首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus subtilis, transformed with a plasmid containing the human alpha-2 (leukocyte) interferon gene, was cultivated in batch and continuous culture in a complex medium. In continuous culture with dissolved oxygen of less than 10% of air saturation, the extracellular interferon titer decreased sharply when the growth rate was lower or higher than the optimal one (mu = 0.14 h-1). Thus, a relatively low growth rate was best for extracellular interferon production, and oxygen limitation enhanced interferon production. The mean output rate in batch culture after successful harvest was 20 X 10(6) IU/liter per h and the maximal output rate in continuous culture was 14 X 10(6) IU/liter per h.  相似文献   

2.
The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.  相似文献   

3.
Fermentation of dilute-acid-pretreated mixed hardwood and Avicel by Clostridium thermocellum was compared in batch and continuous cultures. Maximum specific growth rates per hour obtained on cellulosic substrates were 0.1 in batch culture and >0.13 in continuous culture. Cell yields (grams of cells per gram of substrate) in batch culture were 0.17 for pretreated wood and 0.15 for Avicel. Ethanol and acetate were the main products observed under all conditions. Ethanol:acetate ratios (in grams) were approximately 1.8:1 in batch culture and generally slightly less than 1:1 in continuous culture. Utilization of cellulosic substrates was essentially complete in batch culture. A prolonged lag phase was initially observed in batch culture on pretreated wood; the length of the lag phase could be shortened by addition of cell-free spent medium. In continuous culture with ~5 g of glucose equivalent per liter in the feed, substrate conversion relative to theoretical ranged from 0.86 at a dilution rate (D) of 0.05/h to 0.48 at a D of 0.167/h for Avicel and from 0.75 at a D of 0.05/h to 0.43 at a D of 0.11/h for pretreated wood. At feed concentrations of <4.5 g of glucose equivalent per liter, conversion of pretreated wood was 80 to 90% at D = 0.083/h. Lower conversion was obtained at higher feed substrate concentrations, consistent with a limiting factor other than cellulose. Free Avicelase activities of 12 to 84 mU/ml were observed, with activity increasing in this order: batch cellobiose, batch pretreated wood < batch Avicel, continuous pretreated wood < continuous Avicel. Free cellulase activity was higher at increasing extents of substrate utilization for both pretreated wood and Avicel under all conditions tested. The results indicate that fermentation parameters, with the exception of free cellulase activity, are essentially the same for pretreated mixed hardwood and Avicel under a variety of conditions. Hydrolysis yields obtained with C. thermocellum cellulase acting either in vitro or in vivo were comparable to those previously reported for Trichoderma reesei on the same substrates.  相似文献   

4.
The growth of a pseudomonad on 2,4-D (2,4-dichlorophenoxyacetic acid) and 2,4-DCP (2,4-dichlorophenol) was studied in batch and continuous culture. The optimum growth rate using 2,4-D was 0.14/h at 25 C in a pH range from 6.2 to 6.9. Highest specific growth rate using 2,4-DCP was 0.12/h at 25 C in a pH range from 7.1 to 7.8. Growth was strongly inhibited by 2,4-DCP above a concentration of 25 mg/liter whereas no appreciable inhibition was observed with 2,4-D at concentrations up to 2,000 mg per liter. Growth on 2,4-DCP was described by Monod kinetics at subinhibitory concentrations but the inhibition by 2,4-DCP exhibited an unusual linear response to substrate concentration, and did not fit a model based on noncompetitive inhibition. The lag phase of batch cultures was found to depend on both 2,4-DCP concentration and prior adaptation of the inoculum. A study such as this on the kinetics of growth on related substrates may be useful as a method of finding the rate-limiting step in a metabolic sequence.  相似文献   

5.
Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher.  相似文献   

6.
Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher.  相似文献   

7.
The development of insect cells expressing recombinant proteins in a stable continuous manner is an attractive alternative to the BEV system for recombinant protein production. High cell density fed batch and continuous perfusion processes can be designed to maximize the productivity of stably transformed cells. A cell line (Sf-9SEAP) expressing high levels of the reporter protein SEAP stably was obtained by lipid-mediated transfection of Sf-9 insect cells and further selection and screening. The expression of the Sf-9SEAP cells was compared with the BEVS system. It was observed that, the yield obtained in BEVS was similar to the batch Sf-9SEAP at 8 and 7 IU/mL, respectively. The productivity of this foreign gene product with the stable cells was enhanced by bioprocess intensification employing the fed-batch and perfusion modes of culture to increase the cell density in culture. The fed batch process yielded a maximum cell density of 28 x 10(6) cells/mL and 12 IU/mL of SEAP. Further improvements in the productivity could be made using the perfusion process, which demonstrated a stable production rate for extended periods of time. The process was maintained for 43 days, with a steady-state cell density of 17-20 x 10(6) cells/mL and 7 IU/mL SEAP. The total yield obtained in the perfusion process (394 IU) was approximately 22 and 8 times higher than that obtained in a batch (17.6 IU) and fed batch (46.1 IU) process, respectively.  相似文献   

8.
Pseudomonas putida ATCC 11172 was grown in continuous culture with phenol as the only carbon and energy source; a culture practically without biofilm was compared with biofilm cultures of differing surface area/volume ratios. The biofilm did not significantly affect the maximal suspended cell concentration in the effluent, but it increased the maximal phenol reduction rate from 0.23 g/liter per h (without biofilm) to 0.72 g/liter per h at the highest biofilm level (5.5 cm2 of biofilm surface per ml of reactor volume). The increase in phenol reduction rate was linear up to the surface area/volume ratio of 1.4 cm2/ml. The continuous cultures with biofilms could tolerate a higher phenol concentration of the medium (3.0 g/liter) than the nonbiofilm system (2.5 g/liter). At higher dilution rates an intermediate product, 2-hydroxymuconic semialdehyde, accumulated in the culture. When the biomass of the effluent started to decrease, the concentration of 2-hydroxymuconic semialdehyde reached a peak value. We conclude that biofilms in continuous culture have the potential to enhance the aerobic degradation of aromatic compounds.  相似文献   

9.
Pseudomonas putida ATCC 11172 was grown in continuous culture with phenol as the only carbon and energy source; a culture practically without biofilm was compared with biofilm cultures of differing surface area/volume ratios. The biofilm did not significantly affect the maximal suspended cell concentration in the effluent, but it increased the maximal phenol reduction rate from 0.23 g/liter per h (without biofilm) to 0.72 g/liter per h at the highest biofilm level (5.5 cm2 of biofilm surface per ml of reactor volume). The increase in phenol reduction rate was linear up to the surface area/volume ratio of 1.4 cm2/ml. The continuous cultures with biofilms could tolerate a higher phenol concentration of the medium (3.0 g/liter) than the nonbiofilm system (2.5 g/liter). At higher dilution rates an intermediate product, 2-hydroxymuconic semialdehyde, accumulated in the culture. When the biomass of the effluent started to decrease, the concentration of 2-hydroxymuconic semialdehyde reached a peak value. We conclude that biofilms in continuous culture have the potential to enhance the aerobic degradation of aromatic compounds.  相似文献   

10.
Dense autotrophic cultures of Alcaligenes eutrophus.   总被引:8,自引:3,他引:5       下载免费PDF全文
Alcaligenes eutrophus was grown autotrophically in 23-liter batch cultures in a controlled H2-O2-CO2 atmosphere. It was demonstrated that the need for periodic supplements of individual nutrients could be anticipated before cell growth depleted these nutrients to the point of becoming growth rate limiting. As a result, exponential growth was extended to optical densities of 44, with doubling times maintained at 2 h. Cultures having an initial optical density of 0.040 to 0.70 reached the final optical density of 60 in about 25 h. The final viable count was 1.2 X 10(11) cells per ml, and the dry weight was 25 g/liter.  相似文献   

11.
Alcaligenes eutrophus was grown autotrophically in 23-liter batch cultures in a controlled H2-O2-CO2 atmosphere. It was demonstrated that the need for periodic supplements of individual nutrients could be anticipated before cell growth depleted these nutrients to the point of becoming growth rate limiting. As a result, exponential growth was extended to optical densities of 44, with doubling times maintained at 2 h. Cultures having an initial optical density of 0.040 to 0.70 reached the final optical density of 60 in about 25 h. The final viable count was 1.2 X 10(11) cells per ml, and the dry weight was 25 g/liter.  相似文献   

12.
A defined medium for Aquaspirillum serpens VHL allows the replacement of the complex media now in use. It was developed by batch culture methods but supports growth in continuous culture. A basal salts medium supplemented with L-aspartic acid, L-alanine, and L-glutamic acid provided the best growth (turbidity), as long as ammonium chloride was omitted. Ammonium chloride caused either a lag or a reduction or a complete inhibition of the growth of A. serpens VHL on the above amino acids and other organic supplements depending on the combination used. Ammonium sulfate and ammonium hydroxide with L-glutamic acid allowed growth, but the lag period was increased in shake flask cultures. Vitamins, cysteine hydrochloride, and carbon dioxide had no effect on the growth rate. Viability (less than 50%) was inadequate to maintain continuous culture with L-glutamic acid as the sole source of carbon and nitrogen. Combinations of amino and carboxylic acids were then tested and, of these, L-glutamic acid (1 g/liter) and L-histidine (75 mg/liter) without ammonium chloride in the basal salts medium supported growth in batch and continuous culture. L-Glutamic acid was the limiting substrate for growth.  相似文献   

13.
The fermentation of xylose by Thermoanaerobacter ethanolicus ATCC 31938 was studied in pH-controlled batch and continuous cultures. In batch culture, a dependency of growth rate, product yield, and product distribution upon xylose concentration was observed. With 27 mM xylose media, an ethanol yield of 1.3 mol ethanol/mol xylose (78% of maximum theoretical yield) was typically obtained. With the same media, xylose-limited growth in continuous culture could be achieved with a volumetric productivity of 0.50 g ethanol/liter h and a yield of 0.42 g ethanol/g xylose (1.37 mol ethanol/mol xylose). With extended operation of the chemostat, variation in xylose uptake and a decline in ethanol yield was seen. Instability with respect to fermentation performance was attributed to a selection for mutant populations with different metabolic characteristics. Ethanol production in these T. ethanolicus systems was compared with xylose-to-ethanol conversions of other organisms. Relative to the other systems, T. ethanolicus offers the advantages of a high ethanol yield at low xylose concentrations in batch culture and of a rapid growth rate. Its disadvantages include a lower ethanol yield at higher xylose concentrations in batch culture and an instability of fermentation characteristics in continuous culture.  相似文献   

14.
A novel wave bioreactor-perfusion culture system was developed for highly efficient production of monoclonal antibody IgG2a (mAb) by hybridoma cells. The system consists of a wave bioreactor, a floating membrane cell-retention filter, and a weight-based perfusion controller. A polyethylene membrane filter with a pore size of 7 microm was floating on the surface of the culture broth for cell retention, eliminating the need for traditional pump around flow loops and external cell separators. A weight-based perfusion controller was designed to balance the medium renewal rate and the harvest rate during perfusion culture. BD Cell mAb Medium (BD Biosciences, CA) was identified to be the optimal basal medium for mAb production during batch culture. A control strategy for perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was identified as a key factor affecting cell growth and mAb accumulation during perfusion culture, and the optimal control strategy was increasing perfusion rate by 0.15 vvd per day. Average specific mAb production rate was linearly corrected with increasing perfusion rate within the range of investigation. The maximum viable cell density reached 22.3 x 105 and 200.5 x 105 cells/mL in the batch and perfusion culture, respectively, while the corresponding maximum mAb concentration reached 182.4 and 463.6 mg/L and the corresponding maximum total mAb amount was 182.4 and 1406.5 mg, respectively. Not only the yield of viable cell per liter of medium (32.9 x 105 cells/mL per liter medium) and the mAb yield per liter of medium (230.6 mg/L medium) but also the mAb volumetric productivity (33.1 mg/L.day) in perfusion culture were much higher than those (i.e., 22.3 x 105 cells/mL per liter medium, 182.4 mg/L medium, and 20.3 mg/L.day) in batch culture. Relatively fast cell growth and the perfusion culture approach warrant that high biomass and mAb productivity may be obtained in such a novel perfusion culture system (1 L working volume), which offers an alternative approach for producing gram quantity of proteins from industrial cell lines in a liter-size cell culture. The fundamental information obtained in this study may be useful for perfusion culture of hybridoma cells on a large scale.  相似文献   

15.
An extracellular glycoprotein (GP) exhibiting immunomodulating activity produced by the yeast Trichosporon pullulans grown in a defined ethanol-containing medium differed substantially in its composition from that of the yeast cell walls: therefore, it cannot be considered a structural component of the cell walls. In batch culture, the greatest GP production (40 mg/l) occurred in the exponential phase of the yeast growth. Under continuous cultivation, in both chemostat and pH-auxostat regimes, the specific rate of GP synthesis (qGP) increased with the increasing specific growth rate (mu) and reached 1.55 mg/(g h) at mumax. Under limitation of the yeast growth by zinc qGP was three times lower than under nitrogen or iron limitation. The rate of GP production depended inversely on the oxygen concentration.  相似文献   

16.
A novel fusion protein harboring mouse interferon γ and epidermal growth factor receptor binding domain was constructed with the method of genetic and protein engineering. The fusion protein kept complete antiviral activity with the titer of 108 IU per liter of culture. The EGF-RBD of the fusion protein exhibited competitive binding activity against125I-mEGF for mEGF receptors on A431 cells. The fusion protein was shown to be more potent in inhibiting the growth of cultured mouse breast carcinoma cells than interferon γ. Experimental data on mouse B16 malignant melanoma model indicated that the tumor weight of fusion protein-treated group was statistically significantly smaller than that of interferon γ -treated group. The work here provides a necessarily reliable clue for the upcoming clinical employment of a novel class of targeting interferons.  相似文献   

17.
Red kidney bean (Phascolus vulgaris) cells, derived from roof, callus, were grown in suspension culture in shake flasks and in laboratory fermentors using batch and continuous batch culture techniques. The medium contained casein hydrolysate, sucrose, inorganic salts, vitamins, and growth hormones. In continuous batch culture yields of up to 171 g wet weight, (8.5 g dry weight) per liter were obtained in 7 days. Organic nitrogen was used preferentially. Growth on nitrate was considerably slower than on organic nitrogen sources. Indole acetic and naphthalene acetic acids were not essential for good growth of the cells whereas kinetin and 2, 4-D were. The optimum pH for growth was about p11 4.5. The presence of amylase and peroxidase was detected in culture filtrates. Amylase activity was low in either the presence or the absence of starch in the medium. Peroxidase production could be related directly with growth of the culture. Maximum peroxidase yield, as measured by the guaiacol method and expressed as horse radish peroxidase, was 1.25 × 10?8 M.  相似文献   

18.
Lipid accumulation and fatty acid composition in Candida 107 have been studied using a two-stage continuous culture system in which the first vessel was run under carbon-limited conditions and then the entire output was passed into a second vessel, where lipid accumulation was stimulated by adding only glucose. Maximum lipid accumulation (28% of yeast [dry weight]) occurred for a volume ratio of vessel 1 to vessel 2 of 3:5, with 30 g of glucose per liter being added to vessel 2 operated at 25°C with an aeration rate of between 0.1 and 1.0 volume of air/volume of medium per min. Although the maximum specific rate of lipid formation (0.05 g of lipid/g of yeast per h) was higher than in a nitrogen-limited, single-stage system, the efficiency of lipid formation was much less and never exceeded 14 g of lipid produced per 100 g of glucose consumed. The fatty acid composition was not significantly altered in either the two-stage or single-stage culture (nitrogen-limited) systems by changes in growth temperature (from 19 to 33°C) or aeration rates (0.05 to 1.0 volume of air/volume of medium per min); or, in the two-stage system, by changes in the residence time of the yeast in the second vessel (from 3.2 to 24.4 h), or, in the single-stage system, by changes in pH (from 3.5 to 7.5). Only when the concentration of glucose entering vessel 2 of the two-stage system was less than 30 g/liter did significant changes in the fatty acids occur. Thus, although a two-stage continuous culture system allows lipid accumulation to be separated from the growth phase, it offers no practical advantages over a single-stage system as a means of producing microbial oils and fats.  相似文献   

19.
Oxygen is a key substrate in animal cell metabolism and its consumption is thus a parameter of great interest for bioprocess monitoring and control. A system for measuring it based on an oxygen balance on the liquid phase was developed. The use of a gas-permeable membrane offered the possibility to provide the required quantity of oxygen into the culture, while avoiding problems of foaming or shear stress generally linked to sparging. This aeration system allowed moreover to keep a known and constant k(L)a value through cultures up to 400 h. Oxygen uptake rate (OUR) was measured on-line with a very good accuracy of +/-5%, and the specific OUR for a CHO cell line was determined during batch (growth phase) and continuous culture as, respectively, equal to 2. 85x10(-13) and 2.54x10(-13) mol O(2) cell(-1) h(-1). It was also shown that OUR continuous monitoring gives actually more information about the metabolic state of the culture than the cell concentration itself, especially during transition phases like the end of the growth phase in a batch culture.  相似文献   

20.
SUMMARY: A quantitative study of the growth and carbohydrate metabolism of Aerobacter aerogenes in continuous culture with particular reference to 2:3-butanediol production is described. The effects of varying dilution rate, oxygen uptake rate, pH value, temperature and CO2 pressure were studied.
The optimum pH value was 5·0°6·0. The optimum temperature was 35–37° with a dilution rate of 0·2 hr−1. The rate of sugar metabolism was decreased by raising the CO2 pressure.
In continuous culture the maximum diol output rate/1. of working volume exceeded the greatest rate reported for batch culture by a factor of three. The maximum diol concentration and yield as a percentage of the theoretical maximum were lower in continuous culture than in batch culture. Reasons for this are given.
Some variants of the parent organism were found in continuous cultures but they caused no change in the yield of butanediol. There was no sign of loss of butanediol-producing ability by any of the cultures, some of which were maintained for 2,000 hr. For the first few generations the rate of production of butanediol actually increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号