首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Secretion of Bacillus subtilis levansucrase: a possible two-step mechanism   总被引:10,自引:0,他引:10  
The rate of exocellular levansucrase synthesis in an overproducing (sacUh) strain of Bacillus subtilis was shown to be directly proportional to the amount of two different transient forms of this enzyme located within the membrane fraction of the cells. The apparent Mr of the larger membrane form was 53,000, and that of the smaller form 50,000; the half-life time of each form was estimated in vivo to be 4-6 s and 32-42 s, respectively. Ethanol treatment of the cells lead to the accumulation of the 53,000-Mr form which may represent 1.5% of total membrane proteins. This latter form, partially purified, was transformed in vitro into the 50,000-Mr form by the action of the Escherichia coli leader peptidase. These enzyme forms were quite different from the exocellular levansucrase since they showed a weak affinity for hydroxyapatite and needed complexed iron to display enzyme activity. Assuming the membrane forms were precursors of exocellular levansucrase, we propose a two-step mechanism for the secretion process of levansucrase. The number of exoprotein synthesis/secretion sites in a B. subtilis cell is estimated to 2.5 X 10(4).  相似文献   

3.
The condensation of DNA in bacterial nucleoids during cell cycle is a complex and dynamic process. Proteins displaying the physico-chemical properties of histones are known to contribute to this process. During a search for B. subtilis nucleoid associated proteins, HBsu and L24 were identified as the most abundant proteins in nucleoid containing fractions. Purified L24 binds and condenses DNA in vitro. In this paper we describe immunofluorescence studies that demonstrated that L24 is located at the poles of the nucleoids in exponentially growing cells. In contrast, the protein is dispersed in the cytoplasm during stationary phase. Moreover, overexpression of the rplX gene encoding L24 disrupts nucleoid segregation and positioning.  相似文献   

4.
5.

Background

Turgor pressure is an essential feature of plants; however, whereas its physiological importance is unequivocally recognized, its relevance to development is often reduced to a role in cell elongation.

Scope

This review surveys the roles of turgor in development, the molecular mechanisms of turgor regulation and the methods used to measure turgor and related quantities, while also covering the basic concepts associated with water potential and water flow in plants. Three key processes in flower development are then considered more specifically: flower opening, anther dehiscence and pollen tube growth.

Conclusions

Many molecular determinants of turgor and its regulation have been characterized, while a number of methods are now available to quantify water potential, turgor and hydraulic conductivity. Data on flower opening, anther dehiscence and lateral root emergence suggest that turgor needs to be finely tuned during development, both spatially and temporally. It is anticipated that a combination of biological experiments and physical measurements will reinforce the existing data and reveal unexpected roles of turgor in development.  相似文献   

6.
The salt-tolerant alga Chara longifolia (Robinson) is capable of regulating its turgor in response to hypotonic stress resulting from a decrease in the osmotic pressure of the medium. This regulatory process takes only 40 min in small cells (length ≤ 10 mm), but requires 3d in large cells (length ≥30mm). Turgor regulation in small cells is comprised of two phases, a fast phase reducing the increased turgor by about 25% in the First 5 min, and a second phase reducing the turgor to near the original value within 40 min. The second phase is inhibited by reducing the concentration of Ca2+ in the external medium from 4.6 to 0.01 mol m?3; the first phase is less affected by the reduction of Ca2+. In the first 5 min of stress, the membrane depolarizes in a voltage-dependent fashion, electrical conductance of the membrane increases transiently and cytoplasmic streaming is inhibited. When the external Ca2+ concentration is lowered, conductance does not increase and streaming continues unaffected. In a low ionic strength medium, Ca2+ is not required in the medium for turgor regulation. To test the hypothesis that there is increased Ca2+ entry from the medium during turgor regulation, we measured the influx of 45Ca2+ into the cell. We found an increased influx of Ca2+, from 18 to 36 nmol m?2 s?1 during the first 30 to 90 s following osmotic stress. This increase was evident only in cells below about 7 mm in length, and was more marked in smaller cells.  相似文献   

7.
8.
9.
10.
Summary Long-term xylem pressure measurements were performed on the lianaTetrastigma voinierianum (grown in a tropical greenhouse) between heights of 1 m and 9.5 m during the summer and autumn seasons with the xylem pressure probe. Simultaneously, the light intensity, the temperature, and the relative humidity were recorded at the measuring points. Parallel to the xylem pressure measurements, the diurnal changes in the cell turgor and the osmotic pressure of leaf cells at heights of 1 m and 5 m (partly also at a height of 9.5 m) were recorded. The results showed that tensions (and height-varying tension gradients) developed during the day time in the vessels mainly due to an increase in the local light intensity (at a maximum 0.4 MPa). The decrease of the local xylem pressure from positive, subatmospheric or slightly above-atmospheric values (established during the night) to negative values after daybreak was associated with an almost 1 1 decrease in the cell turgor pressure of the mesophyll cells (on average from about 0.4 to 0.5 MPa down to 0.08 MPa). Similarly, in the afternoon the increase of the xylem pressure towards more positive values correlated with an increase in the cell turgor pressure (ratio of about 1 1). The cell osmotic pressure remained nearly constant during the day and was about 0.75–0.85 MPa between 1 m and 9.5 m (within the limits of accuracy). These findings indicate that the turgor pressure primarily determines the corresponding pressure in the vessels (and vice versa) due to the tight hydraulic connection and thus due to the water equilibrium between both compartments. An increase in the transpiration rate (due to an increase in light intensity) results in very rapid establishment of a new equilibrium state by an equivalent decrease in the xylem and cell turgor pressure. From the xylem, cell turgor, and cell osmotic pressure data the osmotic pressure (or more accurately the water activity) of the xylem sap was calculated to be about 0.35–0.45 MPa; this value was apparently not subject to diurnal changes. Considering that the xylem pressure is determined by the turgor pressure (and vice versa), the xylem pressure of the liana could not drop to — in agreement with the experimental results — less than -0.4 MPa, because this pressure corresponds to zero turgor pressure.  相似文献   

11.
The regulation of genetic competence in Bacillus subtilis   总被引:16,自引:7,他引:16  
  相似文献   

12.
13.
Chen Z  Nunes MA  Silva MC  Rodrigues CJ 《Mycologia》2004,96(6):1199-1208
The method of penetration of fungi through the host cuticle by means of cutinase versus mechanical pressure exerted by melanized appresoria has been the subject of debate. Colletotrichum kahawae Bridge & Waller infects green coffee berries in Africa, inducing 70-80% losses. Turgor pressure (TP) of the appresoria was estimated in vitro to be 2.6 MPa, about twice the osmotic pressure (OP) of the green berries. Appresoria exposed in vitro to polyethylene glycol (PEG) solution with OPs of 7.0 MPa and above immediately collapsed. However, collapsed appresoria subjected to OP as high as 46.5 MPa could recover. Green berries inoculated with conidial suspensions, if subjected to OP of 28.5 MPa, showed 7% of them with necrotic lesions. Total inhibition of infection was achieved at 46.5 MPa. The OP of PEG solutions applied to inoculated green fruit decreased to the OP of the green berries in 48 h. The resistance of appresoria to osmotic stress, combined with the rapid dilution of PEG by solutes (water) from the fruit might explain the rate of infection even at very high OP. Unmelanized appresoria induced by tricyclazole showed TPs as low as one-quarter of melanized ones and, as a consequence, the percentage of infection on leaves and green berries was much lower. Cutinase was present in conidial mucilage and in extracellular fluids of germinated conidia in vitro and in planta. Cutinase was induced by growing the fungus in Czapek-Dox medium if cutin was used as the sole carbon source. Diisopropyl fluorophosphate, a cutinase inhibitor, totally inhibited cutinase activity of culture filtrates and extracellular fluids but did not prevent infection. It is suggested that the TP of C. kahawae appresoria might play a major role in coffee cuticle penetration, according to our results.  相似文献   

14.
Some Bacillus subtilis strains, including natto (fermented soybeans) starter strains, produce a capsular polypeptide of glutamate with a gamma-linkage, called poly-gamma-glutamate (gamma-PGA). We identified and purified a monomeric 25-kDa degradation enzyme for gamma-PGA (designated gamma-PGA hydrolase, PghP) from bacteriophage PhiNIT1 in B. subtilis host cells. The monomeric PghP internally hydrolyzed gamma-PGA to oligopeptides, which were then specifically converted to tri-, tetra-, and penta-gamma-glutamates. Monoiodoacetate and EDTA both inhibited the PghP activity, but Zn(2+) or Mn(2+) ions fully restored the enzyme activity inhibited by the chelator, suggesting that a cysteine residue(s) and these metal ions participate in the catalytic mechanism of the enzyme. The corresponding pghP gene was cloned and sequenced from the phage genome. The deduced PghP sequence (208 amino acids) with a calculated M(r) of 22,939 was not significantly similar to any known enzyme. Thus, PghP is a novel gamma-glutamyl hydrolase. Whereas phage PhiNIT1 proliferated in B. subtilis cells encapsulated with gamma-PGA, phage BS5 lacking PghP did not survive well on such cells. Moreover, all nine phages that contaminated natto during fermentation produced PghP, supporting the notion that PghP is important in the infection of natto starters that produce gamma-PGA. Analogous to polysaccharide capsules, gamma-PGA appears to serve as a physical barrier to phage absorption. Phages break down the gamma-PGA barrier via PghP so that phage progenies can easily establish infection in encapsulated cells.  相似文献   

15.
Cell-free extracts of Bacillus subtilis strains GSY and 168 convert (14)C-phosphoglycerate to (14)C-serine phosphate and (14)C-serine. These reactions indicate a functional phosphorylated pathway for serine biosynthesis in these cells. The addition of serine to the incubation mixture inhibited the formation of both radioactive products. Extracts of mutant strains that require serine for growth lacked the capacity to synthesize serine phosphate, confirming that the phosphorylated pathway was the only functional pathway available for serine synthesis. Serine phosphate phosphatase and phosphoglycerate dehydrogenase activity were demonstrated in cell extracts, and the phosphoglycerate dehydrogenase was shown to be inhibited specifically by l-serine. The extent of serine inhibition increased when the temperature was raised from 25 to 37 C, and the thermal stability of the enzyme was enhanced by the presence of the inhibitor serine or the coenzyme reduced nicotinamide adenine dinucleotide. At 37 C the curve representing the relationship between phosphoglycerate concentration and enzyme velocity was biphasic, and the serine inhibition which was competitive at low substrate concentrations became noncompetitive at higher concentrations.  相似文献   

16.
Maltose uptake and its regulation in Bacillus subtilis   总被引:4,自引:0,他引:4  
Extracts prepared from cultures of Bacillus subtilis, grown on maltose as the sole carbon source, lacked maltose phosphotransferase system activity. There was, however, evidence for a maltose phosphorylase activity, and such extracts also possessed both glucokinase and glucose phosphotransferase system activities. Maltose was accumulated by whole cells of B. subtilis by an energy-dependent mechanism. This uptake was sensitive to the effects of uncouplers, suggesting a role for the proton-motive force in maltose transport. Accumulation of maltose was inhibited in the presence of glucose, and there was no accumulation of maltose by a strain carrying the ptsI6 null-mutation. A strain carrying the temperature-sensitive ptsI1 mutation accumulated maltose normally at 37 degrees C but, in contrast to the wild-type, was devoid of maltose transport activity at 47 degrees C. The results indicate a role for the phosphotransferase system in the regulation of maltose transport activity in this organism.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号