首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of thiols in degradation of proteins by cathepsins.   总被引:2,自引:1,他引:1       下载免费PDF全文
The effects of thiols on the breakdown of 125I-labelled insulin, albumin and formaldehyde-treated albumin by highly purified rat liver cathepsins B, D, H and L at pH 4.0 and 5.5 were studied. At both pH values degradation was strongly activated by the thiols cysteamine, cysteine, dithiothreitol, glutathione and 2-mercaptoethanol, and its rate increased with increasing thiol concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect the rate of degradation by cathepsin D or L, and determination of free thiol groups after incubation of the proteins in the presence of glutathione but without cathepsin showed that their disulphide bonds were stable under the incubation conditions. Sephadex G-75 chromatography of the acid-soluble products of insulin digestion by cathepsin D or L suggested that thiols can reduce disulphide bonds in proteins after limited proteolysis. The resultant opening-up of the protein structure would lead to further proteolysis, so that the two processes (proteolysis and reduction) may act synergistically. By using the osmotic protection method it was shown that, at a physiological pH, cysteamine, and its oxidized form cystamine, can cross the lysosome membrane and thus may well be the physiological hydrogen donor for the reduction of disulphides in lysosomes. The results are discussed in relation to the lysosomal storage disease cystinosis.  相似文献   

2.
Glutathione has been shown to inhibit trypsin induced proteolytic activity. A concentration of 6 mM of glutathione was found to completely inhibit proteolysis of 3H-proline labelled underhydroxylated procollagen as a substrate, whereas a concentration of 2.1 mM of glutathione caused 50% inhibition of proteolysis. When azocoll was used as a substrate for trypsin 50% inhibition of proteolysis was achieved with 1.4 mM of glutathione, though a complete proteolytic inhibition was attained at 4 mM glutathione. The results suggest that glutathione may be playing an important role in protein metabolism in a variety of disease and stress states.  相似文献   

3.
Effect of superanutritional levels of selenium (Se) as sodium selenite (0.5 and 1.5 ppm) given orally to Balb/c mice for one and two weeks was observed on the rate of DNA/RNA synthesis, levels of reduced as well as oxidized glutathione (GSH and GSSG) and glutathione peroxidase (GSH-Px)/glutathione-S-transferase (GSH-S-transferase) activities in spleen. Similar effect of three different concentrations of Se (10(-7), 10(-5) and 10(-3) M) in culture media was also observed on the rate of DNA/RNA synthesis in proliferating lymphocytes taken from mice spleen. The results of the present study indicated that with increasing concentration and duration of Se treatment in vivo and in vitro, a marked inhibition of the rate of DNA/RNA synthesis was observed. Levels of total glutathione and GSSG in spleen were elevated significantly only after two weeks in 1.5 ppm treatments. Glutathione peroxidase activities in spleen decreased (p < 0.05) in 1.5 ppm group at one week and in 0.5 ppm group at two week treatment. At higher Se treatment, the activity recovered towards control. However, GSH-S-transferase in spleen remained unchanged at all treatment intervals. The results indicated that changes in glutathione system by increasing Se concentration might account for inhibition of rate of DNA/RNA synthesis.  相似文献   

4.
Thyroxine (T4) pretreatment of A 23187-stimulated human granulocytes in 10(-5)-10(-6) M concentration range inhibited the superoxide anion production of these cells. T4 increased the level of oxidized form of glutathione, whereas the intracellular level of the reduced form decreased. A similar alteration in the ratio of the oxidized to reduced forms of glutathione was detected in granulocytes during yeast cell phagocytosis. In addition, conversion of T4 to triiodothyronine (T3) was also inhibited during phagocytosis. A possible competition between 5'-monodeiodination of T4 and the oxidative burst of human granulocytes is discussed.  相似文献   

5.
6.
N R Elaev 《Tsitologiia》1978,20(8):970-972
Acetylcholine (10(-6)--10(-3) M) added to the rat brain homogenate increased that activity of microsomal Na, K-ATPase and (14C)-amino acid incorporation in microsomal proteins. Actinomicin D (5.10(-5) M) eliminated the effect of acetylcholine. It is concluded that acetylcholine induced the synthesis of either Na, K-ATPase itself or some other proteins involved in the enzyme activity regulation.  相似文献   

7.
We have studied the effects of human, bovine and porcine insulin on sugar transport by cultured chicken embryo fibroblast monolayers. For a 30 min. association time, human and bovine insulin at a concentration of 5.10(-8) M stimulated 2-deoxy-D-glucose uptake. (respectively by an average 58 p.cent and 55 p.cent over basal). Porcine insulin was less potent since a concentration of 5.10(-7) M was necessary to obtain similar stimulation. Moreover, the maximal effect of porcine insulin occur only after 60 min. association time instead of 30 min. for the other peptides. The differences between the effects of insulin from different sources is related to species-dependent differences in their structure.  相似文献   

8.
With the glutathione system that leads to rapid regeneration of reduced lysozyme (Saxena, V. P., and Wetlaufer, D. B. (1971) Biochemistry 9, 5015), reduced pancreatic ribonuclease (RNase) regenerated activity in high yield (greater than 90%) but at a considerably lower rate (t1/2 approximately 75 min). Systematic examination of the effects upon regeneration of the concentrations and ratios of reduced and oxidized glutathione (GSH and GSSG) showed the same broad optima for RNase as were earlier found for lysozyme: [GSSG] = 5 X 10(-4) M, [GSH] = 5 X 10(-3) M. Regeneration of reduced RNase by air oxidation was shown to be inhibitable by 10(-4) M EDTA, whereas the glutathione regeneration was unaffected by EDTA. In addition the air-oxidative regeneration showed a strong temperature dependence, in contrast with the glutathione system. The mechanisms of these two kinds of regenerations are therefore different. Six potentially catalytic metal ions were tested in the air-oxidative regeneration of RNase: Cu2+, Co2+, Mn2+, Fe3+, Zn2+, and Ni2+. Of these, only Cu2+ enhanced the rate of regeneration of RNase activity, although both Cu2+ and Co2+ catalyzed thioloxidation of reduced RNase. The rates and yields of RNase regenerations were independent of protein concentration from 3 X 10(-7) M to 1.2 X 10(-5) M in the glutathione system. Preincubation of freshly dissolved reduced RNase under nonoxidizing conditions before adding glutathione did not change the rate or extent of regeneration. Studies of its pH dependence showed that the glutathione regeneration depends on the deprotonation of prototropic groups with 7.5 less than pK less than 8.0. The major ion exchange chromatographic peaks from glutathione and air-oxidative regenerations appeared to be identical with native RNase, by the criteria of specific activity, chromatographic mobility, and circular dichroic spectra. The glutathione system permits regeneration at much higher RNase concentration than the air regeneration, with rates and yields comparable to the greatest reported for air regeneration.  相似文献   

9.
Transport of reduced glutathione (GSH) was studied in isolated rat liver canalicular membrane vesicles by a rapid filtration technique. The membrane vesicles exhibit uptake of [2-3H]glycine--labeled GSH into an osmotically reactive intravesicular space. Although the canalicular membrane vesicles possess gamma-glutamyltransferase and aminopeptidase M, enzymes that hydrolyze glutathione into component amino acids, inactivation of the vesicle-associated transferase by affinity labeling with L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125) had no effect on the initial rate of GSH transport. Chemical analysis revealed that intact GSH accounted for most of vesicle-associated radioactivity. The initial rate of transport followed saturation kinetics with respect to GSH concentration; an apparent Km of 0.33 mM and V of 1.47 nmol/mg protein in 20 s were calculated. These results indicate that transport of GSH across the canalicular membranes is a carrier-mediated process. Replacement of NaCl in the transport medium by KCl, LiCl or choline chloride had no effect on the transport activity of the vesicles. The rate of GSH uptake by the vesicles was enhanced by valinomycin-induced K+-diffusion potential (vesicle inside-positive) and was inhibited by probenecid, indicating that GSH transport across the canalicular membranes is electrogenic and involves the transfer of negative charge. The transport of GSH was inhibited by oxidized glutathione or S-benzyl-glutathione. This transport system in canalicular plasma membranes may function in biliary secretion of GSH and its derivatives which are synthesized in hepatocytes by oxidative processes or glutathione S-transferase.  相似文献   

10.
Protein folding occurs simultaneously with disulfide bond formation. In general, the in vitro folding of proteins containing disulfide bond(s) is carried out in the presence of redox reagents, such as glutathione, to permit native disulfide pairing to occur. It is well known that the formation of a disulfide bond and the correct tertiary structure of a target protein are strongly affected by the redox reagent used. However, little is known concerning the role of each amino acid residue of the redox reagent, such as glutathione. Therefore, we prepared glutathione derivatives - glutamyl-cysteinyl-arginine (ECR) and arginyl-cysteinyl-glycine (RCG) - and examined their ability to facilitate protein folding using lysozyme and prouroguanylin as model proteins. When the reduced and oxidized forms of RCG were used, folding recovery was greater than that for a typical glutathione redox system. This was particularly true when high protein concentrations were employed, whereas folding recovery using ECR was similar to that of the glutathione redox system. Kinetic analyses of the oxidative folding of prouroguanylin revealed that the folding velocity (K(RCG) = 3.69 × 10(-3) s(-1)) using reduced RCG/oxidized RCG was approximately threefold higher than that using reduced glutathione/oxidized glutathione. In addition, folding experiments using only the oxidized form of RCG or glutathione indicated that prouroguanylin was converted to the native conformation more efficiently in the case of RCG, compared with glutathione. The findings indicate that a positively charged redox molecule is preferred to accelerate disulfide-exchange reactions and that the RCG system is effective in mediating the formation of native disulfide bonds in proteins.  相似文献   

11.
Tim10 and all the small Tim proteins of the mitochondrial intermembrane space contain a consensus twin CX3C Zn2+-finger motif. While disulphide bond formation between the Cys residues of this motif is essential for complex formation by the small Tim proteins, the specific role of Zn2+-binding during the import and assembly of these proteins is not clear. In this study, we investigated the effects of the biologically relevant thiol-disulphide redox molecule, glutathione, and Zn2+-binding on the oxidative folding of yeast mitochondrial Tim10 using both biochemical and biophysical methods in vitro. We show that, whilst oxidized Tim10 cannot be reduced by reduced glutathione, reduced Tim10 is effectively oxidized at levels of glutathione comparable to those found in the cytosol. The oxidized Tim10 generated in the presence of glutathione is competent for complex formation with its partner protein Tim9, confirming it has a native fold. The standard redox potential of Tim10 at pH 7.4 was determined to be -0.32 V, confirming that Tim10 is a much stronger reductant than glutathione (-0.26 V, at pH 7.4) and could therefore be oxidized rapidly by oxidized glutathione in the cytosol. However, we found that Zn2+-binding can stabilize the reduced Tim10, decreasing the rate of the oxidative folding more than tenfold. In addition, we show that protein disulphide isomerase can catalyse the oxidative folding of Tim10 provided that Zn2+ was removed. We propose that Zn2+-binding is essential to maintain the protein in a reduced and import-competent state in the cytosol, and that zinc has to be removed after the protein is imported into mitochondria to initiate protein oxidative folding and assembly.  相似文献   

12.
T K Vysochina 《Tsitologiia》1978,20(3):357-360
Action of adrenaline on ATPase activity of ground squirrel synaptosomes in vitro at 37 degrees and 17 degrees C was studied. It has been shown in experiments in vitro at 37 degrees C that adrenaline in a concentration of 5.10(-4) M influenced Mg and Na, K-ATPase of the synaptosomes in ground squirrel brain. The inhibition (42-72%) of Na, K-ATPase in the synaptosomes of the brain was seen during hibernation and in summer. The inhibition of Mg-ATPase (50%) was observed only in summer. The effect of adrenaline on the activity of Na, K-ATPase of synaptosome was seen in vitro as well as at 17 degrees (a 50% inhibition). It was shown that adrenaline in vitro at a concentration of 5.10(-4) M inhibited ATPases more than noradrenaline.  相似文献   

13.
Reduced glutathione (GSH) delays microsomal lipid peroxidation via the reduction of vitamin E radicals, which is catalyzed by a free radical reductase (Haenen, G.R.M.M. et al. (1987) Arch. Biochem. Biophys. 259, 449-456). Lipoic acid exerts its therapeutic effect in pathologies in which free radicals are involved. We investigated the interplay between lipoic acid and glutathione in microsomal Fe2+ (10 microM)/ascorbate (0.2 mM)-induced lipid peroxidation. Neither reduced nor oxidized lipoic acid (0.5 mM) displayed protection against microsomal lipid peroxidation, measured as thiobarbituric acid-reactive material. Reduced lipoic acid even had a pro-oxidant activity, which is probably due to reduction of Fe3+. Notably, protection against lipid peroxidation was afforded by the combination of oxidized glutathione (GSSG) and reduced lipoic acid. It is shown that this effect can be ascribed completely to reduction of GSSG to GSH by reduced lipoic acid. This may provide a rationale for the therapeutic effectiveness of lipoic acid.  相似文献   

14.
We demonstrate that oxidized amino acids can be incorporated into proteins by protein synthesis. The level of incorporation into protein was dependent on the concentration of oxidized amino acid supplied to the cells. At low levels of incorporation, the oxidized amino acids examined increased the degradation rate of the cell proteins. Degradation of certain proteins containing high levels of DOPA (but not ortho or meta tyrosine) was decreased to below the basal degradation rates suggesting that DOPA may contribute to proteins becoming resistant to proteolysis. Changes in the degradation rates of the oxidized amino acid-containing proteins was shown to have no impact on the degradation rates of native proteins, indicating that the activity of the degradative machinery was not affected. We demonstrate that oxidized proteins are selectively degraded by the proteasomes and provide evidence to suggest that the proteasomes and the endosomal-lysosomal systems may act in sequence as well as in parallel. The incorporation approach, unlike cell studies in which an exogenous oxidant is used, allows the degradation rates of the oxidatively modified proteins to be selectively measured, offering a greater sensitivity as well as greatly reducing toxicity to the cell and avoiding oxidative modification of other cell components.  相似文献   

15.
All small Tim proteins of the mitochondrial intermembrane space contain two conserved CX(3)C motifs, which form two intramolecular disulfide bonds essential for function, but only the cysteine-reduced, but not oxidized, proteins can be imported into mitochondria. We have shown that Tim10 can be oxidized by glutathione under cytosolic concentrations. However, it was unknown whether oxidative folding of other small Tims can occur under similar conditions and whether oxidative folding competes kinetically with mitochondrial import. In the present study, the effect of glutathione on the cysteine-redox state of Tim9 was investigated, and the standard redox potential of Tim9 was determined to be approx. -0.31 V at pH 7.4 and 25 degrees C with both the wild-type and Tim9F43W mutant proteins, using reverse-phase HPLC and fluorescence approaches. The results show that reduced Tim9 can be oxidized by glutathione under cytosolic concentrations. Next, we studied the rate of mitochondrial import and oxidative folding of Tim9 under identical conditions. The rate of import was approx. 3-fold slower than that of oxidative folding of Tim9, resulting in approx. 20% of the precursor protein being imported into an excess amount of mitochondria. A similar correlation between import and oxidative folding was obtained for Tim10. Therefore we conclude that oxidative folding and mitochondrial import are kinetically competitive processes. The efficiency of mitochondrial import of the small Tim proteins is controlled, at least partially in vitro, by the rate of oxidative folding, suggesting that a cofactor is required to stabilize the cysteine residues of the precursors from oxidation in vivo.  相似文献   

16.
Oxytocin and sigetin were studied for their effect on the active and passive transport of Ca2+ in the fraction of myometrium sarcolemma in women. Oxytocin (5.10(-7) M) introduced into the sarcolemma vesicles and sigetin (5.10(-3) M) added into the incubation medium inhibit Mg2+, ATP-dependent accumulation of Ca2+ in these structures. The both agents in the mentioned concentration do not affect the passive release of cation from vesicles. A conclusion is drawn that inhibition of the calcium pump of myometrium cell plasma membranes underlies the physiological action of oxytocin and sigetin as stimulators of the contractile activity of the myometrium.  相似文献   

17.
The alkaloid harmaline is known to affect various membrane transport systems. This study examines the action of the drug on the short-circuit current (I0) and on the oxidative metabolism (Jr) in the tracheal epithelium of the cow. In this tissue I0 corresponds to the sum of two active transports: Na+ is absorbed and Cl- is secreted by a process based on the activity of the Na+ pump. A well defined relationship has been previously demonstrated between these active transports and the rate of O2 consumption (Schoenenweid et al., 1984 b). Low concentrations of harmaline (10(-6) to 5.10(-6) M) induced a small stimulation of I0. In contrast, larger concentrations (between 5.10(-5) and 10(-3) M) yielded a dose-related inhibition of I0, with an apparent concentration yielding 50% of maximal effect of 7.1.10(-4) M and maximal effect approaching 100%. The action was fully reversible after removal of the drug. The measurements of the fluxes of 22Na and 36Cl revealed that harmaline at a concentration of 8.10(-4) M, which decreased the I0 by 74 +/- 1% (n = 23), diminished both Na+ and Cl- transports, by 81 and 52%, respectively. The time course of I0 decay following the administration of harmaline was made of three components, with half-times of 0.34, 2.2 and 15.2 min. The time course was not appreciably modified when Cl- secretion was abolished with furosemide. Although harmaline, 10(-3)M, inhibited markedly I0, it did not modify Jr significantly. In contrast, when K+ in the incubation solution was omitted, both Ji and Jr were lowered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The proteolysis rate of the total liver, brain and testicle homogenates from young and old rats was studied by proteolytic enzymes. The level of autolytic destruction of brain and liver proteins decreases with aging. The total liver, brain and testicle proteins of young animals are splitted by pronase faster than the proteins of the old ones. Addition of reduced glutathione to the reaction mixture causes an increase in the rate of liver and brain proteins splitting by pronase in old rats up to the level determined for the young animals. At the same time the effect of glutathione on the testicle tissue of old animals was not observed.  相似文献   

19.
1. The pH dependencies of the apparent Michaelis constant for oxidized glutathione and the apparent turnover number of yeast glutathione reductase (EC 1.6.4.2) have been determined at a fixed concentration of 0.1 mM NADPH in the range pH 4.5--8.0. Between pH 5.5 and 7.6, both of these parameters are relatively constant. The principal effect of low pH on the kinetics of the enzyme-catalyzed reaction is the observation of a pH-dependent substrate inhibition by oxidized glutathione at pH less than or equal 7, which is shown to correlate with the binding of oxidized glutathione to the oxidized form of the enzyme. 2. The catalytic activity of yeast glutathione reductase at pH 5.5 is affected by the sodium acetate buffer concentration. The stability of the oxidized and reduced forms of the enzyme at pH 5.5 and 25 degrees C in the absence of bovine serum albumin was studied as a function of sodium acetate concentration. The results show that activation of the catalytic activity of the enzyme at low sodium acetate concentration correlates with an effect of sodium acetate on a reduced form of the enzyme. In contrast, inhibition of the catalytic activity of the enzyme at high sodium acetate concentration correlates with an effect of sodium acetate on the oxidized form of the enzyme.  相似文献   

20.
The effect of dexamethasone on the synthesis of acute phase proteins has been studied in primary cultures of rat hepatocytes. In the absence of dexamethasone no detectable amounts of alpha 2-macroglobulin were synthesized by hepatocytes cultured for 1 day. alpha 2-Macroglobulin synthesis was induced by dexamethasone concentrations of 10(-8) M or higher with a maximum at a concentration of 10(-7) M. alpha 1-Acid glycoprotein was synthesized in the absence of dexamethasone; however, its synthesis was also greatly stimulated by dexamethasone concentrations of 10(-8)-10(-6) M. Synthesis of alpha 1-proteinase inhibitor was stimulated only 1.4-fold at a dexamethasone concentration of 10(-7) M. The kinetics of induction of alpha 2-macroglobulin and alpha 1-acid glycoprotein were studied at a dexamethasone concentration of 10(-7) M. After an initial lag phase of 3 h the synthesis of both proteins showed a steady increase during 2 days. Synthesis of albumin remained unchanged under these experimental conditions. Unlike alpha 2-macroglobulin and alpha 1-acid glycoprotein tyrosine aminotransferase activity increased already during the first 3 h of induction by dexamethasone with a maximum at 12 h followed by a slight decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号