首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in cell turgor pressure have been followed in cells of Microcystis sp. transferred to culture medium containing added NaCl at osmolalities of 30–1,500 mosmol kg-1 ( 74–3,680 kPa). Upon upshock turgor decreased, due to osmotically-induced water loss from the cell. However, partial recovery of turgor was then observed in illuminated cells, with maximum turgor regain in media containing 30–500 mosmol kg-1 NaCl. The lightdependent recovery of turgor pressure was completed within 60 min, with no evidence of further changes in cell turgor up to 24 h. This is the first direct evidence that turgor regulation may occur in a prokaryotic organism. Short-term increases in cell K+ content were also observed upon upshock in NaCl, indicating that turgor regain may involve a turgorsensitive K+ uptake system. Estimation of internal K+ concentration in cells transferred to 250 mosmol kg-1 NaCl showed that changes in cell K+ may account for at least half of the observed turgor regain up to 60 min.  相似文献   

2.
《Experimental mycology》1990,14(4):416-425
Cellular turgor pressure is thought to provide the driving force for hyphal extension and for a variety of other fungal processes. This study was conducted to evaluate three different approaches to the measurement of hyphal turgor in the aquatic fungus Achlya bisexualis. Turgor was determined indirectly from measurements of the osmotic potential of hyphal extracts using an osmometer and by a refined incipient plasmolysis technique. Turgor was also measured directly from individual growing hyphae using a micropipet-based pressure probe. Osmometry provided an estimate of the mean turgor of hyphae grown in liquid culture of 0.74 MPa, while the incipient plasmolysis technique indicated turgor pressures of between 1.0 and 1.2 MPa (10 to 12 bars). With the pressure probe, turgors ranging from 0.8 to 1.2 MPa were measured from 49 hyphae in the same difined medium. The low turgor estimates from the osmometric approach probably reflected dilution of the cell contents by cell wall and extracellular fluid during sample extraction. Recordings with the pressure probe showed that turgor did not vary along the length of the coenocytic hyphae and was independent of hyphal diameter. This paper presents the first report of the direct measurement of hyphal turgor pressure.  相似文献   

3.
Summary Long-term xylem pressure measurements were performed on the lianaTetrastigma voinierianum (grown in a tropical greenhouse) between heights of 1 m and 9.5 m during the summer and autumn seasons with the xylem pressure probe. Simultaneously, the light intensity, the temperature, and the relative humidity were recorded at the measuring points. Parallel to the xylem pressure measurements, the diurnal changes in the cell turgor and the osmotic pressure of leaf cells at heights of 1 m and 5 m (partly also at a height of 9.5 m) were recorded. The results showed that tensions (and height-varying tension gradients) developed during the day time in the vessels mainly due to an increase in the local light intensity (at a maximum 0.4 MPa). The decrease of the local xylem pressure from positive, subatmospheric or slightly above-atmospheric values (established during the night) to negative values after daybreak was associated with an almost 1 1 decrease in the cell turgor pressure of the mesophyll cells (on average from about 0.4 to 0.5 MPa down to 0.08 MPa). Similarly, in the afternoon the increase of the xylem pressure towards more positive values correlated with an increase in the cell turgor pressure (ratio of about 1 1). The cell osmotic pressure remained nearly constant during the day and was about 0.75–0.85 MPa between 1 m and 9.5 m (within the limits of accuracy). These findings indicate that the turgor pressure primarily determines the corresponding pressure in the vessels (and vice versa) due to the tight hydraulic connection and thus due to the water equilibrium between both compartments. An increase in the transpiration rate (due to an increase in light intensity) results in very rapid establishment of a new equilibrium state by an equivalent decrease in the xylem and cell turgor pressure. From the xylem, cell turgor, and cell osmotic pressure data the osmotic pressure (or more accurately the water activity) of the xylem sap was calculated to be about 0.35–0.45 MPa; this value was apparently not subject to diurnal changes. Considering that the xylem pressure is determined by the turgor pressure (and vice versa), the xylem pressure of the liana could not drop to — in agreement with the experimental results — less than -0.4 MPa, because this pressure corresponds to zero turgor pressure.  相似文献   

4.
The relationship between cell elongation, change in turgor andcell osmotic pressure was investigated in the sub-apical regionof hypocotyls of developing sunflower seedlings (Helianthusannuus L.) that were grown in continuous white light. Cell turgorwas measured with the pressure probe. The same hypocotyl sectionswere used for determination of osmotic pressure of the tissuesap. Acceleration of cell elongation during the early phaseof growth was accompanied by a 25% decrease in both turgor andosmotic pressure. During the linear phase of growth both pressuresremained largely constant. The difference between turgor andosmotic pressure (water potential) was –0.10 to –0.13MPa. Excision of one cotyledon had no effect on growth, turgorand osmotic pressure. However, after removal of both cotyledonscell elongation ceased and a substantial decrease in both pressureswas measured. In addition, we determined the longitudinal tissuepressure in seedlings from which one or both cotyledons hadbeen removed. Tissue pressure and turgor were very similar quantitiesunder all experimental conditions. Our results demonstrate thatturgor and cell osmotic pressure show a parallel change duringdevelopment of the stem. Cessation of cell elongation afterremoval of the cotyledons is attributable to a decrease in turgor(tissue) pressure, which provides the driving force for growthin the hypocotyl of the intact plant. Key words: Cell elongation, Helianthus annuus, osmotic pressure, tissue pressure, turgor  相似文献   

5.
Zhu GL  Boyer JS 《Plant physiology》1992,100(4):2071-2080
A new method, the turgor clamp, was developed to test the effects of turgor on cell enlargement. The method used a pressure probe to remove or inject cell solution and change the turgor without altering the external environment of the cell walls. After the injections, the cells were permanently at the new turgor and required no further manipulation. Internode cells of Chara corallina grew rapidly with the pressure probe in place when growth was monitored with a position transducer. Growth-induced water potentials were negligible and turgor effects could be studied simply. As turgor was decreased, there was a threshold below which no growth occurred, and only reversible elastic/viscoelastic changes could be seen. Above the threshold, growth was superimposed on the elastic/viscoelastic effects. The rate of growth did not depend on turgor. Instead, the rate was highly dependent on energy metabolism as shown by inhibitors that rapidly abolished growth without changing the turgor. However, turgors could be driven above the maximum normally attainable by the cell, and these caused growth to respond as though plastic deformation of the walls was beginning, but the deformation caused wounding. Growth was inhibited when turgor was changed with osmotica but not inhibited when similar changes were made with the turgor clamp. It was concluded that osmotica caused side effects that could be mistaken for turgor effects. The presence of a turgor threshold indicates that turgor was required for growth. However, because turgor did not control the rate, it appears incorrect to consider the rate to be determined by a turgor-dependent plastic deformation of wall polymers. Instead, above the turgor threshold, the rapid response to energy inhibitors suggests a control by metabolic reactions causing synthesis and/or extension of wall polymers.  相似文献   

6.
The pressure microprobe was used to determine whether the turgor pressure in tomato (Lycopersicon esculentum Mill., variety “Castelmart”) pericarp cells changed during fruit ripening. The turgor pressure of cells located 200 to 500 micrometers below the fruit epidermis was uniform within the same tissue (typically ± 0.02 megapascals), and the highest turgors observed (<0.2 megapascals) were much less than expected, based on tissue osmotic potential (−0.6 to −0.7 megapascals). These low turgor values may indicate the presence of apoplastic solutes. In both intact fruit and cultured discs of pericarp tissue, a small increase in turgor preceded the onset of ripening, and a decrease in turgor occurred during ripening. Differences in the turgor of individual intact fruit occurred 2 to 4 days before parallel differences in their ripening behavior were apparent, indicating that changes in turgor may reflect physiological changes at the cell level that precede expression of ripening at the tissue level.  相似文献   

7.
The turgor pressure in cells of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) seed coats was measured with a pressure probe. Measurements were made under in situ conditions by removing a section of wall from a pod, which remained attached to the plant, and exposing the intact seed. If the pod wall was removed and the turgor measurements made under ambient laboratory conditions of 50% to 70% relative humidity (RH), cell turgor pressure declined over time, typically reaching 0 MPa. If the pod wall was removed and the turgor measurements made under conditions of 100% RH, however, cell turgor pressure was stable over time, relatively uniform within the seed coat tissue, and was found to be 0.1-0.3 MPa for chickpea, and 0.1-0.2 MPa for faba bean. In both species there was a marked decline in cell turgor, beginning within about 60 s, when humidification was discontinued. The decline in cell turgor occurred regardless of the depth of the cell within the seed coat tissue, and this decline could be stopped, but not entirely reversed, when humidification was restored. An increase in cell turgor could also be caused by wetting of the seed. These responses indicate that a very rapid water exchange can occur within the seed coat tissue in situ. The rapid and, in some cases, relatively permanent loss of seed coat cell turgor in the absence of humidification raises serious concerns regarding desiccation artefacts which may be involved in the empty seed coat technique, often used to study seed carbon and water relations in grain legumes.  相似文献   

8.
Pressure probe and isopiestic psychrometer measure similar turgor   总被引:10,自引:2,他引:8       下载免费PDF全文
Turgor measured with a miniature pressure probe was compared to that measured with an isopiestic thermocouple psychrometer in mature regions of soybean (Glycine max [L.] Merr.) stems. The probe measured turgor directly in cells of intact stems whereas the psychrometer measured the water potential and osmotic potential of excised stem segments and turgor was calculated by difference. When care was taken to prevent dehydration when working with the pressure probe, and diffusive resistance and dilution errors with the psychrometer, both methods gave similar values of turgor whether the plants were dehydrating or rehydrating. This finding, together with the previously demonstrated similarity in turgor measured with the isopiestic psychrometer and a pressure chamber, indicates that the pressure probe provides accurate measurements of turgor despite the need to penetrate the cell. On the other hand, it suggests that as long as precautions are taken to obtain accurate values for the water potential and osmotic potential, turgor can be determined by isopiestic psychrometry in tissues not accessible to the pressure probe for physical reasons.  相似文献   

9.
Regulation of cell division and cell enlargement by turgor pressure   总被引:6,自引:3,他引:3       下载免费PDF全文
Isolated radish (Raphanus sativus L., var. Red Prince) cotyledons were incubated in growth medium plus graded concentrations of mannitol (−1 to −16 bars) for 28 hours. At the end of the incubation period, turgor pressures were measured using thermocouple psychrometers. Cell division, as measured by DNA increase, was greatly stimulated by increasing turgor from 5 to 6 bars. Cell enlargement was stimulated as turgor increased above 3 bars. The critical turgor pressure for increased cell division thus appeared significantly greater than that for increased cell enlargement.  相似文献   

10.
Cells of Ancylobacter aquaticus were observed under phase microscopy in a chamber to which a measured pressure could be applied. The initial collapse pressure (Ca), i.e., the lowest pressure needed to collapse the most pressure-sensitive gas vesicles, was measured for 69 cells. The cells were taken from cultures in low-density balanced exponential growth, and the experiments were performed quickly so that the bacteria were in a uniform physiological state at the time of measurement. The turgor pressure, Pt, is the difference between the pressure, C, that would cause collapse of vesicles when removed from the cell and Ca. In this paper we focus on the variability of Pt from cell to cell. Part of the observed variability of Ca was due to the variability of the collapse pressure of individual vesicles (standard deviation [SD] = 90 kPa), but because there were about 100 vesicles per cell and because a change in refracted light after the fifth vesicle (approximately) collapsed probably could be detected by the human eye, the pressure would only have an SD of 18.6 kPa due to this type of sampling error. The observed SD of Pt was 42 kPa, indicating that turgor pressure did vary considerably from cell to cell. However, the turgor pressure was independent of cell size. Statistical analysis showed that Pt would decrease 6.9 kPa over a cell cycle, but with too large an SD (19.9 kPa) to be significant. This implies that the observed change in Pt over the cell cycle is not statistically significant.  相似文献   

11.
Gas vesicles were used as probes to measure turgor pressure in Ancylobacter aquaticus. The externally applied pressure required to collapse the vesicles in turgid cells was compared with that in cells whose turgor had been partially or totally removed by adding an impermeable solute to the external medium. Since gram-negative bacteria do not have rigid cell walls, plasmolysis is not expected to occur in the same way as it does in the cells of higher plants. Bacterial cells shrink considerably before plasmolysis occurs in hyperosmotic media. The increase in pressure required to collapse 50% of the vesicles as external osmotic pressure increases is less than predicted from the degree of osmotically inducible shrinkage seen with this organism or with another gram-negative bacterium. This feature complicates the calculation of the turgor pressure as the difference between the collapse pressure of vesicles with and without sucrose present in the medium. We propose a new model of the relationship between turgor pressure and the cell wall stress in gram-negative bacteria based on the behavior of an ideal elastic container when the pressure differential across its surface is decreased. We developed a new curve-fitting technique for evaluating bacterial turgor pressure measurements.  相似文献   

12.
The conventional method of measuring plant cell turgor pressure is the pressure probe but applying this method to single cells in suspension culture is technically difficult and requires puncture of the cell wall. Conversely, compression testing by micromanipulation is particularly suited to studies on single cells, and can be used to characterise cell wall mechanical properties, but has not been used to measure turgor pressure. In order to demonstrate that the micromanipulation method can do this, pressure measurements by both methods were compared on single suspension-cultured tomato (Lycopersicon esculentum vf36) cells and generally were in good agreement. This validates further the micromanipulation method and demonstrates its capability to measure turgor pressure during water loss. It also suggests that it might eventually be used to estimate plant cell hydraulic conductivity.  相似文献   

13.
Two water molds can grow without measurable turgor pressure   总被引:1,自引:0,他引:1  
The water molds Achlya bisexualis Coker and Saprolegnia ferax (Gruithuisen) Thuret (Class: Oomycetes) normally grow in the form of slender hyphae with up to 0.8 MPa (8 bar) of internal pressure. Models of plant cell growth indicate that this turgor pressure drives the expansion of the cell wall. However, under conditions of prolonged osmotic stress, these species were able to grow in the absence of measurable turgor. Unpressurized cells of A. bisexualis grew in the form of a plasmodium-like colony on solid media, and produced a multinucleate yeast-like phase in liquid. By contrast, the morphology of S. ferax was unaffected by the loss of turgor, and the mold continued to generate tip-growing hyphae. Measurements of cell wall strength indicate that these microorganisms produce a very fluid wall in the region of surface growth, circumventing the usual requirement for turgor.Abbreviations DAPI 4,6-diamidino-2-phenylindole - PEG polyethylene glycol This work was supported by National Science Foundation grant DCB 90-17130.  相似文献   

14.
Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane.  相似文献   

15.
Koroleva OA  Tomos AD  Farrar J  Pollock CJ 《Planta》2002,215(2):210-219
Pressure-probe measurements and single-cell sampling and analysis techniques were used to determine the effect of photosynthetic production and accumulation of sugars on osmotic and turgor pressures of individual cells of barley ( Hordeum vulgare L.) source leaves. In control plants, the changes in osmotic pressure in individual cells during the photoperiod were different for mesophyll (increase of 276 mOsmol/kg), parenchymatous bundle sheath (PBS; increase of 100 mOsmol/kg) and epidermis (remains constant). There was also an increase in osmotic pressure at the tissue level. Cooling of roots and the shoot apical meristem restricted the export of sugars from leaves, and the resulting changes in osmotic and turgor pressure were monitored. In contrast to the control leaves, mesophyll, PBS, and epidermal cells showed a similar increase in osmotic pressure (up to 500 mOsmol/kg). Cooling also increased the turgor pressure in epidermal and (to a greater extent) PBS cells. The difference in turgor pressure between epidermal and PBS cells is consistent with the presence of a water potential gradient within the leaf, from the vascular bundles towards the leaf surface.  相似文献   

16.
Turgor pressure in cells of the pod wall and the seed coat of chickpea (Cicer arietinum L.) were measured directly with a pressure probe on intact plants under initially dry soil conditions, and after the plants were irrigated. The turgor pressure in cells of the pod wall was initially 0.25 MPa, and began to increase within a few minutes of irrigation. By 2-4 h after irrigation, pod wall cell turgor had increased to 0.97 MPa. This increase in turgor was matched closely by increases in the total water potential of both the pod and the stem, as measured by a pressure chamber. However, turgor pressure in cells of the seed coat was relatively low (0.10 MPa) and was essentially unchanged up to 24 h after irrigation (0.13 MPa). These data demonstrate that water exchange is relatively efficient throughout most of the plant body, but not between the pod and the seed. Since both the pod and the seed coat are vascularized tissues of maternal origin, this indicates that at least for chickpea, isolation of the water relations of the embryo from the maternal plant does not depend on the absence of vascular or symplastic connections between the embryo and the maternal plant.  相似文献   

17.
The effects of modification in sugar concentrations on turgor pressure and membrane potential in epidermal leaf cells of transgenic potato (Solanum tuberosum cv. Desirée) plants were studied. Measurements of turgor pressure were performed by insertion of a micro pressure probe. Osmolality and sugar concentrations were determined by micro analysis of single cell extracts. Membrane potentials and cell diameters were calculated from repeated, computer-controlled scans with voltage-sensitive microelectrodes. Epidermal cells of sucrose transporter antisense plants showed a more than 100% elevation in osmolality and turgor pressure compared to the wild-type. As a consequence, cell diameters were enhanced in this transgenic line. However, membrane potentials were only slightly reduced in sucrose transporter antisense plants. In addition to sucrose transporter antisense lines, transgenic plants that were reduced in their capacity to accumulate starch due to antisense inhibition of the chloroplastic fructose-1,6-bisphosphatase (FBPase) were investigated. These antisense plants maintained membrane potential and turgor pressure comparable to the wild-type.  相似文献   

18.
Summary Using a pressure probe, turgor pressure was directly determined in leaf-mesophyll cells and the giant epidermal bladder cells of stems, petioles and leaves of the halophilic plant Mesembryanthemum crystallinum. Experimental plants were grown under non-saline conditions. They displayed the photosynthetic characteristics typical of C3-plants when 10 weeks old and performed weak CAM when 16 weeks old. In 10 week old plants, the turgor pressure (P) of bladder cells of stems was 0.30 MPa; of bladder cells of petioles 0.19 MPa, and of bladder cells of leaves 0.04 MPa. In bladder cells from leaves of 16 week old plants, marked changes in turgor pressure were observed during day/night cycles. Maximum turgor occurred at noon and was paralleled by a decrease in the osmotic pressure of the bladder cell sap. Similar changes in the cell water relations were observed in plants in which traspirational water loss was prevented by high ambient relative humidity. Turgor pressure of mesophyll cells also increased during day-time showing macimum values in the early morning. No such changes in turgor pressure and osmotic pressure were observed in bladder and mesophyll cells of the 10 week old plants not showing the diurnal acid fluctuation typical of CAMAbbreviations CAM crassulacean acid metabolism - V volume of the cells (mm3) - P turgor pressure (MPa) - volumetric elastic modulus (MPa) - i osmotic pressure of the cell sap (MPa) - T 1/2 half-time of water exchange (s) - Lp hydraulic conductivity of the cell membrane (m·s-1·MPa-1) - A surface area of cells (mm2) - P pressure changes (MPa) - V volume changes (mm3) - nocturanal nighttime - diurnal daytime  相似文献   

19.
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.  相似文献   

20.
Uptake of several naturally occurring organic solutes by the unicellular cyanobacterium Microcystis sp. caused changes in cell turgor pressure (p(t)), which was determined by measuring the mean critical pressure (p(c)) of gas vesicles in the cells. Cells had an initial p(t) of 0.34 MPa, which decreased to 0.08 MPa in 0.15 M sucrose. In solutions of polyols, p(t) gradually recovered as the solutes penetrated the cytoplasmic membranes. From measurements of the exponential rate of turgor increase, cell volume and surface area, the permeability coefficient of the cytoplasmic membrane to each solute was calculated. Permeabilities to amino acids, ammonium ions and sodium acetate indicated little passive movement of these substances across the cell surface from solutions at high concentrations. We looked for evidence of ion trapping of acetic acid: at low pH there was a rapid rise in turgor pressure indicating a rapid uptake of this weak acid. After 20 min the turgor was lost, apparently due to loss of integrity of the cell membranes. For cells in natural habitats, studies of the permeability of cells to solutes is relevant to the problem of retaining substances that are accumulated by active uptake from solutions of low concentrations in natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号