of the nitro compound to nitrite and nitrate, but only the inhibition of nitrite formation was completely reversed by flavine coenzymes. Molecular oxygen was essential for this part of the nitrification sequence. 3-Chloropropionate stimulated the oxidation of nitrite by hyphae or enzyme preparations. Although the fungus contained a noncytochrome-linked nitrite-oxidizing enzyme, partially purified preparations free of this enzyme formed both nitrite and nitrate from 3-nitropropionate. Possible mechanisms of this latter stage of heterotrophic nitrification are discussed.  相似文献   

11.
Summary -nitropropionic acid (BNP) was converted to nitrate in media inoculated with A. flavus spores or with replacement cultures of mycelium pregrown in glucose-peptone medium. Conversion by replacement cultures was rapid: 8–30% in 2 days; influenced by pH: most rapid at pH 3.5; and extensive: as much as 80% BNP nitrogen appeared as nitrate after 14 days. Nitrite was detectable in BNP replacement cultures at low levels or not at all, and nitrate was formed in BNP replacement media with or without glucose. Nitrite was not oxidized in growing cultures inoculated with spores, but replacement cultures oxidized over 50% of added nitrite to nitrate in 8 days. No nitrite or nitrate appeared in replacement systems with pyruvic oxime, oxalacetic acid oxime, acetoxime, ketoglutaric acid oxime, or hydroxylamine.Of the three non-nitrifying mutants of A. flavus obtained, all formed nitrate from BNP in replacement but only one oxidized nitrite to nitrate. No accumulation of free or bound hydroxylamine or of nitrite could be detected in the mutants. BNP was detected by qualitative test in cultures of the wild type but not the mutants. Evidence indicates that the pathway in A. flavus is BNPNO3 - rather than BNPNO2 -NO3 -.  相似文献   

12.
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

13.
Dissimilatory nitrate reduction by Propionibacterium acnes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

14.
Zusammenfassung Hydrogenomonas eutropha (syn. Alcaligenes eutrophus) Stamm H 16 wächst anaerob mit Fructose und Nitrat bzw. Nitrit. Autotrophanaerobes Wachstum unter einer H2-CO2-Atmosphäre (90+10 Vol.-%) mit Nitrat als einzigem Wasserstoff-Acceptor ist minimal.Während des anaeroben Wachstums mit Nitrat sind zwei Phasen zu unterscheiden. In der ersten Phase erfolgt die Zellvermehrung auf Kosten der Reduktion von Nitrat zu Nitrit; dieses wird angehäuft. In der zweiten Phase wird Nitrit unter Bildung von Stickstoff reduziert.Gewaschene, anaerob gewachsene Zellen reduzieren Nitrat und Nitrit unter Bildung von N2. Stöchiometrische Experimente mit H2 oder Fructose als H-Donatoren lassen darauf schließen, daß Stickstoff das einzige Produkt der Denitrifikation durch die Zellen ist. Diese Schlußfolgerung wurde durch eine massenspektrometrische Analyse des gebildeten Gases bestätigt. Aerob gewachsene Zellen reduzieren Nitrat nur zu Nitrit. In Gegenwart von Ammonium-Salz gewachsene Zellen reduzieren Nitrat mit sehr geringer Rate.Die Ergebnisse deuten darauf hin, daß Stamm H 16 über nur eine Nitratreductase verfügt. Die Bildung des Enzyms ist durch Ammonium reprimierbar; O2 ist ohne Einfluß. Die Nitritreductase fand sich sowohl in der löslichen Fraktion als auch in den gereinigten Partikeln lokalisiert. Das Nitritreductase-System wird nur unter anaeroben Bedingungen gebildet.
Denitrification in Hydrogenomonas eutropha strain H16
Summary The hydrogen bacterium Hydrogenomonas eutropha (syn. Alcaligenes eutrophus) strain H 16 is able to grow anaerobically with fructose and nitrate or nitrite, respectively. Autotrophic anaerobic growth under a gas atmosphere of hydrogen and carbon dioxide (90+10 vol-%) with nitrate as the sole hydrogen acceptor is minimal.During anaerobic growth with nitrate as H-acceptor, two growth phases are distinguishable: During the first phase cell growth occurs with the reduction of nitrate to nitrite, which is accumulated; on the second phase nitrite is reduced with the formation of gaseous nitrogen.Washed, anaerobically grown cells reduce nitrate and nitrite with the formation of N2. Stoichiometric experiments employing hydrogen or fructose as the hydrogen donors are consistent with the conclusion that nitrogen is the sole product of denitrification by these cells. This was confirmed by mass spectrometric analysis of the gas formed. Aerobically grown cells are able to reduce nitrate only to nitrite; when grown in the presence of ammonia, the reduction rate is very low.The results indicate that strain H 16 contains only one nitrate reductase. The formation of this enzyme system is not influenced by oxygen, however, is repressed by ammonia.When employing a purified soluble fraction and particles, nitrite reductases were found in both fractions. The nitrite reductase system is formed only under anaerobic conditions.

Abkürzungen MB Methylenblau - PMS Phenazinmethosulfat  相似文献   

15.
T Kido  T Yamamoto    K Soda 《Journal of bacteriology》1976,126(3):1261-1265
A nitroalkane-oxidizing enzyme was purified about 1,300-fold from a cell extract of Hansenula mrakii grown in a medium containing nitroethane as the sole nitrogen source by ammonium sulfate fractionation, diethylaminoethyl-cellulose column chromatography, hydroxyapatite column chromatography, and Bio-Gel P-150 column chromatography. The enzyme was shown to be homogeneous upon acrylamide gel electrophoresis and ultracentrifugation. The enzyme exhibits absorption maxima at 274, 370, 415, and 440 nm and a shoulder at 470 nm. Balance studies showed that 2 mol of 2-nitropropane is converted into an equimolar amount of acetone and nitrite with the consumption of 1 mol of oxygen. Hydrogen peroxide is not formed in the enzyme reaction. In addition to 2-nitropropane, 1-nitropropane and nitroethane are oxidatively dentrified by the enzyme, but nitromethane is inert to the enzyme. The nitroalkanes are not oxidized under anaerobic conditions.  相似文献   

16.
Li H  Samouilov A  Liu X  Zweier JL 《Biochemistry》2003,42(4):1150-1159
In addition to nitric oxide (NO) generation from specific NO synthases, NO is also formed during anoxia from nitrite reduction, and xanthine oxidase (XO) catalyzes this process. While in tissues and blood high nitrate levels are present, questions remain regarding whether nitrate is also a source of NO and if XO-mediated nitrate reduction can be an important source of NO in biological systems. To characterize the kinetics, magnitude, and mechanism of XO-mediated nitrate reduction under anaerobic conditions, EPR, chemiluminescence NO-analyzer, and NO-electrode studies were performed. Typical XO reducing substrates, xanthine, NADH, and 2,3-dihydroxybenz-aldehyde, triggered nitrate reduction to nitrite and NO. The rate of nitrite production followed Michaelis-Menten kinetics, while NO generation rates increased linearly following the accumulation of nitrite, suggesting stepwise-reduction of nitrate to nitrite then to NO. The molybdenum-binding XO inhibitor, oxypurinol, inhibited both nitrite and NO production, indicating that nitrate reduction occurs at the molybdenum site. At higher xanthine concentrations, partial inhibition was seen, suggesting formation of a substrate-bound reduced enzyme complex with xanthine blocking the molybdenum site. The pH dependence of nitrite and NO formation indicate that XO-mediated nitrate reduction occurs via an acid-catalyzed mechanism. With conditions occurring during ischemia, myocardial xanthine oxidoreductase and nitrate levels were determined to generate up to 20 microM nitrite within 10-20 min that can be further reduced to NO with rates comparable to those of maximally activated NOS. Thus, XOR catalyzed nitrate reduction to nitrite and NO occurs and can be an important source of NO production in ischemic tissues.  相似文献   

17.
在林肯链霉菌生物合成林可霉素代谢调节的研究中,发现硝酸盐可明显促进林可霉素的生物合成.加入硝酸钾0.8%,林肯链霉菌合成林可霉素的产量可增加37%.在发酵96h之前加入硝酸盐均能促进林可霉毒的合成,但产量的增加随加入时间的延迟而降低.硝酸钾在促进产量的同时,使菌体生长减少,看来硝酸盐对林可霉素的合成与菌体生长之间起着调节作用.洗涤菌体试验指出,硝酸盐的加入诱导了林可霉素合成所需要的酶系,这可能是加入硝酸盐后,产生进一步氮代谢的结果;蛋白胨不能代替硝酸盐,进一步说明硝酸钾的作用并不是作为氮源利用.在蛋白质合成抑制剂氯霉素存在下,硝酸盐不再能促进林可霉素的合成,说明氯霉素抑制了硝酸盐或其代谢中间物所诱导的酶系的合成.同时还报导了镁盐促进林可霉素生物合成现象的初步观察结果.硫酸镁在促进林可霉素产量提高的同时,使菌体生长延迟.硫酸镁的这种作用机制可能是通过磷酸镁铵沉淀,降低了培养基中游离氨和可溶性磷酸盐浓度,解除了铵盐和磷酸盐对林可霉素合成的抑制.  相似文献   

18.
Stöhr C  Strube F  Marx G  Ullrich WR  Rockel P 《Planta》2001,212(5-6):835-841
Purified plasma membranes (PMs) of tobacco (Nicotiana tabacum L. cv. Samsun) roots exhibited a nitrite-reducing enzyme activity that resulted in nitric oxide (NO) formation. This enzyme activity was not detected in soluble protein fractions or in PM vesicles of leaves. At the pH optimum of pH 6.0, nitrite was reduced to NO with reduced cytochrome c as electron donor at a rate comparable to the nitrate-reducing activity of root-specific succinate-dependent PM-bound nitrate reductase (PM-NR). The hitherto unknown PM-bound nitrite: NO-reductase (NI-NOR) was insensitive to cyanide and anti-NR IgG and thereby proven to be different from PM-NR. Furthermore, PM-NR and NI-NOR were separated by gel-filtration chromatography and apparent molecular masses of 310 kDa for NI-NOR and 200 kDa for PM-NR were estimated. The PM-associated NI-NOR may reduce the apoplastic nitrite produced by PM-NR in vivo and may play a role in nitrate signalling via NO formation. Received: 8 May 2000 / Accepted: 24 August 2000  相似文献   

19.
H Shoun  W Suyama  T Yasui 《FEBS letters》1989,244(1):11-14
Both soluble and microsomal fractions of Fusarium oxysporum contain cytochrome P-450(P-450). We report here that the P-450 in the soluble fraction was induced only when nitrate or nitrite was added to the growth medium, whereas the microsomal P-450 was synthesized regardless of the medium compositions. The reduced-CO complex of the soluble P-450 exhibited an absorption spectrum that is different from that of the microsomal counterpart. These results indicate that the soluble P-450 is distinct from the microsomal species and suggest a novel function for the former P-450.  相似文献   

20.
Abstract An enzyme which participated in the oxidation of hydroxylamine to nitrite from was partially purified Alcaligenes faecalis , and some of its properties were studied. The enzyme oxidized aerobically pyruvic oxime to nitrite in the presence of hydroxylamine or ascorbate. As molecular oxygen equimolar to nitrite formed was consumed in the enzymatic oxidation of pyruvic oxime to nitrite, the enzyme was thought to be a dioxygenase. It was an iron protein, and a reducing reagent was required to keep the iron in the ferrous state for the action of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号