首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pre-steady-state kinetic studies on Y-family DNA polymerase η (Polη) have suggested that the polymerase undergoes a rate-limiting conformational change step before the phosphoryl transfer of the incoming nucleotide to the primer terminus. However, the nature of this rate-limiting conformational change step has been unclear, due in part to the lack of structural information on the Polη binary complex. We present here for the first time a crystal structure of human Polη (hPolη) in binary complex with its DNA substrate. We show that the hPolη domains move only slightly on dNTP binding and that the polymerase by and large is pre-aligned for dNTP binding and catalysis. We also show that there is no major reorientation of the DNA from a nonproductive to a productive configuration and that the active site is devoid of metals in the absence of dNTP. Together, these observations lead us to suggest that the rate-limiting conformational change step in the Polη replication cycle likely corresponds to a rate-limiting entry of catalytic metals in the active site.  相似文献   

2.
Numerous studies have been undertaken to establish the mechanism of dNTP binding and template-directed incorporation by DNA polymerases. It has been established by kinetic experiments that a rate-limiting step, crucial for dNTP selection, occurs before chemical bond formation. Crystallographic studies indicated that this step may be due to a large open-to-closed conformational transition affecting the fingers subdomain. In previous studies, we established a fluorescence resonance energy transfer system to monitor the open-to-closed transition in the fingers subdomain of Klentaq1. By comparing the rates of the fingers subdomain closure with that of the rate-limiting step for Klentaq1, we showed that fingers subdomain motion was significantly faster than the rate-limiting step. We have now used this system to characterize DNA binding as well as to complete a more extensive characterization of incorporation of all four dNTPs. The data indicate that DNA binding occurs by a two-step association and that dissociation of the DNA is significantly slower in the case of the closed ternary complex. The data for nucleotide incorporation indicate a step occurring before dNTP binding, which differs for all four nucleotides. As the only difference between the (E x p/t) complexes is the templating base, it would suggest an important role for the templating base in initial ground state selection.  相似文献   

3.
DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase–DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s−1, much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.  相似文献   

4.
The structures of DNA polymerases from different families show common features and significant differences that shed light on the ability of these enzymes to accurately copy DNA and translocate. The structure of a B family DNA polymerase from phage RB69 exhibits an active-site closing conformational change in the fingers domain upon forming a ternary complex with primer template in deoxynucleoside triphosphate. The rotation of the fingers domain alpha-helices by 60 degrees upon dNTP binding is analogous to the changes seen in other families of polymerases. When the 3' terminus is bound to the editing 3' exonuclease active site, the orientation of the DNA helix axis changes by 40 degrees and the thumb domain re-orients with the DNA. Structures of substrate and product complexes of T7 RNA polymerase, a structural homologue of T7 DNA polymerase, show that family polymerases use the rotation conformational change of the fingers domain to translocate down the DNA. The fingers opening rotation that results in translocation is powered by the release of the product pyrophosphate and also enables the Pol I family polymerases to function as a helicase in displacing the downstream non-template strand from the template strand.  相似文献   

5.
The incorporation of dNMPs into DNA by polymerases involves a phosphoryl transfer reaction hypothesized to require two divalent metal ions. Here we investigate this hypothesis using as a model human DNA polymerase lambda (Pol lambda), an enzyme suggested to be activated in vivo by manganese. We report the crystal structures of four complexes of human Pol lambda. In a 1.9 A structure of Pol lambda containing a 3'-OH and the non-hydrolyzable analog dUpnpp, a non-catalytic Na+ ion occupies the site for metal A and the ribose of the primer-terminal nucleotide is found in a conformation that positions the acceptor 3'-OH out of line with the alpha-phosphate and the bridging oxygen of the pyrophosphate leaving group. Soaking this crystal in MnCl2 yielded a 2.0 A structure with Mn2+ occupying the site for metal A. In the presence of Mn2+, the conformation of the ribose is C3'-endo and the 3'-oxygen is in line with the leaving oxygen, at a distance from the phosphorus atom of the alpha-phosphate (3.69 A) consistent with and supporting a catalytic mechanism involving two divalent metal ions. Finally, soaking with MnCl2 converted a pre-catalytic Pol lambda/Na+ complex with unreacted dCTP in the active site into a product complex via catalysis in the crystal. These data provide pre- and post-transition state information and outline in a single crystal the pathway for the phosphoryl transfer reaction carried out by DNA polymerases.  相似文献   

6.
Bakhtina M  Lee S  Wang Y  Dunlap C  Lamarche B  Tsai MD 《Biochemistry》2005,44(13):5177-5187
The kinetic mechanism and the structural bases of the fidelity of DNA polymerases are still highly controversial. Here we report the use of three probes in the stopped-flow studies of Pol beta to obtain new, direct evidence for our previous interpretations: (a) Increasing the viscosity of the reaction buffer by sucrose or glycerol is expected to slow down the conformational change differentially, and it was shown to slow down the first (fast) fluorescence transition selectively. (b) Use of dNTPalphaS in place of dNTP is expected to slow down the chemical step preferentially, and it was shown to slow down the second (slow) fluorescence transition selectively. (c) The substitution-inert Rh(III)dNTP was used to show for the first time that the slow fluorescence change occurs after mixing of Pol beta.DNA.Rh(III)dNTP with Mg(II). These results, along with crystal structures, suggest that the subdomain-closing conformational change occurs before binding of the catalytic Mg(II) while the rate-limiting step occurs after binding of the catalytic Mg(II). These results provide new evidence to the mechanism we suggested previously, but do not support the results of three recent papers of computational studies. The results were further supported by a "sequential mixing" stopped-flow experiment that used no analogues, and thus ruled out the possibility that the discrepancy between experimental and computational results is due to the use of analogues. The methodologies can be used to examine other DNA polymerases to answer whether the properties of Pol beta are exceptional or general.  相似文献   

7.
The 2.25 A resolution crystal structure of a pol alpha family (family B) DNA polymerase from the hyperthermophilic marine archaeon Thermococcus sp. 9 degrees N-7 (9 degrees N-7 pol) provides new insight into the mechanism of pol alpha family polymerases that include essentially all of the eukaryotic replicative and viral DNA polymerases. The structure is folded into NH(2)- terminal, editing 3'-5' exonuclease, and polymerase domains that are topologically similar to the two other known pol alpha family structures (bacteriophage RB69 and the recently determined Thermococcus gorgonarius), but differ in their relative orientation and conformation.The 9 degrees N-7 polymerase domain structure is reminiscent of the "closed" conformation characteristic of ternary complexes of the pol I polymerase family obtained in the presence of their dNTP and DNA substrates. In the apo-9 degrees N-7 structure, this conformation appears to be stabilized by an ion pair. Thus far, the other apo-pol alpha structures that have been determined adopt open conformations. These results therefore suggest that the pol alpha polymerases undergo a series of conformational transitions during the catalytic cycle similar to those proposed for the pol I family. Furthermore, comparison of the orientations of the fingers and exonuclease (sub)domains relative to the palm subdomain that contains the pol active site suggests that the exonuclease domain and the fingers subdomain of the polymerase can move as a unit and may do so as part of the catalytic cycle. This provides a possible structural explanation for the interdependence of polymerization and editing exonuclease activities unique to pol alpha family polymerases.We suggest that the NH(2)-terminal domain of 9 degrees N-7 pol may be structurally related to an RNA-binding motif, which appears to be conserved among archaeal polymerases. The presence of such a putative RNA- binding domain suggests a mechanism for the observed autoregulation of bacteriophage T4 DNA polymerase synthesis by binding to its own mRNA. Furthermore, conservation of this domain could indicate that such regulation of pol expression may be a characteristic of archaea. Comparion of the 9 degrees N-7 pol structure to its mesostable homolog from bacteriophage RB69 suggests that thermostability is achieved by shortening loops, forming two disulfide bridges, and increasing electrostatic interactions at subdomain interfaces.  相似文献   

8.
During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability.  相似文献   

9.
DNA polymerases maintain genomic integrity by copying DNA with high fidelity, part of which relies on the polymerase fingers opening-closing transition, a series of conformational changes during the DNA synthesis reaction cycle. Fingers opening and closing has been challenging to study, mainly due to the need to synchronise molecular ensembles. We previously studied fingers opening-closing on single polymerase-DNA complexes using single-molecule FRET; however, our work was limited to pre-chemistry reaction steps. Here, we advance our analysis to extensible substrates, and observe DNA polymerase (Pol) conformational changes across the entire DNA polymerisation reaction in real-time, gaining direct access to an elusive post-chemistry step rate-limiting for DNA synthesis. Our results showed that Pol adopts the fingers-closed conformation during polymerisation, and that the post-chemistry rate-limiting step occurs in the fingers-closed conformation. We found that fingers-opening in the Pol-DNA binary complex in the absence of polymerisation is slow (~5.3 s?1), and comparable to the rate of fingers-opening after polymerisation (3.4 s?1); this indicates that the fingers-opening step itself could be largely responsible for the slow post-chemistry step, with the residual rate potentially accounted for by pyrophosphase release. We also observed that DNA chain-termination of the 3′ end of the primer increases substantially the rate of fingers-opening in the Pol-DNA binary complex (5.3 → 29 s?1), demonstrating that the 3′-OH residue is important for the kinetics of fingers conformational changes. Our observations offer mechanistic insight and tools to offer mechanistic insight for all nucleic acid polymerases.  相似文献   

10.
Bakhtina M  Roettger MP  Kumar S  Tsai MD 《Biochemistry》2007,46(18):5463-5472
After extensive studies spanning over half a century, there is little consensus on the kinetic mechanism of DNA polymerases. Using stopped-flow fluorescence assays for mammalian DNA polymerase beta (Pol beta), we have previously identified a fast fluorescence transition corresponding to conformational closing, and a slow fluorescence transition matching the rate of single-nucleotide incorporation. Here, by varying pH and buffer viscosity, we have decoupled the rate of single-nucleotide incorporation from the rate of the slow fluorescence transition, thus confirming our previous hypothesis that this transition represents a conformational event after chemistry, likely subdomain reopening. Analysis of an R258A mutant indicates that rotation of the Arg258 side chain is not rate-limiting in the overall kinetic pathway of Pol beta, yet is kinetically significant in subdomain reopening. We have extended our kinetic analyses to a high-fidelity polymerase, Klenow fragment (KF), and a low-fidelity polymerase, African swine fever virus DNA polymerase X (Pol X), and showed that they follow the same kinetic mechanism as Pol beta, while differing in relative rates of single-nucleotide incorporation and the putative conformational reopening. Our data suggest that the kinetic mechanism of Pol beta is not an exception among polymerases, and furthermore, its delineated kinetic mechanism lends itself as a platform for comparison of the kinetic properties of different DNA polymerases and their mutants.  相似文献   

11.
The African swine fever virus DNA polymerase X (ASFV Pol X or Pol X), the smallest known nucleotide polymerase, has recently been reported to be an extremely low fidelity polymerase that may be involved in strategic mutagenesis of the viral genome. Here we report the solution structure of Pol X. The structure, unique within the realm of nucleotide polymerases, consists of only palm and fingers subdomains. Despite the absence of a thumb subdomain, which is important for DNA binding in other polymerases, we show that Pol X binds DNA with very high affinity. Further structural analyses suggest a novel mode of DNA binding that may contribute to low fidelity synthesis. We also demonstrate that the ASFV DNA ligase is a low fidelity ligase capable of sealing a nick that contains a G-G mismatch. This supports the hypothesis of a virus-encoded, mutagenic base excision repair pathway consisting of a tandem Pol X/ligase mutator.  相似文献   

12.
Nowotny M  Yang W 《The EMBO journal》2006,25(9):1924-1933
In two-metal catalysis, metal ion A has been proposed to activate the nucleophile and metal ion B to stabilize the transition state. We recently reported crystal structures of RNase H-RNA/DNA substrate complexes obtained at 1.5-2.2 Angstroms. We have now determined and report here structures of reaction intermediate and product complexes of RNase H at 1.65-1.85 Angstroms. The movement of the two metal ions suggests how they may facilitate RNA hydrolysis during the catalytic process. Firstly, metal ion A may assist nucleophilic attack by moving towards metal ion B and bringing the nucleophile close to the scissile phosphate. Secondly, metal ion B transforms from an irregular coordination in the substrate complex to a more regular geometry in the product complex. The exquisite sensitivity of Mg(2+) to the coordination environment likely destabilizes the enzyme-substrate complex and reduces the energy barrier to form product. Lastly, product release probably requires dissociation of metal ion A, which is inhibited by either high concentrations of divalent cations or mutation of an assisting protein residue.  相似文献   

13.
Controversy surrounds the metal-dependent mechanism of H-N-H endonucleases, enzymes involved in a variety of biological functions, including intron homing and DNA repair. To address this issue we determined the crystal structures for complexes of the H-N-H motif containing bacterial toxin colicin E9 with Zn(2+), Zn(2+).DNA, and Mg(2+).DNA. The structures show that the rigid V-shaped architecture of the active site does not undergo any major conformational changes on binding to the minor groove of DNA and that the same interactions are made to the nucleic acid regardless of which metal ion is bound to the enzyme. The scissile phosphate contacts the single metal ion of the motif through distortion of the DNA brought about by the insertion of the Arg-96-Glu-100 salt bridge into the minor groove and a network of contacts to the DNA phosphate backbone that straddle the metal site. The Mg(2+)-bound structure reveals an unusual coordination scheme involving two H-N-H histidine residues, His-102 and His-127. The mechanism of DNA cleavage is likely related to that of other single metal ion-dependent endonucleases, such as I-PpoI and Vvn, although in these enzymes the single alkaline earth metal ion is coordinated by oxygen-bearing amino acids. The structures also provide a rationale as to why H-N-H endonucleases are inactive in the presence of Zn(2+) but active with other transition metal ions such as Ni(2+). This is because of coordination of the Zn(2+) ion through a third histidine, His-131. "Active" transition metal ions are those that bind more weakly to the H-N-H motif because of the disengagement of His-131, which we suggest allows a water molecule to complete the catalytic cycle.  相似文献   

14.
Various kinetic studies on nucleotide incorporation by DNA polymerases have established that a rate-limiting step occurs that is crucial in the mechanism of discrimination between correct versus incorrect nucleotide. Crystallographic studies have indicated that this step may be due to a large open-to-closed conformational transition affecting the fingers subdomain. However, there is no direct evidence to support this hypothesis. In order to investigate whether or not the open-to-closed conformational transition affecting the fingers subdomain is rate limiting, we have developed a fluorescence resonance energy transfer (FRET) system, which monitors motions of the fingers subdomain. We establish that the closing of the fingers subdomain is significantly faster than the kinetically determined rate-limiting step. We propose that the rate-limiting step occurs after the closing of the fingers subdomain and is caused by local reorganization events in the active site.  相似文献   

15.
16.
DNA polymerases discriminate between correct and incorrect nucleotide substrates during a "nonchemical" step that precedes phosphodiester bond formation in the enzymatic cycle of nucleotide incorporation. Despite the importance of this process in polymerase fidelity, the precise nature of the molecular events involved remains unknown. Here we report a fluorescence resonance energy transfer (FRET) system that monitors conformational changes of a polymerase-DNA complex during selection and binding of nucleotide substrates. This system utilizes the fluorescent base analogue 1,3-diaza-2-oxophenothiazine (tC) as the FRET donor and Alexa-555 (A555) as the acceptor. The tC donor was incorporated within a model DNA primer/template in place of a normal base, adjacent to the primer 3' terminus, while the A555 acceptor was attached to an engineered cysteine residue (C751) located in the fingers subdomain of the Klenow fragment (KF) polymerase. The FRET efficiency increased significantly following binding of a correct nucleotide substrate to the KF-DNA complex, showing that the fingers had closed over the active site. Fluorescence anisotropy titrations utilizing tC as a reporter indicated that the DNA was more tightly bound by the polymerase under these conditions, consistent with the formation of a closed ternary complex. The rate of the nucleotide-induced conformational transition, measured in stopped-flow FRET experiments, closely matched the rate of correct nucleotide incorporation, measured in rapid quench-flow experiments, indicating that the conformational change was the rate-limiting step in the overall cycle of nucleotide incorporation for the labeled KF-DNA system. Taken together, these results indicate that the FRET system can be used to probe enzyme conformational changes that are linked to the biochemical function of DNA polymerase.  相似文献   

17.
Human DNA polymerase lambda (Pol lambda) is a family X member with low frameshift fidelity that has been suggested to perform gap-filling DNA synthesis during base excision repair and during repair of broken ends with limited homology. Here, we present a 2.1 A crystal structure of the catalytic core of Pol lambda in complex with DNA containing a two nucleotide gap. Pol lambda makes limited contacts with the template strand at the polymerase active site, and superimposition with Pol beta in a ternary complex suggests a shift in the position of the DNA at the active site that is reminiscent of a deletion intermediate. Surprisingly, Pol lambda can adopt a closed conformation, even in the absence of dNTP binding. These observations have implications for the catalytic mechanism and putative DNA repair functions of Pol lambda.  相似文献   

18.
Turner RM  Grindley ND  Joyce CM 《Biochemistry》2003,42(8):2373-2385
Cocrystal structures of DNA polymerases from the Pol I (or A) family have provided only limited information about the location of the single-stranded template beyond the site of nucleotide incorporation, revealing contacts with the templating position and its immediate 5' neighbor. No structural information exists for template residues more remote from the polymerase active site. Using a competition binding assay, we have established that Klenow fragment contacts at least the first four unpaired template nucleotides, though the quantitative contribution of any single contact is relatively small. Photochemical cross-linking indicated that the first unpaired template base beyond the primer terminus is close to Y766, as expected, and the two following template bases are close to F771 on the surface of the fingers subdomain. We have constructed point mutations in the region of the fingers subdomain implicated by these experiments. Cocrystal structures of family A DNA polymerases predict contacts between the template strand and S769, F771, and R841, and our DNA binding assays provide evidence for the functional importance of these contacts. Overall, the data are most consistent with the template strand following a path over the fingers subdomain, close to the side chain of R836 and a neighboring cluster of positively charged residues.  相似文献   

19.
BACKGROUND: Members of the Pol II family of DNA polymerases are responsible for chromosomal replication in eukaryotes, and carry out highly processive DNA replication when attached to ring-shaped processivity clamps. The sequences of Pol II polymerases are distinct from those of members of the well-studied Pol I family of DNA polymerases. The DNA polymerase from the archaebacterium Desulfurococcus strain Tok (D. Tok Pol) is a member of the Pol II family that retains catalytic activity at elevated temperatures. RESULTS: The crystal structure of D. Tok Pol has been determined at 2.4 A resolution. The architecture of this Pol II type DNA polymerase resembles that of the DNA polymerase from the bacteriophage RB69, with which it shares less than approximately 20% sequence identity. As in RB69, the central catalytic region of the DNA polymerase is located within the 'palm' subdomain and is strikingly similar in structure to the corresponding regions of Pol I type DNA polymerases. The structural scaffold that surrounds the catalytic core in D. Tok Pol is unrelated in structure to that of Pol I type polymerases. The 3'-5' proofreading exonuclease domain of D. Tok Pol resembles the corresponding domains of RB69 Pol and Pol I type DNA polymerases. The exonuclease domain in D. Tok Pol is located in the same position relative to the polymerase domain as seen in RB69, and on the opposite side of the palm subdomain compared to its location in Pol I type polymerases. The N-terminal domain of D. Tok Pol has structural similarity to RNA-binding domains. Sequence alignments suggest that this domain is conserved in the eukaryotic DNA polymerases delta and epsilon. CONCLUSIONS: The structure of D. Tok Pol confirms that the modes of binding of the template and extrusion of newly synthesized duplex DNA are likely to be similar in both Pol II and Pol I type DNA polymerases. However, the mechanism by which the newly synthesized product transits in and out of the proofreading exonuclease domain has to be quite different. The discovery of a domain that seems to be an RNA-binding module raises the possibility that Pol II family members interact with RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号