首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
Candida dubliniensis and Candida albicans cause most of the oral candidiasis infections in AIDS patients. Unlike C. albicans, which variably expresses cell surface hydrophobicity (CSH) depending on environmental conditions, C. dubliniensis is hydrophobic under all environmental conditions. C. dubliniensis produces CdCSH1p, a protein related to CaCSH1p that contributes to CSH expression of C. albicans. We investigated whether environmental conditions affect CdCSH1p expression, CSH avidity, and adhesion to fibronectin (Fn). C. dubliniensis CD36 was grown at 23°C and 37°C in four different media. CdCSH1p expression was affected by growth temperature, with cells grown at 37°C expressing the protein, but cells grown at 23°C did not. Hydrophobic avidity for two media was higher in cells grown at 37°C than at 23°C. Cells grown at 23°C were generally less adherent than 37°C-grown cells to Fn. The results suggest CdCSH1p but not hydrophobic avidity may have a role in adhesion of C. dubliniensis to Fn.  相似文献   

2.
3.
Studies of the marine green flagellate Dunaliella tertiolecta have confirmed and extended previous observations of Steemann Nielsen and his colleagues. Algae, grown at 12°C, assimilated carbon dioxide under light-saturated conditions more rapidly than did those grown at 20°C; for both, the assimilation rate being higher at 20°C than at 12°C. Cells grown at the lower temperature contained higher concentrations of soluble protein, higher activities of ribulose diphosphate carboxylase and showed an enhanced relative rate of protein synthesis during the photosynthetic assimilation of carbon dioxide. This appears to represent true adaptation since it allowed the growth rate at 12°C to be almost the same as that at 20°C. Studies of the marine diatom Phaeodactylum tricornutum have not revealed the same picture of temperature adaptation. Cultures grown at 5°C had significantly higher rates of photosynthesis than did those grown at 10°C, but the same was not true when algae grown at 10°C were compared with those grown at 20°C. In this organism, growth at the lower temperatures reduced its ability to photosynthesize at 20°C. Cells grown at the lower temperatures contained more protein than did those grown at 20°C; this was particularly marked in cells growing at 5°C, a temperature which reduced the growth rate. The relative rate of protein synthesis was higher in Phaeodactylum grown at lower temperatures; but this difference was most marked when the measurements were made at 20°C.  相似文献   

4.
Two different growth media, one based on Eagle's minimum essential medium (MEM) and the other on Earle's balanced salt solution–lactalbumin hydrolysate–yeast extract (YLE), were used for growing primary chick embryo cells (CEC), and resistance to viral infection and interferon production induced by polyinosinic-polycytidylic acid (poly I·poly C) were compared. In CEC grown in Eagle's MEM, treatment with poly I·poly C at a concentration as low as 1.0 ng/ml was sufficient to induce a detectable resistance to infection with vesicular stomatitis virus (VSV), while more than 300-fold concentrated poly I·poly C was required to induce a similar resistance when the cells were grown in YLE. The cells grown in YLE did not produce an appreciable amount of interferon, whereas a significantly higher level of interferon was produced by the cells grown in Eagle's MEM. A similar phenomenon was observed in the interferon production of chick embryo cells treated with ultraviolet light (UV)-irradiated Newcastle disease virus (NDV) and in the induction of resistance to vaccinia virus in cells treated with poly I·poly C. It was found that the response of cells, bathing in one growth medium, to poly I·poly C was not affected by replacing it with the other at the same time with the addition of poly I·poly C, and that the response of CEC was strongly dependent upon the medium used for cultivation. These facts suggested that the observed difference in the response of cells to poly I·poly C was not due to a direct interaction between the inducer and medium components but to the physiological state of CEC established during their growth. Which component of YLE was responsible for such a lowered response of cells to poly I·poly C was also examined, and the marked reduction of PDD50 by the replacement of lactalbumin hydrolysate of YLE with amino acids and the increase of PDD50 by addition of lactalbumin hydrolysate to MEM suggested that lactalbumin hydrolysate might play an important role in this phenomenon.  相似文献   

5.
PUB1: a major yeast poly(A)+ RNA-binding protein.   总被引:8,自引:2,他引:6       下载免费PDF全文
  相似文献   

6.
C Albo  A Valencia    A Portela 《Journal of virology》1995,69(6):3799-3806
The influenza A virus nucleoprotein (NP) has been examined with regard to its RNA-binding characteristics. NP, purified from virions and devoid of RNA, bound synthetic RNAs in vitro and interacted with the ribonucleotide homopolymers poly(A), poly(G), poly(U), and poly(C) in a salt-dependent manner, showing higher binding affinity for polypyrimidine homopolymers. To map the NP regions involved in RNA binding, a series of deleted forms of the NP were prepared, and these truncated polypeptides were tested for their ability to bind poly(U) and poly(C) homopolymers linked to agarose beads. Proteins containing deletions at the N terminus of the NP molecule showed reduced RNA-binding activity, indicating that this part of the protein was required to bind RNA. To identify the NP region or regions which directly interact with RNA, proteins having the maltose-binding protein fused with various NP fragments were obtained and tested for binding to radioactively labeled RNAs in three different assays: (i) nitrocellulose filter binding assays, (ii) gel shift assays, and (iii) UV light-induced cross-linking experiments. A maltose-binding protein fusion containing the N-terminal 180 amino acids of NP behaved as an RNA-binding protein in the three assays, demonstrating that the N terminus of NP can directly interact with RNA. This NP region could be further subdivided into two smaller regions (amino acids 1 to 77 and 79 to 180) that also retained RNA-binding activity.  相似文献   

7.
The adenovirus L4 100-kDa nonstructural protein (100K protein) is required for efficient initiation of translation of viral late mRNA species during the late mRNA species during the late phase of infection (B. W. Hayes, G. C. Telling, M. M. Myat, J. F. Williams, and S. J. Flint, J. Virol. 64:2732-2742, 1990). The RNA-binding properties of this protein were analyzed in an immunoprecipitation assay with the 100K-specific monoclonal antibody 2100K-1 (C. L. Cepko and P. A. Sharp, Virology 129:137-154, 1983). Coprecipitation of the 100K protein and 3H-infected cell RNA was demonstrated. The RNA-binding activity of the 100K protein was inhibited by single-stranded DNA but not by double-stranded DNA, double-stranded RNA, or tRNA. Competition assays were used to investigate the specificity with which the 100K protein binds to RNA in vitro. Although the protein exhibited a strong preference for the ribohomopolymer poly(U) or poly(G), no specific binding to viral mRNA species could be detected; uninfected or adenovirus type 5-infected HeLa cell poly(A)-containing and poly(A)-lacking RNAs were all effective inhibitors of binding of the protein to viral late mRNA. Similar results were obtained when the binding of the 100K protein to a single, in vitro-synthesized L2 mRNA was assessed. The poly(U)-binding activity of the 100K protein was used to compare the RNA-binding properties of the 100K protein prepared from cells infected by adenovirus type 5 and the H5ts1 mutant (B. W. Hayes, G. C. Telling, M. M. Myat, J. F. Williams, and S. J. Flint, J. Virol. 64:2732-2742, 1990). A temperature-dependent decrease in H5ts1 100K protein binding was observed, correlating with the impaired translational function of this protein in vivo. By contrast, wild-type 100K protein RNA binding was unaffected by temperature. These data suggest that the 100K protein acts to increase the translational efficiency of viral late mRNA species by a mechanism that involves binding to RNA.  相似文献   

8.
The Sm and Sm-like proteins are widely distributed among bacteria, archaea and eukarya. They participate in many processes related to RNA-processing and regulation of gene expression. While the function of the bacterial Lsm protein Hfq and eukaryotic Sm/Lsm proteins is rather well studied, the role of Lsm proteins in Archaea is investigated poorly. In this work, the RNA-binding ability of an archaeal Hfq-like protein from Methanococcus jannaschii has been studied by X-ray crystallography, anisotropy fluorescence and surface plasmon resonance. It has been found that MjaHfq preserves the proximal RNA-binding site that usually recognizes uridine-rich sequences. Distal adenine-binding and lateral RNA-binding sites show considerable structural changes as compared to bacterial Hfq. MjaHfq did not bind mononucleotides at these sites and would not recognize single-stranded RNA as its bacterial homologues. Nevertheless, MjaHfq possesses affinity to poly(A) RNA that seems to bind at the unstructured positive-charged N-terminal tail of the protein.  相似文献   

9.
10.
RNA结合蛋白在RNA的生成与代谢中发挥着重要作用.我们在近年报道的PAR-CLIP(photoactivatableribonucleoside-enhanced crosslinking and immunoprecipitation)技术的基础上建立了一套快速、有效鉴定RNA结合蛋白的实验方法:以串联亲和纯化替代一步免疫沉淀获得高纯度蛋白-RNA复合物;将Sypro Ruby蛋白染色与RNA放射自显影相结合判断复合物中哪种或哪些组分为RNA结合蛋白,该方法命名为紫外交联合并的串联亲和纯化(cross-linkingand tandem affinity purification,CLiTAP).运用该方法对布氏锥虫的三种锌指蛋白ZC3H7、ZC3H34和ZC3H5进行分析,发现ZC3H7作为帽结合蛋白复合物的核心组分具有很强的RNA结合能力;ZC3H34结合RNA能力较弱,但其互作蛋白具有强的RNA结合活性;相比之下,ZC3H5及其复合物组分皆无RNA结合活性.这些结果表明,CLiTAP与蛋白质鉴定方法相结合,能够有效鉴定靶蛋白复合物中的RNA结合蛋白种类,也为进一步定位RNA结合位点、研究RNA结合蛋白的结构及作用机制奠定了基础.  相似文献   

11.
12.
Yersinia enterocolitica RIMD 2501003 grown at 25 C avidly adhered to various kinds of cultured epithelial cell lines (HeLa, FL, Y-1 adrenal, human intestine, human conjunctiva) but the bacteria grown at 37 C did not adhere. This phenomenon paralleled the temperature-dependent motility of the bacteria. To clarify the adherence mechanism, we obtained two kinds of mutants, an immobile mutant and a nonadherent mutant, by treatment with A-methyl-A-nitro-A-nitrosoguanidine. The immobile mutant did not move on soft agar but retained the capacity to adhere to cultured epithelial cells when grown at 25 C. The nonadherent mutant did not adhere to cultured epithelial cells but retained the ability to move on soft agar when grown at 25 C. When the bacteria were killed by heat, ultraviolet light irradiation or formaldehyde they lost their capacity to adhere to the cultured epithelial cells. Antiserum against Y. enterocolitica RIMD 2501003 grown at 25 C was absorbed with the bacteria grown at 37 C, with the bacteria grown at 25 C, with the nonadherent mutant grown at 25 C and with the bacteria killed by various means. Only the antiserum absorbed with bacteria grown at 37 C inhibited the adherence of bacteria. These data indicate that motility does not correlate with adherence of Y. enterocolitica. It appears that the adherence factor involves both a temperature-dependent surface factor and a factor synthesized de novo during the interaction of susceptible cells with the bacteria.  相似文献   

13.
14.
15.
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to induction of interferons (IFNs) and proinflammatory cytokines, and innate antiviral response. Here we identified the RNA-binding protein Mex3B as a positive regulator of TLR3-mediated signaling by expression cloning screens. Cells from Mex3b−/− mice exhibited reduced production of IFN-β in response to the dsRNA analog poly(I:C) but not infection with RNA viruses. Mex3b−/− mice injected with poly(I:C) was more resistant to poly(I:C)-induced death. Mex3B was associated with TLR3 in the endosomes. It bound to dsRNA and increased the dsRNA-binding activity of TLR3. Mex3B also promoted the proteolytic processing of TLR3, which is critical for its activation. Mutants of Mex3B lacking its RNA-binding activity inhibited TLR3-mediated IFN-β induction. These findings suggest that Mex3B acts as a coreceptor of TLR3 in innate antiviral response.  相似文献   

16.
Maize plants were grown at 14, 18 and 20 °C until the fourth leaf had emerged. Leaves from plants grown at 14 and 18 °C had less chlorophyll than those grown at 20 °C. Maximal extractable ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was decreased at 14 °C compared with 20 °C, but the activation state was highest at 14 °C. Growth at 14 °C increased the abundance (but not the number) of Rubisco breakdown products. Phosphoenolpyruvate carboxylase (PEPC) activity was decreased at 14 °C compared with 20 °C but no chilling-dependent effects on the abundance of the PEPC protein were observed. Maximal extractable NADP-malate dehydrogenase activity increased at 14 °C compared with 20 °C whereas the glutathione pool was similar in leaves from plants grown at both temperatures. Foliar ascorbate and hydrogen peroxide were increased at 14 °C compared with 20 °C. The foliar hydrogen peroxide content was independent of irradiance at both growth temperatures. Plants grown at 14 °C had decreased rates of CO2 fixation together with decreased quantum efficiencies of photosystem (PS) II in the light, although there was no photo-inhibition. Growth at 14 °C decreased the abundance of the D1 protein of PSII and the PSI psaB gene product but the psaA gene product was largely unaffected by growth at low temperatures. The relationships between the photosystems and the co-ordinate regulation of electron transport and CO2 assimilation were maintained in plants grown at 14 °C.  相似文献   

17.
Cyanobacteria are prokaryotes that carry out plant-type photosynthesis and contain several eukaryotic-type RNA-binding proteins. Using a single-stranded DNA column, a 33-kDa protein was isolated and characterized from Synechococcus sp. PCC6301. This protein of 293 amino acids is similar in overall structure to the ribosomal protein S1 found in the same species, and contains three repeated units that are highly similar to the S1 motif originally found in the ribosomal protein S1 of Escherichia coli. However, the 33-kDa protein was found not to be associated with ribosomes and its nucleic acid binding specificity is distinct from that of the ribosomal protein S1. As this protein has high affinity for both single- and double-stranded DNA, as well as for poly(G) and poly(A), we tentatively named it nucleic acid-binding protein 1 (Nbp1). Received: 8 October 1999 / Accepted: 24 January 2000  相似文献   

18.
19.
20.
The ZC3H14 gene, which encodes a ubiquitously expressed, evolutionarily conserved, nuclear, zinc finger polyadenosine RNA-binding protein, was recently linked to autosomal recessive, nonsyndromic intellectual disability. Although studies have been carried out to examine the function of putative orthologs of ZC3H14 in Saccharomyces cerevisiae, where the protein is termed Nab2, and Drosophila, where the protein has been designated dNab2, little is known about the function of mammalian ZC3H14. Work from both budding yeast and flies implicates Nab2/dNab2 in poly(A) tail length control, while a role in poly(A) RNA export from the nucleus has been reported only for budding yeast. Here we provide the first functional characterization of ZC3H14. Analysis of ZC3H14 function in a neuronal cell line as well as in vivo complementation studies in a Drosophila model identify a role for ZC3H14 in proper control of poly(A) tail length in neuronal cells. Furthermore, we show here that human ZC3H14 can functionally substitute for dNab2 in fly neurons and can rescue defects in development and locomotion that are present in dNab2 null flies. These rescue experiments provide evidence that this zinc finger-containing class of nuclear polyadenosine RNA-binding proteins plays an evolutionarily conserved role in controlling the length of the poly(A) tail in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号