首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I Marin  M Labrador  A Fontdevila 《Génome》1992,35(6):967-974
The frequency and types of repetitive nonsatellite DNA of two sibling species of the repleta group of Drosophila, D. buzzatii, and D. koepferae have been determined. For each species, the analysis is based on a sample of more than 100 clones (400 kb) obtained from genomic DNA. A theoretical model has been developed to correct for the presence of a mixture of repetitive and unique DNA in these clones. After correction, a high content of repetitive DNA has been demonstrated for both species (D. buzzatii, 19-26%; D. koepferae, 27-32%). The repetitive sequences have been classified according to their hybridization pattern when used as probes against genomic DNA and by their in situ hybridization signals on polytene chromosomes. Data suggest that the main nonsatellite component of these species is simpler and more repetitive than that of D. melanogaster, pointing to a wide variability in content and class size distribution of repetitive DNA among Drosophila species.  相似文献   

2.
We tested for the occurrence of oviposition acceptance for different media prepared with cactus tissues of three alternative cactus hosts: Opuntia sulphurea, O. quimilo and Trichocereus terschekii for 4 consecutive days in lines of two Drosophila buzzatii populations and one population of D. koepferae. Our results showed that the former laid significantly more eggs on both Opuntia cacti than on T. terschekii, whereas D. koepferae preferred T. terschekii. In addition, fecundity schedules differed between species: D. buzzatii laid similar numbers of eggs along the four-day sampling period, whereas D. koepferae showed an oviposition peak on the second day of egg collection on T. terschekii. We suggest that the between-species disparities observed in oviposition acceptance and fecundity schedule may be related to the temporal and spatial predictability of Opuntia versus T. terschekii (cardón) as part of the different adaptive strategies that have evolved after the split of D. koepferae and D. buzzatii from their recent common ancestor. Therefore, the willingness to accept hosts would be an important factor in the habitat selection and in the maintenance of species diversity.  相似文献   

3.
The Xdh (rosy) gene is one of the best studied in the Drosophila genus from an evolutionary viewpoint. Here we analyze nucleotide variation in a 1875-bp fragment of the second exon of Xdh in Argentinian populations of the cactophilic D. buzzatii and its sibling D. koepferae. The major electrophoretic alleles of D. buzzatii not only lack diagnostic amino acids in the region studied but also differ on average from each other by four to 13 amino acid changes. Our data also suggest that D. buzzatii populations belonging to different phytogeographic regions are not genetically differentiated, whereas D. koepferae exhibits a significant pattern of population structure. The Xdh region studied is twice as polymorphic in D. buzzatii as in D. koepferae. Differences in historical population size or in recombinational environment between species could account for the differences in the level of nucleotide variation. In both species, the Xdh region exhibits a great number of singletons, which significantly departs from the frequency spectrum expected under neutrality for nonsynonymous sites and also for synonymous sites in D. buzzatii. These excesses of singletons could be the signature of a recent population expansion in D. buzzatii, whereas they may be simply explained as the result of negative selection in D. koepferae.  相似文献   

4.
As in most insect groups, host plant shifts in cactophilic Drosophila represent environmental challenges as flies must adjust their developmental programme to the presence of different chemical compounds and/or to a microflora that may differ in the diversity and abundance of yeasts and bacteria. In this context, wing morphology provides an excellent opportunity to investigate the factors that may induce changes during development. In this work, we investigated phenotypic plasticity and developmental instability of wing morphology in flies on the cactophilic Drosophila buzzatii and Drosophila koepferae raised on alternative breeding substrates. We detected significant differences in wing size between and within species, and between flies reared on different cactus hosts. However, differences in wing shape between flies emerged from different cactus hosts were not significant either in D. buzzatii or in D. koepferae. Our results also showed that morphological responses involved the entire organ, as variation in size and shape correlated between different portions of the wing. Finally, we studied the effect of the rearing cactus host on developmental instability as measured by the degree of fluctuating asymmetry (FA). Levels of FA in wing size were significantly greater in flies of both species reared in non-preferred when compared with those reared in preferred host cacti. Our results are discussed in the framework of an integrative view aimed at investigating the relevance of host plant shifts in the evolution of the guild of cactophilic Drosophila species that diversified in South America.  相似文献   

5.
In hybrids between the sibling species D. buzzatii and D. koepferae, both sexes are more or less equally viable in the F1: However, backcross males to D. buzzatii are frequently inviable, apparently because of interspecific genetic incompatibilities that are cryptic in the F1. We have performed a genetic dissection of the effects of the X chromosome from D. koepferae. We found only two cytological regions, termed hmi-1 and hmi-2, altogether representing 9% of the whole chromosome, which when introgressed into D. buzzatii cause inviability of hybrid males. Observation of the pattern of asynapsis of polytene chromosomes (incomplete pairing, marking introgressed material) in females and segregation analyses were the technique used to infer the X chromosome regions responsible for this hybrid male inviability. The comparison of these results with those previously obtained with the same technique for hybrid male sterility in this same species pair indicate that in the X chromosome of D. koepferae there are at least seven times more regions that produce hybrid male sterility than hybrid male inviability. We have also found that the inviability brought about by the introgression of hmi-1 is suppressed by the cointrogression of two autosomal sections from D. koepferae. Apparently, these three regions conform to a system of species-specific complementary factors involved in an X-autosome interaction that, when disrupted in backcross hybrids by recombination with the genome of its sibling D. buzzatii, brings about hybrid male inviability.  相似文献   

6.
Drosophila koepferae and D. buzzatii are two closely related cactophilic species inhabiting the arid lands of southern South America. Previous studies have shown that D. buzzatii breeds primarily on the necrotic cladodes of several Opuntia cacti and D. koepferae on the rotting stems of columnar cacti of the genera Trichocereus and Cereus. In this paper, we analyze the patterns of host plant utilization in a locality where both Drosophila species are sympatric. Field studies showed an absence of differential attraction of adult flies to the rots of two major host cacti: O. sulphurea and T. terschekii. However, the proportion of D. buzzatii flies emerged from the rotting cladodes of O. sulphurea was significantly higher than in T. terschekii. In laboratory experiments, egg to adult viability in single species cultures varied when both Drosophila species were reared in media prepared with O. sulphurea or T. terschekii. In addition, between-species comparisons of flies emerged from single species cultures showed that D. buzzatii adults were smaller and developed faster than D. koepferae. Furthermore, analysis of flies emerged in mixed species cultures showed differences in oviposition preference and oviposition behavior. We discuss the observed between-species differences and suggest that these traits are the result of adaptation to specific patterns of spatial and temporal predictability of their respective preferred host plants: columnar are less dense and less ephemeral resources, whereas the opuntias are more abundant, and fast rotting cacti. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The pBuM189 satellite DNA family was found to be species specific for Drosophila buzzatii . It consists of slightly AT-rich tandemly arranged repeats with a high copy number in the genome and shows a very high level of intraspecific sequence similarity. pBuM189 repeats cannot be detected in the genomes of closely related species such as Drosophila serido , Drosophila borborema and Drosophila koepferae . The data support the marginal systematic position of D. buzzatii within the buzzatii cluster of the Drosophila repleta group.  相似文献   

8.
In the genus Drosophila (Diptera: Drosophilidae), interspecific hybridization is a rare phenomenon. However, recent evidence suggests a certain degree of introgression between the cactophilic siblings Drosophila buzzatii Patterson & Wheeler and Drosophila koepferae Fontdevila & Wasserman. In this article, we analyzed larval viability and developmental time of hybrids between males of D. buzzatii and females of D. koepferae, raised in media prepared with fermenting tissues of natural host plants that these species utilize in nature as breeding sites. In all cases, developmental time and larval viability in hybrids was not significantly different from parental lines and, depending on the cross, hybrids developed faster than both parental species or than the slowest species. When data of wing length were included in a discriminant function analysis, we observed that both species can be clearly differentiated, while hybrids fell in two categories, one intermediate between parental species and the other consisting of extreme phenotypes. Thus, our results point out that hybrid fitness, as measured by developmental time and viability, is not lower than in the parental species.  相似文献   

9.
Naveira H  Fontdevila A 《Genetics》1986,114(3):841-857
The genetic basis of hybrid sterility has been investigated in backcross segmental hybrids between two sibling species, Drosophila buzzatii and D. serido. Asynapsis of homologous bands in hybrid polytene chromosomes has been used to identify the D. serido chromosome segments introgressed into the D. buzzatti genome. All the investigated chromosomes contain male sterility factors. For autosomes, sterility is produced when an introgressed D. serido chromosome segment, or combination of segments, reaches a minimum size. On the other hand, any introgressed X chromosome segment from D. serido, irrespective of its size, produces either male hybrid sterility or inviability.  相似文献   

10.
P. Hutter  J. Roote    M. Ashburner 《Genetics》1990,124(4):909-920
A mutation of Drosophila melanogaster whose only known effect is the rescue of otherwise lethal interspecific hybrids has been characterized. This mutation, Hmr, maps to 1-31.84 (9D1-9E4). Hmr may be the consequence of a P element insertion. It rescues hybrid males from the cross of D. melanogaster females to males of its three sibling species, D. simulans, D. mauritiana and D. sechellia. This rescue is recessive, since hybrid males that carry both Hmr and a duplication expected to be Hmr+ are not rescued. Hmr also rescues the otherwise inviable female hybrids from the cross of compound-X D. melanogaster females to males of its sibling species. This rescue is also recessive, since a compound-X heterozygous for Hmr does not rescue. Another mutation, discovered on the In(1)AB chromosome of D. melanogaster, is also found to rescue normally inviable species hybrids: unlike Hmr, however, In(1)AB rescues hybrid females from the cross of In(1)AB/Y males to sibling females, as well as hybrid males from the cross of In(1)AB females to sibling males. These data are interpreted on the basis of a model for the genetic basis of hybrid inviability of complementary genes.  相似文献   

11.
A. B. Carvalho  S. C. Vaz    L. B. Klaczko 《Genetics》1997,146(3):891-902
In several Drosophila species there is a trait known as ``sex-ratio': males carrying certain X chromosomes (called ``SR') produce female biased progenies due to X-Y meiotic drive. In Drosophila mediopunctata this trait has a variable expression due to Y-linked suppressors of sex-ratio expression, among other factors. There are two types of Y chromosomes (suppressor and nonsuppressor) and two types of SR chromosomes (suppressible and unsuppressible). Sex-ratio expression is suppressed in males with the SR(suppressible)/Y(suppressor) genotype, whereas the remaining three genotypes produce female biased progenies. Now we have found that ~10-20% of the Y chromosomes from two natural populations 1500 km apart are suppressors of sex-ratio expression. Preliminary estimates indicate that Y(suppressor) has a meiotic drive advantage of 6% over Y(nonsuppressor). This Y polymorphism for a nonneutral trait is unexpected under current population genetics theory. We propose that this polymorphism is stabilized by an equilibrium between meiotic drive and natural selection, resulting from interactions in the population dynamics of X and Y alleles. Numerical simulations showed that this mechanism may stabilize nonneutral Y polymorphisms such as we have found in D. mediopunctata.  相似文献   

12.
An adapted amplified fragment length polymorphism (AFLP) protocol is presented for detection of hybrid instability in the genome of interspecific hybrids between Drosophila buzzatii and D. koepferae species. Analyses of 15 AFLP instability markers (new bands detected in hybrids) show that up to 81% are the result of transposable element (TE) activity. Twenty TEs associated with AFLP instability markers have been detected by this method in backcross hybrids and segmental hybrids, demonstrating its validity in detecting transposition events occurring during the hybridization process. New insertions of Helena TE have been observed in the hybrid genome after hybridization of the TGTCG22 instability marker by FISH. The AFLP marker technique proved to be an efficient method that improves upon traditional and bioinformatic tools previously used to detect TE mobilization. This newly adapted AFLP protocol may also be applied to a large number of organisms outside the Drosophila genus, making it of interest to evolutionary and population genetic researchers working with species where the knowledge of the genome is scarce.  相似文献   

13.
Drosophila buzzatii and D. koepferae are two sibling species that breed on the necrotic tissues of several cactus species and show a certain degree of niche overlap. Also, they show differences in several life history traits, such as body size and developmental time, which probably evolved as a consequence of adaptation to different host plants. In this work we investigate the ecological and genetic factors affecting wing morphology variation both within and between species. Three wing traits were scored, distal and proximal wing length and width in isofemale lines reared in two of the most important host cacti: Opuntia sulphurea and Trichocereus terschekii. Our results revealed that differences between species and sexes in wing size and shape were significant, whereas the cactus factor was only significant for wing size. Intraspecific analyses showed that differences among isofemale lines were highly significant for both size and shape in both species, suggesting that an important fraction of variation in wing morphology has a genetic basis. Moreover, the line by cactus interaction, which can be interpreted as a genotype by environment interaction, also accounted for a significant proportion of variation. In summary, our study shows that wing size is phenotypically plastic and that populations of D. buzzatii and D. koepferae harbour substantial amounts of genetic variation for wing size and shape. Interspecific differences in wing size and shape are interpreted in terms of spatial predictability of the different host plants in nature.  相似文献   

14.
The genetic and ecological basis of viability and developmental time differences between Drosophila buzzatii and D. koepferae were analysed using the isofemale line technique. Several isofemale lines were sampled from pairs of allopatric/sympatric populations of each species. Flies were reared in media prepared with decaying tissues of two of the main natural cactus hosts of each species. This experimental design enabled us to evaluate the relative contribution of phenotypic plasticity, genetic variation and genotype by environment interaction (G x E) to total phenotypic variation for two fitness traits, viability and developmental time. Our results revealed significant G x E in both traits, suggesting that the maintenance of genetic variation can be explained, at least in part, by diversifying selection in different patches of a heterogeneous environment in both species. However, the relative importance of the factors involved in the G x E varied between traits and populations within species. For viability, the G x E can be mainly attributed to changes in the rank order of lines across cacti. However, the pattern was different for developmental time. In D. buzzatii the G x E can be mainly accounted for by changes in among line variance across cacti, whereas changes in the rank order of lines across cacti was the main component in D. koepferae. These dissimilar patterns of variation between traits and species suggest that the evolutionary forces shaping genetic variation for developmental time and viability vary between populations within species and between species.  相似文献   

15.
The sex-ratio trait described in several Drosophila species is a type of naturally occurring X-linked meiotic drive that causes males bearing a sex-ratio X chromosome to produce progenies with a large excess of females. We have previously reported the occurrence of sex-ratio X chromosomes in Drosophila simulans. In this species, because of the co-occurrence of drive suppressors, the natural populations and the derived laboratory strains show an equal sex-ratio even when sex-ratio X chromosomes are present at a high frequency. The presence of sex-ratio X chromosomes is established via crosses with a standard strain that is devoid of drive suppressors. In this article, we show first that the sex-ratio trait in D. simulans results from the action of several X-linked loci. Second we describe drive suppressors on each major autosome as well as on the Y chromosome. The Y-linked factors suppress the drive partially whereas the autosomal suppression can be complete.  相似文献   

16.
Several authors have postulated that genetic divergence between populations could result in genomic incompatibilities that would cause an increase in transposition in their hybrids, producing secondary effects such as sterility and therefore starting a speciation process. It has been demonstrated that transposition largely depends on intraspecific hybridization for P, hobo, and I elements in Drosophila melanogaster and for several elements, including long terminal repeat (LTR) and non-LTR retrotransposons, in D. virilis. However, in order to demonstrate the putative effect of transposable elements on speciation, high levels of transposition should also be induced in hybrids between species that could have been originated by this process and that are still able to interbreed. To test this hypothesis, we studied the transposition of the LTR retrotransposon Osvaldo in Drosophila buzzatii-Drosophila koepferae hybrids. We used a simple and robust experimental design, analyzing large samples of single-pair mate offspring, which allowed us to detect new insertions by in situ hybridization to polytene chromosomes. In order to compare transposition rates, we also used a stock recently obtained from the field and a highly inbred D. buzzatii strain. Our results show that the transposition rate of Osvaldo is 10(-3) transpositions per element per generation in all nonhybrid samples, very high when compared with those of other transposable elements. In hybrids, the transposition rate was always 10(-2), significantly higher than in nonhybrids. We show that inbreeding has no effect on transposition in the strains used, concluding that hybridization significantly increases the Osvaldo transposition rate.  相似文献   

17.
18.
We performed genetic analysis of hybrid sterility and of one morphological difference (sex-comb tooth number) on D. yakuba and D. santomea, the former species widespread in Africa and the latter endemic to the oceanic island of S?o Tomé, on which there is a hybrid zone. The sterility of hybrid males is due to at least three genes on the X chromosome and at least one on the Y, with the cytoplasm and large sections of the autosomes having no effect. F1 hybrid females carrying two X chromosomes from either species are perfectly fertile despite their genetic similarity to completely sterile F1 hybrid males. This implies that the appearance of Haldane's rule in this cross is at least partially due to the faster accumulation of genes causing male than female sterility. The larger effects of the X and Y chromosomes than of the autosomes, however, also suggest that the genes causing male sterility are recessive in hybrids. Some female sterility is also seen in interspecific crosses, but this does not occur between all strains. This is seen in pure-species females inseminated by heterospecific males (probably reflecting incompatibility between the sperm of one species and the female reproductive tract of the other) as well as in inseminated F1 and backcross females, probably reflecting genetically based incompatibilities in hybrids that affect the reproductive system. The latter 'innate' sterility appears to involve deleterious interactions between D. santomea chromosomes and D. yakuba cytoplasm. The difference in male sex-comb tooth number appears to involve fairly large effects of the X chromosome. We discuss the striking evolutionary parallels in the genetic basis of sterility, in the nature of sexual isolation, and in morphological differences between the D. santomea/D. yakuba divergence and two other speciation events in the D. melanogaster subgroup involving island colonization.  相似文献   

19.
A biotinylated probe of the Adh (alcohol dehydrogenase) gene of Drosophila melanogaster was used for in situ hybridization on polytene chromosomes of D. mojavensis and D. buzzatii, two species of the repleta group of the genus Drosophila. Hybridization showed that the Adh gene maps at the G1a band of the third chromosome. This is in accordance with a previous result obtained through the use of interspecific hybrid asynapsis as a cytological marker and establishes the limits of the precision of this method.  相似文献   

20.
I. Marin 《Genetics》1996,142(4):1169-1180
Several estimators have been developed for assesing the number of sterility factors in a chromosome based on the sizes of fertile and sterile introgressed fragments. Assuming that two factors are required for producing sterility, simulations show that one of these, twice the inverse of the relative size of the largest fertile fragment, provides good average approximations when as few as five fertile fragments are analyzed. The estimators have been used for deducing the number of factors from previous data on several pairs of species. A particular result contrasts with the authors' interpretations: instead of the high number of sterility factors suggested, only a few per autosome are estimated in both reciprocal crosses involving Drosophila buzzatii and D. koepferae. It has been possible to map these factors, between three and six per chromosome, in the autosomes 3 and 4 of these species. Out of 203 introgressions of different fragments or combinations of fragments, the outcome of at least 192 is explained by the mapped zones. These results suggest that autosome-mediated sterility in the male hybrids of these species is mediated by a few epistatic factors, similarly to X-mediated sterility in the hybrids of other Drosophila species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号