首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a new method to measure iron reduction at a distance based on depositing Fe(III) (hydr)oxide within nanoporous glass beads. In this “Fe-bead” system, Shewanella oneidensis reduces at least 86.5% of the iron in the absence of direct contact. Biofilm formation accompanies Fe-bead reduction and is observable both macro- and microscopically. Fe-bead reduction is catalyzed by live cells adapted to anaerobic conditions, and maximal reduction rates require sustained protein synthesis. The amount of reactive ferric iron in the Fe-bead system is available in excess such that the rate of Fe-bead reduction is directly proportional to cell density; i.e., it is diffusion limited. Addition of either lysates prepared from anaerobic cells or exogenous electron shuttles stimulates Fe-bead reduction by S. oneidensis, but iron chelators or additional Fe(II) do not. Neither dissolved Fe(III) nor electron shuttling activity was detected in culture supernatants, implying that the mediator is retained within the biofilm matrix. Strains with mutations in omcB or mtrB show about 50% of the wild-type levels of reduction, while a cymA mutant shows less than 20% of the wild-type levels of reduction and a menF mutant shows insignificant reduction. The Fe-bead reduction defect of the menF mutant can be restored by addition of menaquinone, but menaquinone itself cannot stimulate Fe-bead reduction. Because the menF gene encodes the first committed step of menaquinone biosynthesis, no intermediates of the menaquinone biosynthetic pathway are used as diffusible mediators by this organism to promote iron reduction at a distance. CymA and menaquinone are required for both direct and indirect mineral reduction, whereas MtrB and OmcB contribute to but are not absolutely required for iron reduction at a distance.  相似文献   

2.
In Escherichia coli, isochorismate is a common precursor for the biosynthesis of the siderophore enterobactin and menaquinone (vitamin K2). Isochorismate is formed by the shikimate pathway from chorismate by the enzyme isochorismate synthase encoded by the entC gene. Since enterobactin is involved in the aerobic assimilation of iron, and menaquinone is involved in anaerobic electron transport, we investigated the regulation of entC by iron and oxygen. An operon fusion between entC with its associated regulatory region and lacZ+ was constructed and introduced into the chromosome in a single copy. Expression of entC-lacZ was found to be regulated by the concentration of iron both aerobically and anaerobically. An established entC::kan mutant deficient in enterobactin biosynthesis was found to grow normally and synthesize wild-type levels of menaquinone under anaerobic conditions in iron-sufficient media. These results led to the demonstration of an alternate isochorismate synthase specifically involved in menaquinone synthesis encoded by the menF gene. Consistent with these findings, the entC+ strains were found to synthesize enterobactin anaerobically under iron-deficient conditions while the ent mutants failed to do so.  相似文献   

3.
There are two isochorismate synthase genes entC and menF in Escherichia coli. They encode enzymes (isochorismate synthase, EC 5.4.99.6) which reversibly synthesize isochorismic acid from chorismic acid. The genes share a 24.2% identity but are differently regulated. Activity of the MenF isochorismate synthase is significantly increased under anaerobic conditions whereas the activity of the EntC isochorismate synthase is greatly stimulated during growth in an iron deficient medium. Isochorismic acid synthesized by EntC is mainly channeled into enterobactin synthesis whereas isochorismic acid synthesized by MenF is mainly channeled into menaquinone synthesis. When menF or entC were separately placed onto overexpression plasmids and the plasmids introduced into a menF(-)/entC(-) double mutant in two separate experiments, the isochorismate formed was fed into both, the menaquinone and the enterobactin pathway. Moreover, in spite of a high isochorismate synthase activity menaquinone and enterobactin formation were not fully restored, indicating that isochorismate was lost by diffusion. Thus, under these conditions channeling was not observed. We conclude that in E. coli the chromosomal position of both menF and entC in their respective clusters is a prerequisite for channeling of isochorismate in both pathways.  相似文献   

4.
Shewanella oneidensis is a metal reducer that can use several terminal electron acceptors for anaerobic respiration, including fumarate, nitrate, dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), nitrite, and insoluble iron and manganese oxides. Two S. oneidensis mutants, SR-558 and SR-559, with Tn5 insertions in crp, were isolated and analyzed. Both mutants were deficient in Fe(III) and Mn(IV) reduction. They were also deficient in anaerobic growth with, and reduction of, nitrate, fumarate, and DMSO. Although nitrite reductase activity was not affected by the crp mutation, the mutants failed to grow with nitrite as a terminal electron acceptor. This growth deficiency may be due to the observed loss of cytochromes c in the mutants. In contrast, TMAO reduction and growth were not affected by loss of cyclic AMP (cAMP) receptor protein (CRP). Fumarate and Fe(III) reductase activities were induced in rich medium by the addition of cAMP to aerobically growing wild-type S. oneidensis. These results indicate that CRP and cAMP play a role in the regulation of anaerobic respiration, in addition to their known roles in catabolite repression and carbon source utilization in other bacteria.  相似文献   

5.
Shewanella oneidensis MR-1 is a facultatively anaerobic bacterium capable of using soluble and insoluble forms of manganese [Mn(III/IV)] and iron [Fe(III)] as terminal electron acceptors during anaerobic respiration. To assess the structural association of two outer membrane-associated c-type decaheme cytochromes (i.e., OmcA [SO1779] and MtrC [SO1778]) and their ability to reduce soluble Fe(III)-nitrilotriacetic acid (NTA), we expressed these proteins with a C-terminal tag in wild-type S. oneidensis and a mutant deficient in these genes (i.e., Delta omcA mtrC). Endogenous MtrC copurified with tagged OmcA in wild-type Shewanella, suggesting a direct association. To further evaluate their possible interaction, both proteins were purified to near homogeneity following the independent expression of OmcA and MtrC in the Delta omcA mtrC mutant. Each purified cytochrome was confirmed to contain 10 hemes and exhibited Fe(III)-NTA reductase activity. To measure binding, MtrC was labeled with the multiuse affinity probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (1,2-ethanedithiol)2, which specifically associates with a tetracysteine motif engineered at the C terminus of MtrC. Upon titration with OmcA, there was a marked increase in fluorescence polarization indicating the formation of a high-affinity protein complex (Kd < 500 nM) between MtrC and OmcA whose binding was sensitive to changes in ionic strength. Following association, the OmcA-MtrC complex was observed to have enhanced Fe(III)-NTA reductase specific activity relative to either protein alone, demonstrating that OmcA and MtrC can interact directly with each other to form a stable complex that is consistent with their role in the electron transport pathway of S. oneidensis MR-1.  相似文献   

6.
Shewanella oneidensis respires a variety of terminal electron acceptors, including solid phase Fe(III) oxides. S. oneidensis transfers electrons to Fe(III) oxides via direct (outer membrane- or nanowire-localized c-type cytochromes) and indirect (electron shuttling and Fe(III) solubilization) pathways. In the present study, the influence of anaerobic biofilm formation on Fe(III) oxide reduction by S. oneidensis was determined. The gene encoding the activated methyl cycle (AMC) enzyme S-ribosylhomocysteine lyase (LuxS) was deleted in-frame to generate the corresponding mutant ΔluxS. Conventional biofilm assays and visual inspection via confocal laser scanning microscopy indicated that the wild-type strain formed anaerobic biofilms on Fe(III) oxide-coated silica surfaces, while the ΔluxS mutant was severely impaired in anaerobic biofilm formation on such surfaces. Cell-hematite attachment isotherms demonstrated that the ΔluxS mutant was also severely impaired in attachment to hematite surfaces under anaerobic conditions. The S. oneidensis ΔluxS mutant, however, reduced Fe(III) at wild-type rates during anaerobic incubation with Fe(III) oxide-coated silica surfaces or in batch cultures with Fe(III) oxide or hematite as a terminal electron acceptor. Anaerobic biofilm formation by the ΔluxS mutant was restored to wild-type rates by providing a wild-type copy of luxS in trans or by the addition of AMC or transsulfurylation pathway metabolites involved in organic sulfur metabolism. LuxS is thus required for wild-type anaerobic biofilm formation on Fe(III) oxide surfaces, yet the inability to form wild-type anaerobic biofilms on Fe(III) oxide surfaces does not alter Fe(III) oxide reduction activity.  相似文献   

7.
Abstract Mutants of Shewanella putrefaciens MR-1 deficient in menaquinone and methylmenaquinone, but which have wild-type levels of ubiquinone, retain the ability to use trimethylamine N -oxide as an electron acceptor, but they lose the ability to use nitrate, iron(III), and fumarate as electron acceptors. These mutants also show a reduced rate of manganese(IV) reduction. One of these mutants could be restored to essentially wild-type phenotype by supplementing the medium with 1,4-dihydroxy-2-naphthoic acid. A requirement for naphthoquinones in iron(III) reduction and a preference for naphthoquinones in manganese(IV) reduction provide further support that the metal reducing systems in MR-1 are linked to anaerobic respiration.  相似文献   

8.
Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron acceptors during anaerobic respiration. The components of respiratory metabolism are localized in the membrane fractions which include the outer membrane and cytoplasmic membrane. Many of the biological components that interact with the various iron forms are proposed to be localized in these membrane fractions. To identify the iron-binding proteins acting either as an iron transporter or as a terminal iron reductase, we used metal-catalyzed oxidation reactions. This system catalyzed the oxidation of amino acids in close proximity to the iron binding site. The carbonyl groups formed from this oxidation can then be labeled with fluoresceinamine (FLNH(2)). The peptide harboring the FLNH(2) can then be proteolytically digested, purified by HPLC and then identified by MALDI-TOF tandem MS. A predominant peptide was identified to be part of SO2907 that encodes a putative TonB-dependent receptor. Compared with wild type (wt), the so2907 gene deletion (ΔSO2907) mutant has impaired ability to reduce soluble Fe(III), but retains the same ability to respire oxygen or fumarate as the wt. The ΔSO2907 mutant was also impacted in reduction of insoluble iron. Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan quenching demonstrated that a truncated form of heterologous-expressed SO2907 that contains the Fe(III) binding site, is capable of binding soluble Fe(III) forms with K(d) of approximate 50 μm. To the best of our knowledge, this is the first report of the physiological role of SO2907 in Fe(III) reduction by MR-1.  相似文献   

9.
The Gram-negative bacterium Shewanella oneidensis MR-1 shows a remarkably versatile anaerobic respiratory metabolism. One of its hallmarks is its ability to grow and survive through the reduction of metallic compounds. Among other proteins, outer membrane decaheme cytochromes c OmcA and OmcB have been identified as key players in metal reduction. In fact, both of these cytochromes have been proposed to be terminal Fe(III) and Mn(IV) reductases, although their role in the reduction of other metals is less well understood. To obtain more insight into this, we constructed and analyzed omcA, omcB and omcA/omcB insertion mutants of S. oneidensis MR-1. Anaerobic growth on Fe(III), V(V), Se(VI) and U(VI) revealed a requirement for both OmcA and OmcB in Fe(III) reduction, a redundant function in V(V) reduction, and no apparent involvement in Se(VI) and U(VI) reduction. Growth of the omcB(-) mutant on Fe(III) was more affected than growth of the omcA(-) mutant, suggesting OmcB to be the principal Fe(III) reductase. This result was corroborated through the examination of whole cell kinetics of OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction, showing that OmcB is approximately 11.5 and approximately 6.3 times faster than OmcA at saturating and low nonsaturating concentrations of Fe(III)-nitrilotriacetic acid, respectively, whereas the omcA(-) omcB(-) double mutant was devoid of Fe(III)-nitrilotriacetic acid reduction activity. These experiments reveal, for the first time, that OmcA and OmcB are the sole terminal Fe(III) reductases present in S. oneidensis MR-1. Kinetic inhibition experiments further revealed vanadate (V(2)O(5)) to be a competitive and mixed-type inhibitor of OmcA and OmcB, respectively, showing similar affinities relative to Fe(III)-nitrilotriacetic acid. Neither sodium selenate nor uranyl acetate were found to inhibit OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction. Taken together with our growth experiments, this suggests that proteins other than OmcA and OmcB play key roles in anaerobic Se(VI) and U(VI) respiration.  相似文献   

10.
11.
Although a previous study indicated that the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 lacks chemotactic responses to metals that can be used as anaerobic electron acceptors, new results show that this bacterium responds to both Mn(III) and Fe(III). Cells were also shown to respond to another unusual electron acceptor, the humic acid analog anthraquinone-2,6-disulfonate. These results indicate that S. oneidensis is capable of moving towards a number of unusual anaerobic electron acceptors, including some that would normally be insoluble in the environment. Additionally, S. oneidensis was shown to migrate in gradients of several divalent cations under anaerobic conditions. Although responses to the reduced forms of redox-active metals, such as Mn(II) and Fe(II), might indicate that S. oneidensis uses gradients of these metals to locate the insoluble electron acceptors Mn(III/IV) and Fe(III) for dissimilatory purposes, responses to non-redox-active metals, such as Zn(II), suggest that movement towards divalent cations might serve other, potentially assimilatory, purposes.  相似文献   

12.
Shewanella oneidensis MR-1 is a metal reducer that uses a large number of electron acceptors including thiosulfate, polysulfide and sulfite. The enzyme required for thiosulfate and polysulfide respiration has been recently identified, but the mechanisms of sulfite reduction remained unexplored. Analysis of MR-1 cultures grown anaerobically with sulfite suggested that the dissimilatory sulfite reductase catalyses six-electron reduction of sulfite to sulfide. Reduction of sulfite required menaquinones but was independent of the intermediate electron carrier CymA. Furthermore, the terminal sulfite reductase, SirA, was identified as an octahaem c cytochrome with an atypical haem binding site. The sulfite reductase of S. oneidensis MR-1 does not appear to be a sirohaem enzyme, but represents a new class of sulfite reductases. The gene that encodes SirA is located within a 10-gene locus that is predicted to encode a component of a specialized haem lyase, a menaquinone oxidase and copper transport proteins. This locus was identified in the genomes of several Shewanella species and appears to be linked to the ability of these organisms to reduce sulfite under anaerobic conditions.  相似文献   

13.
The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species.  相似文献   

14.
In this study, we investigated the role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. A mini-Tn5 transposon mutant of E. cloacae SLD1a-1, designated as 4E6, was isolated that had lost the ability to reduce Se(VI) to Se(0). Genetic analysis of mutant strain 4E6 showed that the transposon was inserted within a menD gene among a menFDHBCE gene cluster that encodes for proteins required for menaquinone biosynthesis. A group of E. coli K12 strains with single mutations in the menF , menD , menC and menE genes were tested for loss of selenate reduction activity. The results showed that E. coli K12 carrying a deletion of either the menD , menC or menE gene was unable to reduce selenate. Complementation using wild-type sequences of the E.  cloacae SLD1a-1 menFDHBCE sequence successfully restored the selenate reduction activity in mutant strain 4E6, and E. coli K12 menD and menE mutants. Selenate reduction activity in 4E6 was also restored by chemical complementation using the menaquinone precursor compound 1,4-dihydroxy-2-nathphoic acid. The results of this work suggest that menaquinones are an important source of electrons for the selenate reductase, and are required for selenate reduction activity in E. cloacae SLD1a-1 and E. coli K12.  相似文献   

15.
Microbial metal reduction forms the basis of alternate bioremediation strategies for reductive precipitation and immobilization of toxic metals such as the radionuclide technetium [Tc(VII)]. A rapid mutant screening technique was developed to identify Shewanella oneidensis MR-1 respiratory mutants unable to reduce Tc(VII) as anaerobic electron acceptor. The Tc(VII) reduction-deficient (Tcr) mutant screening technique was based on the observation that wild-type S. oneidensis produced a black Tc(IV) precipitate on its colony surface during growth on Tc(VII)-amended agar, while colonies arising from mutagenized cells did not. Tcr mutants unable to produce the black precipitate were subsequently tested for anaerobic growth on an array of three electron donors and 13 alternate electron acceptors. The Tcr mutants displayed a broad spectrum of anaerobic growth deficiencies, including several that were unable to reduce Tc(VII) with hydrogen or lactate as electron donor, yet retained the ability to reduce Tc(VII) with formate. This report describes the development of a novel Tcr mutant screening technique and its application to identify the first set of Tcr mutants in a metal-reducing member of the genus Shewanella.  相似文献   

16.
Shewanella putrefaciens strain 200 respires anaerobically on a wide range of compounds as the sole terminal electron acceptor, including ferric iron [Fe(III)] and manganese oxide [Mn(IV)]. Previous studies demonstrated that a 23.3-kb S. putrefaciens wild-type DNA fragment conferred metal reduction capability to a set of respiratory mutants with impaired Fe(III) and Mn(IV) reduction activities (T. DiChristina and E. DeLong, J. Bacteriol. 176:1468-1474, 1994). In the present study, the smallest complementing fragment was found to contain one open reading frame (ORF) (ferE) whose translated product displayed 87% sequence similarity to Aeromonas hydrophila ExeE, a member of the PulE (GspE) family of proteins found in type II protein secretion systems. Insertional mutants E726 and E912, constructed by targeted replacement of wild-type ferE with an insertionally inactivated ferE construct, were unable to respire anaerobically on Fe(III) or Mn(IV) yet retained the ability to grow on all other terminal electron acceptors. Nucleotide sequence analysis of regions flanking ferE revealed the presence of one partial and two complete ORFs whose translated products displayed 55 to 70% sequence similarity to the PulD, -F, and -G homologs of type II secretion systems. A contiguous cluster of 12 type II secretion genes (pulC to -N homologs) was found in the unannotated genome sequence of Shewanella oneidensis (formerly S. putrefaciens) MR-1. A 91-kDa heme-containing protein involved in Fe(III) reduction was present in the peripheral proteins loosely attached to the outside face of the outer membrane of the wild-type and complemented (Fer+) B31 transconjugates yet was missing from this location in Fer mutants E912 and B31 and in uncomplemented (Fer-) B31 transconjugates. Membrane fractionation studies with the wild-type strain supported this finding: the 91-kDa heme-containing protein was detected with the outer membrane fraction and not with the inner membrane or soluble fraction. These findings provide the first genetic evidence linking dissimilatory metal reduction to type II protein secretion and provide additional biochemical evidence supporting outer membrane localization of S. putrefaciens proteins involved in anaerobic respiration on Fe(III) and Mn(IV).  相似文献   

17.
Transposon insertions in Geobacter sulfurreducens GSU1501, part of an ATP-dependent exporter within an operon of polysaccharide biosynthesis genes, were previously shown to eliminate insoluble Fe(III) reduction and use of an electrode as an electron acceptor. Replacement of GSU1501 with a kanamycin resistance cassette produced a similarly defective mutant, which could be partially complemented by expression of GSU1500 to GSU1505 in trans. The Δ1501 mutant demonstrated limited cell-cell agglutination, enhanced attachment to negatively charged surfaces, and poor attachment to positively charged poly-d-lysine- or Fe(III)-coated surfaces. Wild-type and mutant cells attached to graphite electrodes, but when electrodes were poised at an oxidizing potential inducing a positive surface charge (+0.24 V versus the standard hydrogen electrode [SHE]), Δ1501 mutant cells detached. Scanning electron microscopy revealed fibrils surrounding wild-type G. sulfurreducens which were absent from the Δ1501 mutant. Similar amounts of type IV pili and pilus-associated cytochromes were detected on both cell types, but shearing released a stable matrix of c-type cytochromes and other proteins bound to polysaccharides. The matrix from the mutant contained 60% less sugar and was nearly devoid of c-type cytochromes such as OmcZ. The addition of wild-type extracellular matrix to Δ1501 cultures restored agglutination and Fe(III) reduction. The polysaccharide binding dye Congo red preferentially bound wild-type cells and extracellular matrix material over mutant cells, and Congo red inhibited agglutination and Fe(III) reduction by wild-type cells. These results demonstrate a crucial role for the xap (extracellular anchoring polysaccharide) locus in metal oxide attachment, cell-cell agglutination, and localization of essential cytochromes beyond the Geobacter outer membrane.  相似文献   

18.
Schwalb C  Chapman SK  Reid GA 《Biochemistry》2003,42(31):9491-9497
The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella.  相似文献   

19.
Shewanella oneidensis MR-1 is a free-living gram-negative gamma-proteobacterium that is able to use a large number of oxidizing molecules, including fumarate, nitrate, dimethyl sulfoxide, trimethylamine N-oxide, nitrite, and insoluble iron and manganese oxides, to drive anaerobic respiration. Here we show that S. oneidensis MR-1 is able to grow on vanadate as the sole electron acceptor. Oxidant pulse experiments demonstrated that proton translocation across the cytoplasmic membrane occurs during vanadate reduction. Proton translocation is abolished in the presence of protonophores and the inhibitors 2-heptyl-4-hydroxyquinoline N-oxide and antimycin A. Redox difference spectra indicated the involvement of membrane-bound menaquinone and cytochromes c, which was confirmed by transposon mutagenesis and screening for a vanadate reduction-deficient phenotype. Two mutants which are deficient in menaquinone synthesis were isolated. Another mutant with disruption in the cytochrome c maturation gene ccmA was unable to produce any cytochrome c and to grow on vanadate. This phenotype could be restored by complementation with the pEC86 plasmid expressing ccm genes from Escherichia coli. To our knowledge, this is the first report of E. coli ccm genes being functional in another organism. Analysis of an mtrB-deficient mutant confirmed the results of a previous paper indicating that OmcB may function as a vanadate reductase or may be part of a vanadate reductase complex.  相似文献   

20.
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号