首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal denaturation studies as a function of pH were carried out on wild-type iso-1-cytochrome c and three variants of this protein at the solvent-exposed position 73 of the sequence. By examining the enthalpy and Tm at various pH values, the heat capacity increment (delta Cp), which is dominated by the degree of change in nonpolar hydration upon protein unfolding, was found for the wild type where lysine 73 is normally present and for three variants. For the Trp 73 variant, the delta Cp value (1.15 +/- 0.17 kcal/mol K) decreased slightly relative to wild-type iso-1-cytochrome c (1.40 +/- 0.06 kcal/mol K), while for the Ile 73 (1.65 +/- 0.07 kcal/mol K) and the Val 73 (1.50 +/- 0.06 kcal/mol K) variants, delta Cp increased slightly. In previous studies, the Trp 73, Ile 73, and Val 73 variants have been shown to have decreased m-values in guanidine hydrochloride denaturations relative to the wild-type protein (Hermann L, Bowler BE, Dong A, Caughey WS. 1995. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: Investigation of aliphatic residues. Biochemistry 34:3040-3047). Both the m-value and delta Cp are related to the change in solvent exposure upon unfolding and other investigators have shown a correlation exists between these two parameters. However, for this subset of variants of iso-1-cytochrome c, a lack of correlation exists which implies that there may be basic differences between the guanidine hydrochloride and thermal denaturations of this protein. Spectroscopic data are consistent with different denatured states for thermal and guanidine hydrochloride unfolding. The different response of m-values and delta Cp for these variants will be discussed in this context.  相似文献   

2.
The effect of pH on the denatured state (3 M guanidine hydrochloride) was evaluated with fluorescence spectroscopy for four variants of iso-1-cytochrome c, AcTM (no surface histidines), AcH26 (surface histidine at position 26), AcH54 (surface histidine at position 54), and AcH54I52 (stabilizing I52 mutation added to AcH54). Changes in the compactness and the heme ligation of the denatured state, as a function of pH, were monitored through changes in Trp 59-heme fluorescence quenching. With the AcTM and AcH26 variants, no change in the fluorescence intensity occurs from pH 4 to 10. However, for the AcH54 and AcH54I52 variants the fluorescence intensity drops significantly between pH 4 and 6, consistent with His 54 binding to the heme of cytochrome c. Between pH 8 and 10 fluorescence intensity increases again, indicating that the His 54 is displaced from the heme. The data are consistent with lysines 4 and 5 being the primary heme ligands at alkaline pH, under denaturing conditions. This conclusion was confirmed by site-directed mutagenesis. Thermodynamic analysis indicates that heme-ligand affinity in the denatured state is controlled primarily by sequence position (loop size) and that when histidines are present they inhibit lysine ligation until approximately pH 8.5-9.0 as compared to pH 7.5 with the AcTM variant. Thus, at physiological pH, histidine ligands provide the primary constraint on the denatured state of cytochrome c. The heme-Trp 59 distance in the denatured state of iso-1-cytochrome c, derived from analysis by F?rster energy transfer theory, is approximately 26 A at pH 4 and 10, much shorter than the random coil prediction of 56 A. Surprisingly, the heme-Trp 59 distance in the His 54 bound conformation only drops to approximately 21 A, consistent with an extended conformation for the short polypeptide segment separating heme and Trp 59.  相似文献   

3.
Thomas ST  Makhatadze GI 《Biochemistry》2000,39(33):10275-10283
The contribution of the hydrophobic contact in the C-capping motif of the alpha-helix to the thermodynamic stability of the ubiquitin molecule has been analyzed. For this, 16 variants of ubiquitin containing the full combinatorial set of four nonpolar residues Val, Ile, Leu, and Phe at C4 (Ile30) and C' ' (Ile36) positions were generated. The secondary structure content as estimated using far-UV circular dichroism (CD) spectroscopy of all but Phe variants at position 30 did not show notable changes upon substitutions. The thermodynamic stability of these ubiquitin variants was measured using differential scanning calorimetry, and it was shown that all variants have lower stability as measured by decreases in the Gibbs energy. Since in some cases the decrease in stability was so dramatic that it rendered an unfolded protein, it was therefore concluded that, despite apparent preservation of the secondary structure, the 30/36 hydrophobic contact is essential for the stability of the ubiquitin molecule. The decrease in the Gibbs energy in many cases was found to be accompanied by a large (up to 25%) decrease in the enthalpy of unfolding, particularly significant in the variants containing Ile to Leu substitutions. This decrease in enthalpy of unfolding is proposed to be primarily the result of the perturbed packing interactions in the native state of the Ile --> Leu variants. The analysis of these data and comparison with effects of similar amino acid substitutions on the stability of other model systems suggest that Ile --> Leu substitutions cannot be isoenergetic at the buried site.  相似文献   

4.
Hitz T  Luisi PL 《Biopolymers》2000,55(5):381-390
The main question of this paper is whether and to what extend lipid bilayers can aid in the polycondensation of amino acids and peptides. This means in particular how such bilayers can favor the selection of certain sequences out of a large number of theoretical possible ones. In a first series of experiments we started from a library of Trp-containing dipeptides of the type Trp-X where X is an amino acid residue; and we could show that, when adding this mixture to the POPC liposomes containing a hydrophobic quinoline condensing agent (EEDQ), only the hydrophobic Trp-Trp dipeptide is selected out by the liposomes and transformed into a longer oligomer. Trp-oligomers up to 29 monomers long (water insoluble) could be obtained by using the matrix support of liposomes. Mixed POPC/DDAB liposomes (positive charge) were used to produce co-oligopeptides that contain Trp and Glu residues in the same sequence. Arg/Trp and His/Trp containing sequences were obtained in presence of negatively charged liposomes (mixed POPC/DOPA-liposomes). The polycondensation of racemic NCA-amino acids has been studied to clarify if homochiral sequences are produced preferentially in presence or absence of liposomes. LC-MS and isotope labeling of the L-amino acid, participating in the polymerization reaction achieved this on the level of a direct product analysis. So the individual stereoisomer distribution up to a polymerization degree of 10 (in the case of Trp) could be determined. The data for Trp and other amino acids (Leu, Ile) and amino acid mixtures (Trp/Leu, Trp/Ile, Leu/Ile and Trp/Leu/Ile) show that homochiral sequences are produced preferentially if compared with a random (Bernoulli) distribution.  相似文献   

5.
The environment of Trp residues of the recombinant human interferons has been studied by the analysis of the emission spectra of native and denatured proteins at pH 1.5-8.5 and temperature 10-65 degrees C in the presence and absence of the anionic, cationic and neutral to charge contact quenchers--KI, CsCl and acrylamide, respectively. The obtained data allow to suppose that in IFN-alpha A and IFN-beta 1 Trp141 interacts with Arg145 and one or several from the following residues--Phe124, Ile127, Tyr130, Leu131, whereas Trp77--with Arg33 and Phe36, Phe78, Leu81 or Leu82 (Ile81 or Val82 for IFN-beta 1).  相似文献   

6.
We describe the de novo design and biophysical characterization of a model coiled-coil protein in which we have systematically substituted 20 different amino acid residues in the central "d" position. The model protein consists of two identical 38 residue polypeptide chains covalently linked at their N termini via a disulfide bridge. The hydrophobic core contained Val and Ile residues at positions "a" and Leu residues at positions "d". This core allowed for the formation of both two-stranded and three-stranded coiled-coils in benign buffer, depending on the substitution at position "d". The structure of each analog was analyzed by CD spectroscopy and their relative stability determined by chemical denaturation using GdnHCI (all analogs denatured from the two-stranded state). The oligomeric state(s) was determined by high-performance size-exclusion chromatography and sedimentation equilibrium analysis in benign medium. Our results showed a thermodynamic stability order (in order of decreasing stability) of: Leu, Met, Ile, Tyr, Phe, Val, Gln, Ala, Trp, Asn, His, Thr, Lys, Ser, Asp, Glu, Arg, Orn, and Gly. The Pro analog prevented coiled-coil formation. The overall stability range was 7.4 kcal/mol from the lowest to the highest analog, indicating the importance of the hydrophobic core and the dramatic effect a single substitution in the core can have upon the stability of the protein fold. In general, the side-chain contribution to the level of stability correlated with side-chain hydrophobicity. Molecular modelling studies, however, showed that packing effects could explain deviations from a direct correlation. In regards to oligomerization state, eight analogs demonstrated the ability to populate exclusively one oligomerization state in benign buffer (0.1 M KCl, 0.05 M K(2)PO(4)(pH 7)). Ile and Val (the beta-branched residues) induced the three-stranded oligomerization state, whereas Tyr, Lys, Arg, Orn, Glu and Asp induced the two-stranded state. Asn, Gln, Ser, Ala, Gly, Phe, Leu, Met and Trp analogs were indiscriminate and populated two-stranded and three-stranded states. Comparison of these results with similar substitutions in position "a" highlights the positional effects of individual residues in defining the stability and numbers of polypeptide chains occurring in a coiled-coil structure. Overall, these results in conjunction with other work now generate a relative thermodynamic stability scale for 19 naturally occurring amino acid residues in either an "a" or "d" position of a two-stranded coiled-coil. Thus, these results will aid in the de novo design of new coiled-coil structures, a better understanding of their structure/function relationships and the design of algorithms to predict the presence of coiled-coils within native protein sequences.  相似文献   

7.
Antimicrobial peptides (AMPs) are naturally occurring components of the immune system that act against bacteria in a variety of organisms throughout the evolutionary hierarchy. There have been many studies focused on the activity of AMPs using biophysical and microbiological techniques; however, a clear and predictive mechanism toward determining if a peptide will exhibit antimicrobial activity is still elusive, in addition to the fact that the mechanism of action of AMPs has been shown to vary between peptides, targets, and experimental conditions. Nonetheless, the majority of AMPs contain hydrophobic amino acids to facilitate partitioning into bacterial membranes and a net cationic charge to promote selective binding to the anionic surfaces of bacteria over the zwitterionic host cell surfaces. This study explores the role of hydrophobic amino acids using the peptide C18G as a model system. These changes were evaluated for the effects on antimicrobial activity, peptide-lipid interactions using Trp fluorescence spectroscopy, peptide secondary structure formation, and bacterial membrane permeabilization. The results show that while secondary structure formation was not significantly impacted by the substitutions, antibacterial activity and binding to model lipid membranes were well correlated. The variants containing Leu or Phe as the sole hydrophobic groups bound bilayers with highest affinity and were most effective at inhibiting bacterial growth. Peptides with Ile exhibited intermediate behavior while those with Val or α-aminoisobutyric acid (Aib) showed poor binding and activity. The Leu, Phe, and Ile peptides demonstrated a clear preference for anionic bilayers, exhibiting significant emission spectrum shifts upon binding. Similarly, the Leu, Phe, and Ile peptides demonstrated greater ability to disrupt lipid vesicles and bacterial membranes. In total, the data indicate that hydrophobic moieties in the AMP sequence play a significant role in the binding and ability of the peptide to exhibit antibacterial activity.  相似文献   

8.
The morphology of structures formed by the self‐assembly of short N‐terminal t‐butyloxycarbonyl (Boc) and C‐terminal methyl ester (OMe) protected and Boc‐deprotected hydrophobic peptide esters was investigated. We have observed that Boc‐protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc‐Ile‐Ile‐OMe, Boc‐Phe‐Phe‐Phe‐Ile‐Ile‐OMe and Boc‐Trp‐Ile‐Ile‐OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc‐Leu‐Ile‐Ile‐OMe and H‐Leu‐Ile‐Ile‐OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self‐assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well‐defined tertiary structures, upon removal of the Boc group, only H‐Phe‐Phe‐Phe‐Ile‐Ile‐OMe had the ability to adopt β‐structure. Our results indicate that hydrophobic interaction is a very important determinant for self‐assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self‐assembly. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Li C  Heatwole J  Soelaiman S  Shoham M 《Proteins》1999,37(4):619-627
The crystal structure of a thermophilic alcohol dehydrogenase (TBAD) from Thermoanaerobacter brockii has been determined in a binary complex with sec-butanol as substrate to a resolution of 3.0 A. Van der Waals interactions of the carbon C1 atom of sec-butanol with atoms in His59, Ala85, Trp110, Asp150, and Leu294 account for the substrate preference of this enzyme for secondary over primary alcohols. A crevice from the surface to the active site provides access for substrates and products. This opening is lined with the hydrophobic residues Ile49, Leu107, Trp110, Tyr267, Leu294 as well as Cys283 and Met285 from another molecule within the tetrameric assembly. This might explain the tolerance of this enzyme toward organic solvents. The zinc ion occupies a position in the active site, which is too remote for direct interaction with the alcohol group. A mechanism is suggested whereby the introduction of NADP would trigger a displacement of the zinc ion to its catalytic site. Features important for the unusually high melting temperature of 98 degrees C are suggested by comparison to the crystal structure of a highly homologous mesophilic alcohol dehydrogenase from Clostridium beijerinckii (CBAD). The thermophilic enzyme has a more hydrophilic exterior, a more hydrophobic interior, a smaller surface area, more prolines, alanines, and fewer serines than CBAD. Furthermore, in the thermophilic enzyme the number of all types of intersubunit interactions in these tetrameric enzymes is increased: more salt bridges, hydrogen bonds, and hydrophobic interactions. All these effects combined can account for the higher melting temperature of the thermophilic enzyme.  相似文献   

10.
Blood-brain barrier (BBB) transport for L-Trp and alpha-methyl-L-tryptophan was evaluated in Li-treated rats. Five different brain areas as well as left to right differences were examined. No left to right difference in the PS product was observed. Lithium treatment had a significant effect on the plasma concentration of Val, Leu and Ile but no effect on plasma total or free Trp. The ratio of plasma Trp to the sum of Leu, Val, Ile, Phe, Met and Tyr is increased in the Li-treated rats but not significantly. However, the ratio of Trp/(Val+Leu+Ile) is significantly increased in the Li-treated rats. The Km apparent (Kmapp) for the BBB Trp transport is significantly decreased (affinity of the carrier for Trp is increased) in the Li-treated rats. A decrease in the Kmapp is one of the possible factors responsible for an increase in the brain Trp concentration and subsequent increase in the brain serotonin synthesis in Li-treated rats.  相似文献   

11.
Structural analysis by X-ray crystallography has indicated that direct contact occurs between Arg69, the second residue of the first helix of the helix-turn-helix (HTH) motif of the Trp repressor, and guanine in position 9 of the α-centred consensustrp operator. We therefore replaced residue 69 of the Trp repressor with Gly, Ile, Leu or Gln and tested the resultant repressor mutants for their binding to synthetic symmetrical α-or β-centredtrp operator variants, in vivo and in vitro. We present genetic and biochemical evidence that Ile in position 69 of the Trp repressor interacts specifically with thymine in position 9 of the α-centredtrp operator. There are also interactions with other bases in positions 8 and 9 of the α-centredtrp operator. In vitro, the Trp repressor of mutant RI69 binds to the consensus α-centredtrp operator and a similartrp operator variant that carries a T in position 9. In vivo analysis of the interactions of Trp repressor mutant RI69 with symmetrical variants of the β-centredtrp operator shows a change in the specificity of binding to a β-centred symmetricaltrp operator variant with a gua-nine to thymine substitution in position 5, which corresponds to position 9 of the α-centredtrp operator.  相似文献   

12.
It is widely accepted that solvent-exposed sites in proteins play only a negligible role in determining protein energetics. In this paper we show that amino acid substitutions at the fully exposed Lys15 in bovine pancreatic trypsin inhibitor (BPTI) influenced the CD- and DSC-monitored stability: The T(den) difference between the least (P1 Trp) and the most stable (P1 His) mutant is 11.2 degrees C at pH 2.0. The DeltaH(den) versus T(den) plot for all the variants at three pH values (2.0, 2.5, 3.0) is linear (DeltaC(p,den) = 0.41 kcal* mole(-1) * K(-1); 1 cal = 4.18 J) leading to a DeltaG(den) difference of 2.1 kcal*mole(-1). Thermal denaturation of the variants monitored by CD signal at pH 2.0 in the presence of 6 M GdmCl again showed differences in their stability, albeit somewhat smaller (DeltaT(den) =7.1 degrees C). Selective reduction of the Cys14-Cys 38 disulfide bond, which is located in the vicinity of the P1 position did not eliminate the stability differences. A correlation analysis of the P1 stability with different properties of amino acids suggests that two mechanisms may be responsible for the observed stability differences: the reverse hydrophobic effect and amino acid propensities to occur in nonoptimal dihedral angles adopted by the P1 position. The former effect operates at the denatured state level and causes a drop in protein stability for hydrophobic side chains, due to their decreased exposure upon denaturation. The latter factor influences the native state energetics and results from intrinsic properties of amino acids in a way similar to those observed for secondary structure propensities. In conclusion, our results suggest that the protein-stability-derived secondary structure propensity scales should be taken with more caution.  相似文献   

13.
The N-terminal SH3 domain of Drosophila drk (drkN SH3 domain) exists in equilibrium between a folded (F(exch)) state and a relatively compact unfolded (U(exch)) state under nondenaturing conditions. Selectively labeled samples of the domain have been analyzed by NOESY NMR experiments to probe residual hydrophobic clustering in the U(exch) state. The labeling strategy included selective protonation of aromatic rings or delta-methyl groups on Ile and Leu residues in a highly deuterated background. Combined with long mixing times, the methods permitted observation of significant numbers of long-range interactions between hydrophobic side chains, providing evidence for multiple conformers involving non-native hydrophobic clusters around the Trp 36 indole. Comparison of these data with previously reported HN-HN NOEs yields structural insight into the diversity of structures within the U(exch) ensemble in the drkN SH3 domain. Many of the HN-HN NOEs are consistent with models containing compact residual nativelike secondary structure and greater exposure of the Trp 36 indole to solvent, similar to kinetic intermediates formed in the hierarchic condensation model of folding. However, the methyl and aromatic NOE data better fit conformations with non-native burial of the Trp indole surrounded by hydrophobic groups and more loosely formed beta-structure; these structural characteristics are more consistent with those of kinetic intermediates formed during the hydrophobic collapse mechanism of folding. This suite of NOE data provides a more complete picture of the structures that span the U(exch) state ensemble, from conformers with non-native structure but long-range contacts to those that are highly nativelike. Together, the results are also consistent with the folding funnel view involving multiple folding pathways for this molecule.  相似文献   

14.
Thermolysin is a thermophilic and halophilic zinc metalloproteinase that consists of β-rich N-terminal (residues 1–157) and α-rich C-terminal (residues 158–316) domains. Expression of thermolysin variants truncated from the C-terminus was examined in E. coli culture. The C-terminal Lys316 residue was not significant in the expression, but Val315 was critical. Variants in which Val315 was substituted with fourteen amino acids were prepared. The variants substituted with hydrophobic amino acids such as Leu and Ile were almost the same as wild-type thermolysin (WT) in the expression amount, α-helix content, and stability. Variants with charged (Asp, Glu, Lys, and Arg), bulky (Trp), or small (Gly) amino acids were lower in these characteristics than WT. All variants exhibited considerably high activities (50–100% of WT) in hydrolyzing protein and peptide substrates. The expression amount, helix content, and stability of variants showed good correlation with hydropathy indexes of the amino acids substituted for Val315. Crystallographic study of thermolysin has indicated that V315 is a member of the C-terminal hydrophobic cluster. The results obtained in the present study indicate that stabilization of the cluster increases thermolysin stability and that the variants with higher stability are expressed more in the culture. Although thermolysin activity was not severely affected by the variation at position 315, the stability and specificity were modified significantly, suggesting the long-range interaction between the C-terminal region and active site.  相似文献   

15.
Haney EF  Nazmi K  Lau F  Bolscher JG  Vogel HJ 《Biochimie》2009,91(1):141-154
Human lactoferrampin is a novel antimicrobial peptide found in the cationic N-terminal lobe of the iron-binding human lactoferrin protein. The amino acid sequence that directly corresponds to the previously characterized bovine lactoferrin-derived lactoferrampin peptide is inactive on its own (WNLLRQAQEKFGKDKSP, residues 269-285). However, by increasing the net positive charge near the C-terminal end of human lactoferrampin, a significant increase in its antibacterial and Candidacidal activity was obtained. Conversely, the addition of an N-terminal helix cap (sequence DAI) did not have any appreciable effect on the antibacterial or antifungal activity of human lactoferrampin peptides, even though it markedly influenced that of bovine lactoferrampin. The solution structure of five human lactoferrampin variants was determined in SDS micelles and all of the structures display a well-defined amphipathic N-terminal helix and a flexible cationic C-terminus. Differential scanning calorimetry studies indicate that this peptide is capable of inserting into the hydrophobic core of a membrane, while fluorescence spectroscopy results suggest that a hydrophobic patch encompassing the single Trp and Phe residues as well as Leu, Ile and Ala side chains mediates the interaction between the peptide and the hydrophobic core of a phospholipid bilayer.  相似文献   

16.
Khan MK  Miller AL  Bowler BE 《Biochemistry》2012,51(17):3586-3595
We use a host-guest approach to evaluate the effect of Trp guest residues relative to Ala on the kinetics and thermodynamics of formation of His-heme loops in the denatured state of iso-1-cytochrome c at 1.5, 3.0, and 6.0 M guanidine hydrochloride (GdnHCl). Trp guest residues are inserted into an alanine-rich segment placed after a unique His near the N-terminus of iso-1-cytochrome c. Trp guest residues are either 4 or 10 residues from the His end of the 28-residue loop. We find the guest Trp stabilizes the His-heme loop at all GdnHCl concentrations when it is the 4th, but not the 10th, residue from the His end of the loop. Thus, residues near loop ends are most important in developing topological constraints in the denatured state that affect protein folding. In 1.5 M GdnHCl, the loop stabilization is ~0.7 kcal/mol, providing a thermodynamic rationale for the observation that Trp often mediates residual structure in the denatured state. Measurement of loop breakage rate constants, k(b,His), indicates that loop stabilization by the Trp guest residues occurs completely after the transition state for loop formation in 6.0 M GdnHCl. Under poorer solvent conditions, approximately half of the stabilization of the loop develops in the transition state, consistent with contacts in the denatured state being energetically downhill and providing evidence for funneling even near the rim of the folding funnel.  相似文献   

17.
The aim of this study was to examine the differences between hydrophobicity and packing effects in specifying the three-dimensional structure and stability of proteins when mutating hydrophobes in the hydrophobic core. In DNA-binding proteins (leucine zippers), Leu residues are conserved at positions "d," and beta-branched amino acids, Ile and Val, often occur at positions "a" in the hydrophobic core. In order to discern what effect this selective distribution of hydrophobes has on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers, three Val or three Ile residues were simultaneously substituted for Leu at either positions "a" (9, 16, and 23) or "d" (12, 19, and 26) in both chains of a model coiled coil. The stability of the resulting coiled coils was monitored by CD in the presence of Gdn.HCl. The results of the mutations of Ile to Val at either positions "a" or "d" in the reduced or oxidized coiled coils showed a significant hydrophobic effect with the additional methylene group in Ile stabilizing the coiled coil (delta delta G values range from 0.45 to 0.88 kcal/mol/mutation). The results of mutations of Leu to Ile or Val at positions "a" in the reduced or oxidized coiled coils showed a significant packing effect in stabilizing the coiled coil (delta delta G values range from 0.59 to 1.03 kcal/mol/mutation). Our results also indicate the subtle control hydrophobic packing can have not only on protein stability but on the conformation adopted by the amphipathic alpha-helices. These structural findings correlate with the observation that in DNA-binding proteins, the conserved Leu residues at positions "d" are generally less tolerant of amino acid substitutions than the hydrophobic residues at positions "a."  相似文献   

18.
Models for the structure of the fibers of deoxy sickle cell hemoglobin (Hb Hb S, beta 6 Glu-->Val) have been obtained from X-ray and electron microscopic studies. Recent molecular dynamics calculations of polymer formation give new insights on the various specific interactions between monomers. Site-directed mutagenesis with expression of the Hb S beta subunits in Escherichia coli provides the experimental tools to test these models. For Hb S, the beta 6 Val residue is intimately involved in a specific lateral contact, at the donor site, that interacts with the acceptor site of an adjacent molecule composed predominantly of the hydrophobic residues Phe 85 and Leu 88. Comparing natural and artificial mutants indicates that the solubility of deoxyHb decreases in relation to the surface hydrophobicity of the residue at the beta 6 position with Ile > Val > Ala. We also tested the role of the stereospecific adjustment between the donor and acceptor sites by substituting Trp for Glu at the beta 6 location. Among these hydrophobic substitutions and under our experimental conditions, only Val and Ile were observed to induce polymer formation. The interactions for the Ala mutant are too weak whereas a Trp residue inhibits aggregation through steric hindrance at the acceptor site of the lateral contact. Increasing the hydrophobicity at the axial contact between tetramers of the same strand also contributes to the stability of the double strand. This is demonstrated by associating the beta 23 Val-->Ile mutation at the axial contact with either the beta 6 Glu-->Val or beta 6 Glu-->Ile substitution in the same beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Protein aggregation or misfolding in the cell is connected with many genetic diseases and can result from substitutions in proteins. Substitutions can influence the protein stability and folding rates in both intermediate and native states. The equilibrium urea-induced unfolding was studied for mutant apomyoglobins carrying substitutions of the conserved nonfunctional residues Val10, Trp14, Ile111, Leu115, Met131, and Leu135 with Ala. Conformational transitions were monitored by intrinsic Trp fluorescence and far-UV circular dichroism. Free energy changes upon transition from the native to the intermediate state and from the intermediate to the unfolded state were determined. All substitutions considerably decreased the stability of native apomyoglobin, whereas the effect on the stability of the intermediate state was essentially smaller.  相似文献   

20.
The hydrophobic core in Bcl-xL composed of Trp137, Ile140, Trp181, Ile182, Trp188 and Phe191 is highly conserved and essential for protein folding, protein stability and binding affinity with BH3-peptide. 9 mutants of Ile140 residue were constructed and characterized in order to get better understanding of the effect of the hydrophobic core. Binding assay demonstrated that binding affinities between 4 charged mutants and BH3-peptide were significantly weakened or lost, suggesting that the integrity of the hydrophobic core has close relationship with binding. The CD spectroscopy results indicated that disruption of the hydrophobic core may affect local conformation within the protein and result in intrinsic inactivity. Further chemical-induced protein folding results on these 4 mutants revealed that the conserved hydrophobic core is also important for the protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号