首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An investigation was made into the effects of running (1 h at 20 m/min) on central serotonergic and dopaminergic metabolism in trained rats. Methodology involved continuous withdrawal of cerebrospinal fluid (CSF) from the third ventricle of conscious rats and measurements of tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) levels during a 2 h post-exercise period. All three compounds were increased during the hour following exercise and returned to their basal values within an hour later. CSF flow rate was stable when metabolite levels were elevated. Brain determinations indicated that CSF metabolite variations only qualitatively paralleled brain changes. Indeed, post-exercise TRP, 5-HIAA, and HVA levels were increased to a greater extent in brain when compared to CSF. It is suggested that increased serotonergic and dopaminergic metabolism, caused by motor activity, may be involved in the behavioral effects of exercise.  相似文献   

2.
Central dopamine (DA) and 5-hydroxytryptamine (5-HT) metabolism was monitored in conscious, freely moving rats by determination of levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) in CSF samples withdrawn repeatedly from the cisterna magna and treated with acid to hydrolyse DOPAC and HVA conjugates. The effect of tyrosine on DA metabolism was investigated. Time courses of metabolite concentrations in individual rats in a quiet room showed that tyrosine (20, 50, or 200 mg/kg i.p.) was without significant effect; brain changes were essentially in agreement. However, the increases of CSF DOPAC and HVA levels that occurred on immobilisation for 2 h were further enhanced by tyrosine (200 mg/kg). The associated increases of 5-HIAA level were unaffected. The corresponding increases of DA metabolite concentrations in the brains of immobilised rats given tyrosine were less marked than the CSF changes and only reached significance for "rest of brain" DOPAC. The CSF studies revealed large interindividual variation in the magnitude and duration of the effects of immobilisation on transmitter amine metabolism. These results may help toward the elucidation of possible relationships between the neurochemical and behavioural effects of stress.  相似文献   

3.
Brain and cerebrospinal fluid (CSF) levels of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were simultaneously measured in 48 individuals at autopsy. Concentrations of 5-HIAA and HVA in the cerebral cortex were positively correlated with their levels in the CSF for the same individual. Additionally a positive correlation was observed between postmortem CSF levels of 5-HIAA and HVA and a significant concentration gradient for both metabolites was observed in serial fractions of CSF. These findings suggest that determinations of 5-HIAA and HVA in CSF from living individuals may reflect brain metabolite levels as well as the functional activity of these specific neuronal systems.  相似文献   

4.
Portal-systemic encephalopathy (PSE) is characterized by a neuropsychiatric disorder progressing through personality changes, to stupor and coma. Previous studies have revealed alterations of serotonin and of its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in brain tissue and CSF in experimental (rat) and human PSE. Increased brain 5-HIAA concentrations could result from its decreased removal rather than to increased serotonin metabolism. In order to evaluate this possibility, CSF 5-HIAA concentrations were measured using an indwelling cisterna magna catheter technique at various times following end-to-side portacaval anastomosis in rats (the most widely used animal model of PSE) treated with probenecid, a competitive inhibitor that blocks the active transport of acid metabolites out of the brain and CSF. Following portacaval anastomosis and probenecid treatment, CSF concentrations of 5-HIAA were increased to a greater extent than in sham-operated controls. When data were expressed as per-cent baseline values, the relative increase of CSF 5-HIAA in portacaval shunted rats following probenecid treatment was not significantly different from sham-operated controls. These findings confirm that increased 5-HIAA in the CNS in experimental PSE results from increased 5HT metabolism or turnover and that the probenecid-sensitive acid metabolite carrier is intact in PSE.  相似文献   

5.
Cerebrospinal fluid (CSF) concentrations of the monoamine metabolites homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA) are commonly used to provide information about central nervous system (CNS) dopaminergic and serotonergic activity. However, little attention has been given to the effects of sample handling on the concentrations of these compounds in human CSF. Using high-performance liquid chromatography (HPLC) with electrochemical detection, we observed that, in CSF stored at −80°C, concentrations of the serotonin metabolite 5-HIAA and the dopamine metabolite HVA remained unchanged through six 1-h and six 24-h freeze–thaw cycles. Exposure to bright room light (3 h, 1230 lux) resulted in a 5-HIAA concentration that was 96.3±2.0% of the initial and an HVA concentration that was 98.8±1.03% of initial. The pH of the CSF significantly increased during both freeze–thaw series and while maintained on ice (4°C). These results demonstrate the in-use stability of 5-HIAA and HVA in human CSF under commonly-encountered laboratory conditions.  相似文献   

6.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

7.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

8.
The present study was undertaken to determine cerebrospinal fluid (CSF) and brain levels of norepinephrine (NE), serotonin (5-HT) and their metabolites--3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA)--in rats pretreated with 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT). In the 6-OHDA pretreated rats, both CSF and brain concentrations of NE, DOPAC and HVA sustained significant decreases as compared with those in non-treated rats. Positive and significant correlations between CSF and brain levels were observed in respect to NE, DOPAC and HVA. In 5,7-DHT pretreated rats, both CSF and brain concentrations of 5-HT and 5-HIAA were significantly decreased. A positive and significant correlation between CSF and brain levels in respect to 5-HT and 5-HIAA was observed. Further studies were carried out to determine ACh levels of both the CSF and the brain in microspheres (MS)-treated rats, which are used as a model of microembolization. The CSF ACh concentrations in MS-treated groups were significantly decreased as compared with those in non-treated rats. The brain ACh contents also tended to decrease in this group. A positive and significant correlation was observed between CSF and brain levels of ACh. These findings suggest that NE, 5-HT and ACh concentrations in the CSF are direct indications of central noradrenergic, serotonergic and cholinergic nerve activity, respectively.  相似文献   

9.
Background  Assessment of cerebrospinal (CSF) monoamine metabolites 5-hydroxyindoeacetic acid (5-HIAA) and homovanillic acid (HVA), and the serotonin precursor tryptophan (TRP), in chimpanzees may help in understanding the neurobiology underlying aggressive, impulsive behavior in humans and non-human primates.
Methods  Two CSF samples were obtained from 11 peripubertal chimpanzees 8 months apart and were assayed for monoamine metabolite and TRP concentrations.
Results  Substantial inter-individual stability was observed for 5-HIAA (n = 11; r = 0.83, P  <   0.001) and HVA (r = 0.91, P  <   0.001). Females had significantly higher concentrations of 5-HIAA compared to males (F1,8 = 7.31; P  <   0.05). Levels of 5-HIAA (r = −0.62, P  <   0.05), HVA (r = −0.86, P  <   0.001) and TRP levels (r = −0.67; P  <   0.05) decreased with age.
Conclusion  Close parallels were observed between chimpanzees and humans with respect to absolute levels, sex effects, ontogeny, and 5-HIAA-HVA correlations, supporting the potential utility of the measures in understanding relationships between monoamine functioning and behavior in chimpanzees and humans.  相似文献   

10.
3,4-Dihydroxyphenylethylamine (DA, dopamine) and 5-hydroxytryptamine (5-HT) turnover values were determined in freely moving male rats by measuring the rates of accumulation of the acidic metabolites of the above transmitters, i.e., 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in cisternal cerebrospinal fluid (CSF) samples after probenecid (200 mg/kg i.p.) administration. Determinations on samples before and after acid hydrolysis showed that the latter procedure was necessary for DA turnover determination. Thus whereas total (DOPAC + HVA) increased linearly with time after probenecid, free (DOPAC + HVA) did not. This was because the percentage of DOPAC + HVA in conjugated form increased with time. Determinations on a group of 28 rats during the dark (red light) period showed that cisternal amine metabolite concentrations before probenecid injection did not parallel turnover values. This was probably because individual differences in metabolite egress strongly affect the pre-probenecid values. The poor correlations between CSF tryptophan and 5-HT turnover suggested that differences of brain tryptophan concentration were not major determinants of differences of brain 5-HT metabolism within this group of normal rats. Considering that the rats were of similar weight and that the turnover values were all determined at approximately the same time of day, the three- to fourfold ranges of the turnover values are remarkable. The positive correlation between the DA and 5-HT turnovers of individual rats suggests the existence of common effects on DA and 5-HT turnover in normal rats.  相似文献   

11.
Techniques for measuring 5-hydroxyindolacetic acid (5-HIAA) and homovanillic acid (HVA) have been modified to permit the use of smaller samples for measuring these acid monoamine metabolites in human and animal CSF. Levels of both HVA and 5-HIAA were approximately three times as high in human ventricular CSF as in human lumbar CSF. Lumbar CSF levels of 5-HIAA in neurologic patients were significantly higher than those in psychiatric patients. Values were obtained for HVA in dog cisternal CSF and for 5-HIAA in dog, rabbit, and cat cisternal CSF.  相似文献   

12.
Comparatively little is known about the pathways of proximate causation that link divergent genotypes, via neurophysiological differences, to distinct, species-specific social behaviors and systems. One approach to the problem compares gross activity levels of monoamine neurotransmitters (norepinephrine, dopamine, and serotonin), evidenced by their metabolites —3-methoxy-4-hydroxyphenylglycol (MHPG), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), respectively— in cerebrospinal fluid (CSF). We have applied this method to Papio hamadryas and P. anubis, closely related baboon species with divergent social behavior, living in the Awash National Park (ANP), Ethiopia. We had previously shown that adult males of the two species differ in the ratio of HVA to 5-HIAA, and in concentrations of MHPG and HVA, but not 5-HIAA. Here, we compare monoamine metabolite levels of the parental species with those of 49 members of a naturally formed, multigenerational hamadryas × anubis hybrid group. We cage-trapped the baboons in July 1998, sampled their CSF by cisternal puncture, and assayed monoamine metabolites by high-performance liquid chromatography. Previous findings suggested, anomalously, that hybrid males showed the high 5-HIAA levels predicted by the low-serotonin–early-dispersal hypothesis (originally based on observation of rhesus macaques, Macaca mulatta), while hamadryas did not. The present study failed to find higher 5-HIAA levels in hybrids, resolving the anomaly, but leaving the previous result unexplained. Among adult females (underrepresented in our sample) and juveniles, metabolite levels of the hybrids did not differ significantly from either parental species. Overall, adult male hybrids resembled anubis in HVA and HVA/5-HIAA ratio, but did not show the low MHPG levels characteristic of that species. Consistent with a significant genetic influence on species differences in these metabolites, the adult hybrids showed intermediate means and greater intra-population diversity than the parental species for most variables, but showed no indication of hybrid dysgenesis in the form of low intermetabolite correlation. To the contrary, an enhanced HVA–MHPG correlation in the hybrids suggested a species-associated factor (not necessarily genetic) influencing both of these monoamine neurotransmitter systems.  相似文献   

13.
There are conflicting reports of the effects of aging on human neurotransmitter systems as estimated by monoamine metabolite concentrations in cerebrospinal fluid (CSF). These discrepancies may be due to sampling site, age or sex of the subjects or other variables that affect CSF metabolite determinations. Cisternal CSF concentrations of homovanillic acid (HVA), 3-methoxy-4-hydroxyphenyl-ethylene glycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), major metabolites of dopamine, norepinephrine and serotonin, respectively, were measured in rhesus monkeys (Macaca mulatta) of two age groups. Concentrations of HVA and MHPG were significantly lower in the older group of monkeys, whereas no changes in 5-HIAA were found. This supports the hypothesis that brain catecholamine concentrations decline with age.  相似文献   

14.
In humans and other primates low cerebrospinal fluid (CSF) levels of the major serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been correlated to high aggressiveness. This finding forms the basis of the 5-HT deficiency hypothesis of aggression. Surprisingly, this correlation has not been confirmed in rodents so far, while manipulation studies aimed to investigate the link between 5-HT and aggressive behaviour are mostly carried out in rodents. In this study the relation between aggression and CSF monoamine and metabolite concentrations was investigated in male Wildtype Groningen rats. In sharp contrast to the hypothesis and our expectation, a clear positive correlation was found between the individual level of trait-like aggressiveness and CSF concentrations of 5-HT, 5-HIAA, norepinephrine (NE), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC). Shortly after the acute display of aggressive behaviour (as a state-like phenomenon), decreased 5-HT levels and an increase in 5-HIAA/5-HT ratio and NE concentrations were found. Surprisingly, pharmacological challenges known to influence 5-HT transmission and aggressive behaviour did not affect CSF 5-HT and 5-HIAA concentrations, only the NE level was increased. Lesioning 5-HT terminals by 5,7-dihydroxytryptamine (5,7-DHT) administration caused a decrease in CSF 5-HT and 5-HIAA, but without affecting aggressive behaviour. The observed positive correlation between CSF 5-HIAA and trait aggressiveness makes it questionable whether a direct extrapolation of neurobiological mechanisms of aggression between species is justified. Interpretation of CSF metabolite levels in terms of activity of neural substrates requires a far more detailed knowledge of the dynamics and kinetics of a neurotransmitter after its release.  相似文献   

15.
Male rhesus monkeys typically disperse from their groups of birth when they are between 3 and 5 years of age. Some males, however, delay dispersal from their natal groups until after they are 5 years old. The current study evaluated central monoaminergic neurotransmitter activity as a potential correlate of such “delayed” dispersal among 54 randomly selected adolescent and adult male rhesus monkeys (Macaca mulatta) captured on Cayo Santiago during an annual trapping season. Specifically, cerebrospinal fluid (CSF) concentrations of 5-hydroxyindoleacetic acid (5-HIAA, a serotonin metabolite), 3-methoxy-4-hydroxyphenylglycol (MHPG, a norepinephrine metabolite), and homovanillic acid (HVA, a dopamine metabolite) were compared in monkeys 60 months of age or more that had either dispersed (n = 33) or were still in their natal groups (n = 5). The monkeys still in their natal groups had higher CSF concentrations of both 5-HIAA and HVA (but not MHPG) than did the animals that had emigrated (Ps < 0.05). Subsequent analysis indicated that only 5-HIAA independently differentiated dispersing monkeys from delayed dispensers. Of monkeys less than 60 months of age (n = 16), only two had dispersed from their natal groups; in this age class, there were no significant differences between dispersing and natal individuals in any CSF monoaminergic metabolite (all Ps = NS). Finally, there was no difference in the CSF 5-HIAA concentrations of the five delayed dispersers and those of younger animals (P = NS), suggesting a failure to experience the frequently reported adolescent decline in serotonergic activity. In contrast, the CSF 5-HIAA concentrations of the dispersing animals were lower than those of the younger animals (P < 0.05), consistent with either an agerelated decline or an effect of dispersal per se. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Cerebrospinal fluid (CSF) was removed at a constant flow rate of 1 microliter/min from the third ventricle of anesthetized rats. Every 15 min, CSF dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were determined by direct injection of CSF into a liquid chromatographic system coupled with electrochemical detection. Mean CSF concentrations of DOPAC, HVA, and 5-HIAA were 1.29 microM, 0.88 microM, and 2.00 microM, respectively. In order to determine the turnover rates of dopamine (DA) and serotonin, experiments using monoamine oxidase (MAO) inhibition were performed. Tranylcypromine (20 mg/kg i.p.) induced a sharp exponential decrease of CSF DOPAC, HVA, and 5-HIAA, with respective half-lives of 15.60 min, 16.91 min, and 77.23 min. Their respective turnover rates were 3.74, 2.22, and 1.18 nmol X ml-1 X h-1. m-Hydroxybenzylhydrazine (NSD-1015, 100 mg/kg i.p.) and monofluoromethyl-DOPA (100 mg/kg i.p.), two decarboxylase inhibitors, induced a slow exponential decrease of all three CSF metabolites. alpha-Methyl-p-tyrosine (250 mg/kg i.p.) also induced a slow exponential decrease of DOPAC and HVA. These decreases of CSF DOPAC and HVA induced by DA synthesis inhibitors may reflect the turnover of DA in vivo. Haloperidol (0.5 mg/kg i.p.) considerably enhanced CSF DOPAC and HVA without affecting 5-HIAA, confirming that dopaminergic receptors modulate DA neurotransmission in vivo. Haloperidol administered 1.5 h after NSD-1015 did not increase DOPAC and HVA, in contrast to reserpine (5 mg/kg i.p.) injected under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Concentrations of acetylcholine and the monoaminergic neurotransmitters dopamine, serotonin and their respective metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA), 5-hydroxyindolacetic acid (5-HIAA) and choline were simultaneously determined in the corpus striatum of rats after 15 min. complete cerebral ischemia (CCI) and in different intervals (1, 24, 48, 72, 96 hours) of postischemic cerebral reperfusion. Results were compared to respective sham-operated control animals. After 15 min. CCI acetylcholine concentration decreased to 15%, and dopamine concentration to 56% of the control values. The metabolite levels of DOPAC decreased to 40% and HVA to 64% of the control values. Acetylcholine, dopamine, serotonin and choline concentrations were not changed significantly after reperfusion. The metabolites HVA and 5-HIAA showed their maximum increases after 1 and 24 hours of reperfusion, additionally HVA was decreased both, after 72 and 96 hours of reperfusion. The data indicate that surprisingly little permanent damage could be caused by a 15 min. ischemia in the striatum. Tissue levels of the neurotransmitters appeared differentially altered but similarly regulated during ischemia and subsequent recirculation. Acetylcholine and dopamin levels decreased profoundly during ischemia. However, acetylcholine levels could be compensated rapidly during reperfusion, whereas the dopaminergic system showed a long-lasting change in its turnover rate. Although serotonin levels were unaffected by CCI, there was an increase of its presumed turnover rate during reperfusion.  相似文献   

18.
The action of kainic acid (KA), quisqualic acid (QA), and 1-(4-chlorobenzoyl)-piperazine-2,3-dicarboxylic acid (pCB-PzDA) was investigated in the central nervous system of male Sprague Dawley rats. Intracerebroventricularly injected KA and QA (100 nmol) induced spike discharges, and pCB-PzDA (100 nmol) suppressed electrocorticograms for one hour. pCB-PzDA enhanced the KA-induced spike discharges and inhibited those induced by QA. 2,3-Di-hydroxyphenylacetic acid(DOPAC) and homovanillic acid (HVA) levels were increased transiently by 10 nmol and continuously by 100 nmol of KA. KA dose-dependently increased 5-hydroxyindoleacetic acid (5-HIAA) levels 2 hours after administration. While 10 nmol of QA slightly increased the HVA level, 100 nmol of QA significantly increased DOPAC, HVA, and 5-HIAA levels. DOPAC and HVA levels were increased by 100 nmol of pCB-PzDA, although this agent inhibited KA-induced increases in DOPAC, HVA, and 5-HIAA levels. On the other hand, while pCB-PzDA first inhibited QA-induced increases in DOPAC, HVA and 5-HIAA levels for one hour, DOPAC and HVA levels thereafter increased additively. These findings suggest that pCB-PzDA may act not only as a NMDA antagonist, but that it may also act directly on dopaminergic neurons.  相似文献   

19.
To assess maturation of central serotonin and catecholamine pathways at birth, we measured lumbar CSF homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), stable acid metabolites of dopamine and serotonin, using HPLC with electrochemical detection. CSFs from 57 neonates (38 premature and 19 at term) and 13 infants 1-6 months old were studied. HVA levels increased with maturity (p less than 0.05; ANOVA), whereas 5-HIAA levels were similar in all these subjects. HVA/5-HIAA ratios increased markedly from 1 +/- 0.12 in the most premature neonates to 1.98 +/- 0.17 in the older infants (p less than 0.01; t test). There were no sex differences for these values.  相似文献   

20.
We used a cross-sectional sample to compare ontogenetic trajectories in the concentrations of monoamine neurotransmitter metabolites in cerebrospinal fluid of wild anubis (Papio anubis, n = 49) and hamadryas (P. hamadryas, n = 54) baboons to test the prediction that they would differ, especially in males, in association with their distinct behavioral ontogenies. Values of all 3 metabolites [3-methoxy-4-hydroxyphenylglycol (MHPG), the norepinephrine metabolite; 5-hydroxyindoleacetic acid (5-HIAA), the serotonin metabolite; and homovanillic acid (HVA), the dopamine metabolite] declined consistently with dentally-calibrated maturation, and few taxon-related differences were apparent among juveniles. Adult females were too few for adequate comparison, but a discriminant function suggested that they might differ by taxon. Adult males of the 2 species differed strikingly from juveniles and from each other. Contrary to our initial hypothesis, adult male anubis had significantly lower HVA and MHPG, and higher 5-HIAA levels, than predicted from the overall, age-related trend, and MHPG continued to decline with age among adults. As young adults, male hamadryas had low 5-HIAA and a high HVA/5-HIAA ratio, while older males [normatively one-male unit (OMU) leaders] showed a reversal in the trend, with 5-HIAA rising and the HVA/5-HIAA ratio tending to fall. We speculate that the results are related to the dispersing and philopatric ontogenies of anubis and hamadryas males, respectively. Adult male anubis, whose fitness depends on building social networks with nonkin, have high relative serotonin activity, commonly associated with greater social circumspection and skill. Young adult male hamadryas, living among agnatic kin and mating opportunistically, exhibit low 5-HIAA levels, generally associated with impulsivity and social irresponsibility. This reverses as a male approaches the age at which he is normatively the leader of a one-male unit (OMU), and his fitness depends on his maintaining stable relationships with other leaders and with females. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号