首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleoside diphosphate kinase has been shown to play a role in proliferation and development. Microtubules have been evoked as a possible target of NDP kinase action; in particular it was proposed that NDP kinase could regulate the cellular pool of polymerizable GTP-tubulin by direct phosphorylation of tubulin bound GDP. We show that this reaction does not occur in vitro and also that NDP kinase does not bind to microtubules both in the presence and absence of MAPs. Thus, any possible physiological effect of NDP kinase on microtubule dynamics is exerted only by modulating the concentrations of free guanine nucleotides in the vicinity of microtubules.  相似文献   

2.
The microtubule-associated nucleoside diphosphate kinase   总被引:7,自引:0,他引:7  
Microtubule protein prepared by cycles of assembly-disassembly contains a nucleoside diphosphate kinase (NDP kinase) activity. We have isolated the NDP kinase responsible for this activity from twice-polymerized bovine brain microtubule protein by a five-step chromatographic procedure. The molecular weight of this enzyme was 103,000 +/- 7,000 daltons as determined by sedimentation equilibrium experiments performed with a Beckman Airfuge. A doublet of subunit bands with molecular masses of about 18,000 daltons was detected by silver staining after gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this preparation. We conclude that the enzyme is a hexamer, although we cannot identify the mix of subunits. We were able to isolate only nanogram quantities of this enzyme, too little for extensive studies, so we isolated the enzyme directly from bovine brain without a preliminary microtubule protein isolation. The whole-brain NDP kinase was isolated by the same chromatographic steps as the enzyme from microtubule protein preparations. Both enzymes had a doublet of subunits at the same molecular weights and both were the same isozyme, chromatofocusing at a pH of 8.0. Both enzymes had similar kinetic properties and similar thermal inactivation profiles. These similar properties of the two enzymes suggest that they are identical. Both subunits of NDP kinase could be reversibly phosphorylated by ATP. Phosphorylation of the native enzyme created multiple, more acidic forms that retained activity. The isolation of this NDP kinase, which can copurify with microtubule protein through cycles of assembly-disassembly, will facilitate future studies on the role of this enzyme in the mechanism and regulation of microtubule assembly.  相似文献   

3.
Tubulin strictly requires GTP for its polymerization. Nevertheless, microtubule assembly can be observed in the presence of ATP as the only nucleotide triphosphate, due to the nucleoside diphosphate kinase (NDP kinase) present in microtubule preparations, and which phosphorylates the GDP into GTP. We have purified this enzyme from pig brain to homogeneity, and shown that its relative mass is close to 100 000 in its native state, and 17 000 under denaturing conditions. Therefore it is probably a hexamer, as previously shown for the enzyme from other sources, and also presents a microheterogeneity, with the major isoforms between pI 5.0 and 6.0. The enzyme is transiently phosphorylated during catalysis, as expected within a ping-pong bi-bi mechanism. The effect of the NDP kinase on pure tubulin polymerization was studied: in the presence of NDP kinase, the lag time observed in the kinetics of microtubule assembly was shorter and the final extent of assembly was unchanged. The effect of the enzyme was observed at enzyme concentrations 900-fold lower than tubulin concentration, which shows that the NDP kinase acts catalytically. Kinetic data show that the catalytic effect of the NDP kinase is faster than the rate of nucleotide exchange on tubulin under the same conditions. This result demonstrates that the tubulin-GDP complex itself is a substrate for the enzyme, which may indicate that the GDP bound to tubulin at the E site is exposed on the surface of dimeric tubulin.  相似文献   

4.
Tubulin carboxypeptidase, the enzyme which releases the COOH terminal tyrosine from the a-chain of tubulin, remains associated with microtubules through several cycles of assembly/disassembly (Arce CA, Barra HS: FEBS Lett 157: 75–78, 1983). Here, we present evidence indicating that in rat brain extract the carboxypeptidase/microtubules association is regulated by the relative activities of endogenous protein kinase(s) and phosphatase(s) which seem to determine the phosphorylation state of the enzyme (or another entity) and in some way the affinity of the enzyme for microtubules. The presence of 2.5 mM ATP during the in vitro microtubule formation resulted in a low recovery of carboxypeptidase activity in the microtubule fraction. This ATP-induced effect was not due to alteration of the enzyme activity or to inhibition of microtubule assembly but to a decrease of the association of the enzyme with microtubules. We found that the ATP-induced effect was not mediated by modifications on the microtubules but, presumably, on the enzyme molecule. The non-hydrolyzable ATP analogue, AMP-PCP, did not reproduce the effect of ATP. The inclusion of phosphatase inhibitors in the homogenization buffer also led to a decrease in the amount of tubulin carboxypeptidase associated with microtubules. Finally, we found that, in concordance with the mechanism hypothesized, the magnitude of the carboxypeptidase/microtubule association correlated well with the different incubation conditions created to favor maximal, minimal or intermediate protein phosphorylation states.  相似文献   

5.
Nucleoside diphosphate (NDP) kinase has been postulated to generate GTP from the GDP bound to tubulin. The purified chick brain enzyme was studied with respect to its kinetic parameters, and the protein-protein interactions between the NDP kinase and tubulin were examined. No specific interaction is observed between the enzyme and assembled microtubules, tubulin dimers, or tubulin-microtubule-associated protein (MAP) oligomers under a variety of nucleotide conditions. The apparent association is demonstrated to result from NDP kinase binding to a co-purifying contaminant. The absence of detectable NDP kinase-tubulin interactions indicates that NDP kinase does not directly charge up tubulin-GDP.  相似文献   

6.
Microtubule protein, prepared by cycles of polymerisation and dissociation, contained a nucleoside diphosphokinase (NDP kinase) activity (EC 2.7.4.6). This activity was not intrinsic to the tubulin dimer or the so-called microtubule-associated proteins. The NDP kinase had the following properties. (1) The enzyme existed in a low-molecular-weight form and in association with the complex of microtubule-associated proteins and tubulin (i.e. multimeric tubulin). (2) The low-molecular-weight species was also formed by dissociation of multimeric tubulin by salt or by removal of microtubule-associated proteins on phosphocellulose. (3) GDP bound to the exchangeable site of multimeric tubulin and also GDP derived from the E site of the tubulin dimer was a substrate for the NDP kinase. (4) The NDP kinase showed a 7-fold increase in activity during ATP-dependent microtubule assembly. On the basis of these properties, it is proposed that microtubule protein contains an NDP kinase specifically associated with tubulin and its functions.  相似文献   

7.
Glyceraldehyde 3-phosphate dehydrogenase, a tetramer of 140,000 Da, interacts with in vitro reconstituted microtubules. It results in a partial inhibition of the activity of the microtubule-bound enzyme. After cold depolymerization of the microtubule-glyceraldehyde 3-phosphate dehydrogenase complexes, a fraction of the enzyme is recovered in an active form in the disassembly supernatant; the other fraction devoid of activity, identified by polyacrylamide gel electrophoresis, remains associated with the undepolymerizable microtubule protein pellet. The inactivation of the microtubule-bound enzyme is related to the concentration of microtubule protein. Higher the concentration of microtubule protein, lower the fraction of inactivated enzyme; consequently, glyceraldehyde 3-phosphate dehydrogenase is able to copolymerize quantitatively with microtubule protein through one assembly-disassembly cycle, provided that the concentration of microtubule protein is high. Monomeric glyceraldehyde 3-phosphate dehydrogenase (molecular weight: 35,000) devoid of enzyme activity, prepared by reversible dissociation of the tetrameric enzyme, also binds to microtubules and is quantitatively recovered in the undepolymerizable microtubule protein fraction after cold treatment. These results indicate that interacting with microtubules, glyceraldehyde 3-phosphate dehydrogenase partly dissociates into inactive monomers, this process is regulated by the concentration of assembled microtubule protein, and active and inactive glyceraldehyde 3-phosphate dehydrogenase bound to microtubules have different fate at the step of microtubule disassembly. These data suggest that an association of glyceraldehyde 3-phosphate dehydrogenase to microtubules could play a role in modulating the activity of the glycolytic enzyme in intact cells.  相似文献   

8.
Nucleoside-diphosphate (NDP) kinase (NTP:nucleoside-diphosphate phosphotransferase) catalyzes the reversible transfer of gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates through an invariant histidine residue. It has been reported that the high-energy phosphorylated enzyme intermediate exhibits a protein phosphotransferase activity toward the protein histidine kinases CheA and EnvZ, members of the two-component signal transduction systems in bacteria. Here we demonstrate that the apparent protein phosphotransferase activity of NDP kinase occurs only in the presence of ADP, which can mediate the phosphotransfer from the phospho-NDP kinase to the target enzymes in catalytic amounts (approximately 1 nm). These findings suggest that the protein kinase activity of NDP kinase is probably an artifact attributable to trace amounts of contaminating ADP. Additionally, we show that Escherichia coli NDP kinase, like its human homologue NM23-H2/PuF/NDP kinase B, can bind and cleave DNA. Previous in vivo functions of E. coli NDP kinase in the regulation of gene expression that have been attributed to a protein phosphotransferase activity can be explained in the context of NDP kinase-DNA interactions. The conservation of the DNA binding and DNA cleavage activities between human and bacterial NDP kinases argues strongly for the hypothesis that these activities play an essential role in NDP kinase function in vivo.  相似文献   

9.
A nucleosidediphosphate kinase activity (EC 2.7.4.6) which phosphorylates GDP to GTP is present in bovine brain microtubule protein prepared by cycles of assembly-disassembly. This activity persists through 5 cycles of assembly-disassembly and sediments with microtubules in sucrose density gradients, but is not associated with the tubulin dimer. It is proposed that the kinase is an integral part of the microtubule and is therefore a microtubule associated protein (MAP). Several isozymes of nucleosidediphosphate kinase exist in our preparations with a pI 7.6 form predominant. It may be speculated that this enzyme affects tubulin assembly in vivo by modulating the GTPGDP ratio in the microtubule environment.  相似文献   

10.
A MgATPase has been isolated and characterized from unfertilized sea urchin eggs which is very similar, but not identical, to latent activity axonemal dynein. The cytoplasmic MgATPase activity sediments at 20 S, slightly slower than 21 S latent activity flagellar dynein. Activity is stimulated by nonionic detergent and is inhibited by sodium orthovanadate but is not as sensitive to vanadate as is 21 S flagellar dynein. The egg 20 S MgATPase is composed, at least in part, of three high molecular weight polypeptides. In addition, two intermediate-sized polypeptides appear to co-sediment with the 20 S MgATPase activity. A novel microtubule-affinity assay reveals that high molecular weight polypeptides 1 and 2 of the egg 20 S MgATPase can bind to reassembled microtubules and can be released from the microtubules with MgATP2-. Further, the apparent specific activity of the egg MgATPase is enriched 15-fold by a single microtubule binding step. The results suggest that the cytoplasmic 20 S MgATPase is a dynein-like microtubule translocator which resides in the unfertilized egg awaiting future incorporation onto microtubules in order to perform work. The egg 20 S enzyme might function in cytoplasmic microtubule-mediated movement or it might be a precursor of embryonic ciliary dynein.  相似文献   

11.
In previous work we have demonstrated that the microtubule-associated protein 2 (MAP 2) molecule consists of two structural parts. One part of the molecule, referred to as the assembly-promoting domain, binds to the microtubule surface and is responsible for promoting microtubule assembly; the other represents a filamentous projection observed on the microtubule surface that may be involved in the interaction of microtubules with other cellular structures. MAP 2 is known to be specifically phosphorylated as the result of a protein kinase activity that is present in microtubule preparations. We have now found that the activity copurifies with the projection portion of MAP 2 itself. Kinase activity coeluted with MAP 2 when microtubule protein was subjected to either gel- filtration chromatography on bio-gel A-15m or ion-exchange chromatography on DEAE- Sephadex. The activity was released from microtubules by mild digestion with chymotrypsin in parallel with the removal by the protease of the MAP 2 projections from the microtubule surface. The association of the activity with the projection was demonstrated directly by gel filtration chromatography of the projections on bio-gel A-15m. Three protein species (M(r) = 39,000, 55,000, and 70,000) cofractionated with MAP 2, and two of these (M(r) = 39,000 and 55,000) may represent the subunits of an associated cyclic AMP- dependent protein kinase. The projection-associated activity was stimulated 10-fold by cyclic AMP and was inhibited more than 95 percent by the cyclic AMP-dependent protein kinase inhibitor from rabbit skeletal muscle. It appeared to represent the only significant activity associated with microtubules, almost no activity being found with tubulin, other MAPs, or the assembly-promoting domain of MAP 2, and was estimated to account for 7-22 percent of the total brain cytosolic protein kinase activity. The location of the kinase on the projection is consistent with a role in regulating the function of the projection, though other roles for the enzyme are also possible.  相似文献   

12.
Two types of nucleoside diphosphate kinase (NDP kinase I and NDP kinase II) have been purified from spinach leaves to electrophoretic homogeneity. The enzymes were copurified with apparent [35S]GTP-gamma S-binding activities. NDP kinase I, which was not adsorbed to a hydroxyapatite column, and NDP kinase II, which was adsorbed, had molecular weights of 16,000 and 18,000, respectively, as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The molecular weights determined by gel filtration were 92,000 and 110,000, respectively, suggesting that both enzymes are composed of six identical subunits. Minor differences in some amino acids between NDP kinase I and NDP kinase II were observed when both enzymes were analyzed for amino acid composition. The apparent [35S]GTP gamma S-binding activity of purified NDP kinase I and NDP kinase II was found to be due to the formation of a [35S]thiophosphorylated enzyme, which is the intermediate of the NDP kinase reaction.  相似文献   

13.
Nucleoside diphosphate kinase (NDP kinase) from Paramecium was purified to homogeneity. The native enzyme was 80 kDa (by gel filtration), with subunits of 18 and 20 kDa. Near the amino terminus, 15 of 20 residues were identical with those in human NDP kinase, and 17 of 20 with the awd gene product from Drosophila. NDP kinase bound α-labeled ATP and GTP, and a photoreactive GTP analog labeled both subunits. Purified NDP kinase underwent autophosphorylation on a histidine and a serine residue using either ATP or GTP as a substrate. The enzyme also catalyzed acid-stable phosphorylation of casein and phosvitin. This protein kinase activity is distinct from the histidine phosphorylation that is part of the NDP kinase catalytic cycle. Antiserum against the purified protein from Paramecium cross-reacted with 16- to 20-kDa proteins in most species tested, and with a larger protein (44 kDa) in Paramecium, Xenopus, and two human lines. The multiple forms (20 and 44 kDa) of the NDP kinase in Paramecium and its protein kinase activity, suggest that the protein is more than a housekeeping enzyme; it may have regulatory roles such as those of the NDP kinase-like awd protein of Drosophila and Nm23 protein of humans.  相似文献   

14.
Spatial organization of axonal microtubules   总被引:9,自引:8,他引:1       下载免费PDF全文
《The Journal of cell biology》1984,99(4):1289-1295
Several workers have found that axonal microtubules have a uniform polarity orientation. It is the "+" end of the polymer that is distal to the cell body. The experiments reported here investigate whether this high degree of organization can be accounted for on the basis of structures or mechanisms within the axon. Substantial depolymerization of axonal microtubules was observed in isolated, postganglionic sympathetic nerve fibers of the cat subjected to cold treatment; generally less than 10% of the original number of microtubules/micron 2 remained in cross section. The number of cold stable MTs that remained was not correlated with axonal area and they were also found within Schwann cells. Microtubules were allowed to repolymerize and the polarity orientation of the reassembled microtubules was determined. In fibers from four cats, a majority of reassembled microtubules returned with the original polarity orientation. However, in no case was the polarity orientation as uniform as the original organization. The degree to which the original orientation returned in a fiber was correlated with the number of cold-stable microtubules in the fiber. We suggest that stable microtubule fragments serve as nucleating elements for microtubule assembly and play a role in the spatial organization of neuronal microtubules. The extremely rapid reassembly of microtubules that we observed, returning to near control levels within the first 5 min, supports microtubule elongation from a nucleus. However, in three of four fibers examined this initial assembly was followed by an equally rapid, but transient decline in microtubule number to a value that was significantly different than the initial peak. This observation is difficult to interpret; however, a similar transient peak has been reported upon repolymerization of spindle microtubules after pressure induced depolymerization.  相似文献   

15.
16.
Abstract– ATP-hydrolase activity is present in microtubules prepared from extracts of bovine splenic nerve.
The reassembled microtubules contain several proteins in addition to tubulin, including two which appear to be similar to the 'dynein-like' polypeptides found in preparations of brain microtubules by other authors.
The sensitivity of the ATP-hydrolase activity to Na+ and K+ ions and to ouabain suggests that it can be ascribed to a membrane-bound sodium transport ATP-hydrolase rather than to 'dynein-like' polypeptides. This view is supported by the presence of phospholipids in the microtubule preparations even though membrane fragments could not be demonstrated by electron microscopy.  相似文献   

17.
S Roychowdhury  F Gaskin 《Biochemistry》1986,25(24):7847-7853
Two conflicting interpretations on the role of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in microtubule protein and tubulin assembly have been previously reported. One study finds that GTP gamma S promotes assembly while another study reports that GTP gamma S is a potent inhibitor of microtubule assembly. We have examined the potential role of Mg2+ to learn if the conflicting interpretations are due to a metal effect. Turbidity, electron microscopy, and nucleotide binding and hydrolysis were used to analyze the effect of the Mg2+ concentration on GTP gamma S-induced assembly of microtubule protein (tubulin + microtubule-associated proteins) in the presence of buffer +/- 30% glycerol and in buffer with GTP added before or after GTP gamma S. GTP gamma S substantially lowers the Mg2+ concentration required to induce cross-linked or clustered rings of tubulin. These cross-linked rings do not assemble well into microtubules, and GTP only partially restores microtubule assembly. However, taxol will promote GTP gamma S-induced cross-linked rings of microtubule protein to assemble into microtubules. The effect of GTP gamma S on microtubule protein assembly in the presence of Zn2+ with and without added Mg2+ suggests that GTP gamma S also effects the formation of Zn2+-induced sheet aggregates. Purified tubulin was used in assembly experiments with Mg2+, Zn2+, and taxol to better understand GTP gamma S interactions with tubulin. The optimal Mg2+ concentration for assembly of tubulin is lower with GTP gamma S than with GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Nucleoside diphosphate kinase in the brain of Bombyx mori was purified by ammonium sulfate fractionation, and a sequence of chromatographies on DEAE-Cellulofine, hydroxyapatite, Mono-S, and Mono-Q column. The purified enzyme preparation was found to be electrophoretically homogeneous on SDS-PAGE, and its molecular mass was determined to be 18 kDa. The purified protein was digested and the amino acid sequences of resulting peptides were determined. The enzyme showed high similarity to the amino acid sequences of the Drosophila NDP kinase. The enzyme showed NDP kinase activity and mediated the phosphorylation of myelin basic protein. Gel filtration and Hill plot analysis indicate that the purified NDP kinase forms a tetramer and shows little interaction among substrates. Dephosphorylation of NDP kinase by bacterial alkaline phosphatase increased NDP kinase activity. This result indicates that phosphorylation of NDP kinase represses NDP kinase activity.  相似文献   

19.
The product of the abnormal wing discs (awd) gene of Drosophila is 78% identical to the product of the nm23 gene of mammals, which is differentially expressed in certain metastatic tumors. We present evidence that the awd gene codes for a nucleoside diphosphate kinase (NDP kinase) and that this Awd/NDP kinase is microtubule associated. Neuroblasts in Drosophila larvae homozygous for a null mutation in the awd gene are arrested in metaphase, indicating that microtubule-associated Awd/NDP kinase plays a critical role in spindle microtubule polymerization.  相似文献   

20.
The phosphorylation of rat brain microtubule protein on intracranial injection of labeled phosphate has been analyzed. The major microtubule protein components phosphorylated in vivo in rat brain are the high-molecular-weight microtubule-associated proteins (MAPs) MAP-1A, MAP-1B, and MAP-2. A slight phospholabeling of beta-tubulin, which corresponds to the phosphorylation of a minor neuronal beta-tubulin isotype, is also observed. Whereas MAP-1B, MAP-2, and beta-tubulin are phosphorylated in the brain of 5-day-old rat pups, when most neurons of the CNS are extending processes, MAP-1A phosphorylation is observed only after neuronal maturation takes place. The phosphorylation of MAP-1A, MAP-1B, and beta-tubulin may be due mainly to casein kinase II or a related enzyme, whereas MAP-2 appears to be modified by other enzymes such as the cyclic AMP-dependent protein kinase (protein kinase A) and the calcium/phospholipid-dependent protein kinase (protein kinase C). Microtubule protein phosphorylation has also been studied in neuronal cultures. In differentiated neuroblastoma cells, only MAP-1B and beta-tubulin are phosphorylated in a manner coupled to neurite outgrowth. In primary cultures of fetal rat brain neurons, the pattern of microtubule protein phosphorylation resembles that found in vivo in rat pup brain. As phosphorylated MAP-1A and MAP-1B are present mainly on assembled microtubules, whereas the phosphorylation of MAP-2 decreases its interaction with microtubules, a role can be suggested for the phosphorylation of these proteins in the regulation of microtubule assembly and disassembly during neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号