首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that sexual and interspecific differences in jumping performance of fleas found in our previous study are correlated with differences in resting metabolic rate (RMR) between sexes and among species. To test this hypothesis, we measured RMR of seven flea species (Xenopsylla conformis mycerini, Xenopsylla ramesis, Xenopsylla dipodilli, Parapulex chephrenis, Synosternus cleopatrae pyramidis, Nosopsyllus iranus theodori and Stenoponia tripectinata medialis). We compared RMR between sexes and among species and examined whether there is intra- and interspecific correlation between RMR and jumping ability. Both mass-specific and mass-independent RMR were the highest in female S. t. medialis, whereas mass-specific RMR was the lowest in male X. dipodilli and mass-independent RMR was the lowest in three Xenopsylla species and P. chephrenis. Mass-specific and mass-independent RMR were significantly higher in females than in males in all fleas except S. t. medialis. Differences in jumping ability between males and females were found to be correlated with sexual differences in mass-specific or mass-independent RMR. Interspecific comparison showed that the length of jump in both male and female fleas was strongly affected by their mass-specific and mass-independent RMR.  相似文献   

2.
Bionomics of fleas (Siphonaptera) parasitizing rodent hosts, mostly the gerbil Gerbillus dasyurus (Wagner) and the jird Meriones crassus Sundevall (Gerbillidae), were investigated in the central Negev desert of Israel. Populations were sampled weekly (by Sherman trapping of hosts) from August 2000 to July 2001. Among 1055 fleas of nine species captured, four species predominated (94%). Two species of Pulicidae, Xenopsylla dipodilli Smit and X. ramesis (Rothschild), reproduced perennially, whereas adults of Nosopsyllus iranus theodori Smit (Ceratophyllidae) and Stenoponia tripectinata medialis Jordan (Hystrichopsyllidae) occurred only in cool months (October-March). During their main activity season on the most infested host species (estimated from > 300 trap-nights/month), prevalence of these four flea species reached 40-70%, 20-30%, 100% and 50-70%, respectively, with infestation intensities of 2-2.7, 7-12, 2-3.5 and 2.5-7 fleas per infested rodent, respectively. Xenopsylla dipodilli oviposition peaked during autumn with parous rate > 80% by September-October. During December-April, the majority of X. dipodilli females were immature and/or nulliparous (defined as having mature ovaries but no follicular relics). In contrast, X. ramesis had two reproductive peaks, in mid-spring and autumn, evidenced by the influx of immature females in late spring and summer (30-40%) and in winter (20-30%) after maximal parous rates: 80-100% in March-April and 95-100% in October-November. Nosopsyllus iranus theodori and Stenoponia tripectinata medialis adults occurred only during cool months. At the beginning of activity, during October-November, the sex ratio of N. i. theodori was strongly biased to females (86%) that were immature and/or nulliparous. In winter, adult females were 52-65% parous and 10-32% immature. In March, as the adult population of N. i. theodori declined, 78% of females were parous and 12% immature. Seasonal activity of S. t. medialis (November-March) was shorter than for the other three species; females were predominantly nulliparous in November (80%), after which the proportion of parous females increased gradually to 84% in February. Two females of S. t. medialis collected in March were mature but nulliparous, suggesting that this species of flea might 'oversummer' (as pupae or teneral adults) in the cocooned stage.  相似文献   

3.
We tested the hypothesis of negative fitness-density relationships and predicted that an increase in the density of parent fleas would result in lower survival rates and longer development time of pre-imagoes as well as shorter time to death from starvation of newly emerged imagoes. These predictions were experimentally tested on Xenopsylla conformis Wagner and Xenopsylla ramesis Rothschild feeding on two rodent species, Meriones crassus Sundevall or Dipodillus dasyurus Wagner. Survival of larvae and pupae, but not eggs, was negatively affected by parent density. An increase in parent density led to a decrease in the number of imagoes of the next generation. Eggs of both species developed faster when the parents were at low densities on either host. The same was true for larval X. ramesis, but not larval X. conformis. The negative effects of parent density on the duration of pupal development were evident in X. conformis, parents of which fed on both hosts, and X. ramesis from parents fed on M. crassus, whereas X. ramesis from parents fed on D. dasyurus developed faster at low densities. A negative effect of density on the development of offspring from egg to imago in X. conformis was manifested mainly when parent fleas fed on D. dasyurus, whereas the negative effect of density on offspring development in X. ramesis was manifested mainly when parent fleas fed on M. crassus. Although there was no general effect of parent density on the resistance of imago offspring to starvation, male X. ramesis from parents fed at the highest density survived starvation for significantly shorter times compared with those from parents fed at lower densities. Manifestation of the negative effect of parent density on offspring quality appears to vary with flea species and may be affected by host species.  相似文献   

4.
Abstract.  1. The fleas Xenopsylla conformis and Xenopsylla ramesis exploit the same rodent host, Meriones crassus , and replace each other between two different habitats situated at the opposite sides of a steep precipitation gradient. It was hypothesised that the reason for this paratopic distribution is competition between larvae of the two species for food resources.
2. This hypothesis was tested by studying the performance of larvae of the two species in terms of their developmental success in mixed-species and single-species treatments under different air temperatures, relative humidities, substrate textures, and food abundance.
3. The number of individuals of X. conformis that survived until emergence depended significantly on the presence of competing species, being, in general, lower in mixed-species compared with single-species treatments. The decrease in developmental success of X. conformis in mixed-species treatments was found mainly during food shortage. In contrast, presence of the competitor did not affect the number of X. ramesis that survived until emergence. No effect of the presence of the competitor on duration of development or sex ratio was found in either species.
4. The results of this study, together with the results of our previous studies, provide an explanation for the paratopic distribution of X. conformis and X. ramesis that exploit the same host species.  相似文献   

5.
The rate of development of immature fleas, Xenopsylla conformis Wagner and Xenopsylla ramesis Rothschild (Siphonaptera: Xenopsyllidae) was studied in the laboratory at 25 degrees C and 28 degrees C with 40, 55, 75 and 92% relative humidity (RH). These fleas are separately associated with the host jird Meriones crassus Sundevall in different microhabitats of the Ramon erosion cirque, Negev Highlands, Israel. This study of basic climatic factors in relation to flea bionomics provides the basis for ecological investigations to interpret reasons for paratopic local distributions of these two species of congeneric fleas on the same host. Both air temperature and RH were positively correlated with duration of egg and larval stages in both species. Change of humidity between egg and larval environments did not affect duration of larval development at any temperature. At each temperature and RH, the eggs and larvae of X. ramesis did not differ between males and females in the duration of their development, whereas female eggs and larvae of X. conformis usually developed significantly faster than those of males. For both species, male pupae developed slower than female pupae at the same air temperature and RH. Air temperature, but not RH, affected the duration of pupal development. At each humidity, duration of the pupal stage was significantly longer at 25 degrees C than at 28 degrees C: 15.3+/-1.7 vs. 11.7+/-1.2 days in X. conformis; 14.1+/-2.0 vs. 11.5+/-1.7 days in X. ramesis, with a significantly shorter pupal period of the latter species at 25 degrees C. These limited interspecific bionomic contrasts in relation to basic climatic factors appear insufficient to explain the differential habitat distributions of X. conformis and X. ramesis.  相似文献   

6.
Bartonella are emerging and re-emerging pathogens affecting humans and a wide variety of animals including rodents. Horizontal transmission of Bartonella species by different hematophagous vectors is well acknowledged but vertical transmission (from mother to offspring) is questionable and was never explored in fleas. The aim of this study was to investigate whether the rodent flea, Xenopsylla ramesis, can acquire native Bartonella from wild rodents and transmit it transovarially. For this aim, Bartonella-free laboratory-reared X. ramesis fleas were placed on six naturally Bartonella-infected rodents and six species-matched Bartonella-negative rodents (three Meriones crassus jirds, two Gerbillus nanus gerbils and one Gerbillus dasyurus gerbil) for 7 days, 12-14h per day. The fleas that were placed on the Bartonella-positive rodents acquired four different Bartonella genotypes. Eggs and larvae laid and developed, respectively, by fleas from both rodent groups were collected daily for 7 days and molecularly screened for Bartonella. All eggs and larvae from both groups were found to be negative for Bartonella DNA. Interestingly, two of five gut voids regurgitated by Bartonella-positive fleas contained Bartonella DNA. The naturally infected rodents remained persistently infected with Bartonella for at least 89 days suggesting their capability to serve as competent reservoirs for Bartonella species. The findings in this study indicate that X. ramesis fleas can acquire several Bartonella strains from wild rodents but cannot transmit Bartonella transovarially.  相似文献   

7.
Fleas Xenopsylla conformis mycerini and Xenopsylla ramesis replace each other on the same rodent host (Meriones crassus) in two habitats that differ in substrate texture (sand and loess-like sediments, respectively). We hypothesized that the substrate is an important factor determining flea distribution and studied survival of larvae, pupae and newly emerged adults as well as the rate of pre-imaginal development of these flea species in sand and loess rearing medium (= substrate). Texture of rearing medium did not affect survival and development rate of eggs in either X. c. mycerini or X. ramesis. Larval survival and the rate of development were both affected by the factor of substrate. Survival of X. c. mycerini larvae was significantly higher in sand than in loess substrate, whereas survival of X. ramesis larvae did not differ in different substrates. Larvae of both species developed faster in sand substrate than in loess substrate. Maximal survival time of X. c. mycerini larvae that died before pupation did not depend on substrate, whereas X. ramesis larvae survived significantly longer in loess than in sand substrate. Most pupae of both species survived successfully on both substrates, but the duration of pupal stages in sand substrate was longer than that in loess substrate in both species. Newly emerged adults of both species survived similar time in both sand and loess substrate. Irrespective of substrate, adult X. c. mycerini survived for a shorter time than did adult X. ramesis. No between-sex within-species differences in survival time of newly emerged adults in sand versus loess substrate were found in X. c. mycerini. Survival time of males and females of X. ramesis differed in sand substrate but not in loess substrate.  相似文献   

8.
We asked if and how feeding performance of fleas on an auxiliary host is affected by the phylogenetic distance between this host and the principal host of a flea. We investigated the feeding of 2 flea species, Parapulex chephrenis and Xenopsylla ramesis, on a principal (Acomys cahirinus and Meriones crassus, respectively) and 8 auxiliary host species. We predicted that fleas would perform better (higher proportion of fleas would feed and take larger bloodmeals) on (a) a principal rather than an auxiliary host and (b) auxiliary hosts phylogenetically closer to a principal host. Although feeding performance of fleas differed among different hosts, we found that: (1) fleas did not always perform better on a principal host than on an auxiliary host; and (2) flea performance on an auxiliary host was not negatively correlated with phylogenetic distance of this host from the principal host. In some cases, fleas fed better on hosts that were phylogenetically distant from their principal host. We concluded that variation in flea feeding performance among host species results from interplay between (a) inherent species-specific host defence abilities, (b) inherent species-specific flea abilities to withstand host defences and (c) evolutionary tightness of association between a particular host species and a particular flea species.  相似文献   

9.
Mechanisms that regulate parasite populations may influence the evolution of hosts and parasites, as well as the stability of host-parasite dynamics but are still poorly understood. A manipulation experiment on the grooming ability of rodent hosts (Meriones crassus) and flea (Xenopsylla conformis) densities on these hosts successfully disentangled two possible regulating mechanisms: (i) behavioural defence of the host and (ii) intraspecific competition among parasites, and revealed their importance in suppressing the feeding of fleas. Moreover, the results suggest that flea competition is direct and is not mediated by host grooming, immune response, or parasite-induced damage to the host. These mechanisms, together with interspecific competition and density-dependent parasite-induced host damage, may limit the parasite burden on an individual host and may prevent parasites from overexploiting their host population.  相似文献   

10.
Hawlena H  Abramsky Z  Krasnov BR 《Oecologia》2007,154(3):601-609
Mechanisms that cause nonrandom patterns of parasite distribution among host individuals may influence the population and evolutionary dynamics of both parasites and hosts, but are still poorly understood. We studied whether survival, reproduction, and behavioral responses of fleas (Xenopsylla conformis) changed with the age of their rodent hosts (Meriones crassus), experimentally disentangling two possible mechanisms: (a) differential survival and/or fitness reward of parasites due to host age, and (b) active parasite choice of a host of a particular age. To explore the first mechanism, we raised fleas on rodents of two age groups and assessed flea survival as well as the quantity and quality of their offspring. To explore the second mechanism, three groups of fleas that differed in their previous feeding experience (no experience, experience on juvenile or experience on adult rodents) were given an opportunity to choose between juvenile and adult rodents in a Y-maze. Fleas raised on juvenile rodents had higher survival and had more offspring that emerged earlier than fleas raised on adults. However, fleas did not show any innate preference for juvenile rodents, nor were they able to learn to choose them. In contrast to our predictions, based on a single previous exposure, fleas learned to choose adult rodents. The results suggest that two mechanisms—differential survival and fitness reward of fleas, and associative learning by them—affect patterns of flea distribution between juvenile and adult rodents. The former increases whereas the latter reduces flea densities on juvenile rodents. The ability of fleas to learn to choose adult but not juvenile hosts may be due to: (a) a stronger stimulus from adults, (b) a higher profitability of adults in terms of predictability and abundance, or (c) the evolutionary importance of recognizing adult but not juvenile hosts as representatives of the species.  相似文献   

11.
Data are given on the blood amount engorged by the fleas Xenopsylla conformis, X. cheopis, Leptopsylla segnis, Nosopsyllus laeviceps, N. consimilis, Ctenophthalmus golovi, Neopsylla setosa, Citellophilus tesquorum and Coptopsylla lamellifer. The average weight of blood portion in females of different species engorged for the first time ranged from 0.05 mg (X. conformis) to 0.72 mg (C. lamellifer). Females of most species, which had multiple blood meals, engorge more blood. Males engorge less blood than females and blood portions do not increase with age. In all sex-age groups most ectoparasites cease feeding spontaneously after having incomplete blood meal. Indices are suggested for the estimation of saturation rate in fleas during feeding.  相似文献   

12.
Spatially structured environments may impact evolution by restricting population sizes, limiting opportunities for genetic mixis, or weakening selection against deleterious genotypes. When habitat structure impedes dispersal, low-productivity (less virulent) infectious parasites may benefit from their prudent exploitation of local hosts. Here we explored the combined ability for habitat structure and host density to dictate the relative reproductive success of differentially productive parasites. To do so, we allowed two RNA bacteriophage Phi6 genotypes to compete in structured and unstructured (semi-solid versus liquid) habitats while manipulating the density of Pseudomonas hosts. In the unstructured habitats, the more-productive phage strain experienced a relatively constant fitness advantage regardless of starting host density. By contrast, in structured habitats, restricted phage dispersal may have magnified the importance of local productivity, thus allowing the relative fitness of the less-productive virus to improve as host density increased. Further data suggested that latent period (duration of cellular infection) and especially burst size (viral progeny produced per cell) were the phage "life-history" traits most responsible for our results. We discuss the relevance of our findings for selection occurring in natural phage populations and for the general evolutionary epidemiology of infectious parasites.  相似文献   

13.
Chomel BB 《Molecular ecology》2011,20(13):2660-2661
In this issue of Molecular Ecology, Morick et al. (2011) present an interesting study of acquisition and transmission of Bartonella by Xenopsylla ramesis fleas (Fig. 1) which infest naturally wild desert rodents from the Negev desert. A major issue with vector-borne diseases and vector-borne infection is to know whether the vector can also be a natural reservoir and transmit the infectious agent transovarially, allowing the infection to be perpetuated through successive generations of vectors. The desert flea, X. ramesis, is a flea species parasitizing gerbilline rodents in the deserts of the Middle East (Fielden et al. 2004).  相似文献   

14.
Density‐dependent habitat selection has been used to predict and explain patterns of abundance of species between habitats. Thermal quality, a density‐independent component of habitat suitability, is often the most important factor for habitat selection in ectotherms which comprise the vast majority of animal species. Ectotherms may reach high densities such that individual fitness is reduced in a habitat due to increased competition for finite resources. Therefore, density and thermal quality may present conflicting information about which habitat will provide the highest fitness reward and ectotherm habitat selection may be density‐independent. Using ornate tree lizards Urosaurus ornatus at 10 sites each straddling two adjacent habitats (wash and upland), we tested the hypothesis that habitat selection is density‐dependent even when thermal quality differs between habitats. We first tested that fitness proxies decline with density in each habitat, indicating density‐dependent effects on habitat suitability. We also confirmed that the two habitats vary in suitability (quantified by food abundance and thermal quality). Next, we tested the predictions that habitat selection depends on density with isodar analyses and that fitness proxies are equal in the two habitats within a site. We found that monthly survival rates decreased with density, and that the wash habitat had more prey and higher thermal quality than the upland habitat. Lizards preferred the habitat with more food and higher thermal quality, lizard densities in the two habitats were positively correlated, and fitness proxies of lizards did not differ between habitats. These patterns are consistent with density‐dependent habitat selection, despite differences in thermal quality between habitats. We expect that density‐dependent habitat selection is widespread in terrestrial ectotherms when densities are high and temperatures are close to their optimal performance range. In areas where thermal quality is low, however, we expect that depletable resources, such as food, become less limiting because assimilating resources is more difficult.  相似文献   

15.
This study set out to determine whether the sex ratio of fleas collected from host bodies is a reliable indicator of sex ratio in the entire flea population. To answer this question, previously published data on 18 flea species was used and it was tested to see whether a correlation exists between the sex ratio of fleas collected from host bodies and the sex ratio of fleas collected from host burrows. Across species, the female:male ratio of fleas on hosts correlated strongly with the female:male ratio of fleas in their burrows, with the slope of the regression overlapping 1. Controlling for flea phylogeny by independent contrasts produced similar results. It was also ascertained whether a host individual is a proportional random sampler of male and female fleas and whether the sex ratio in flea infrapopulations depends on the size of infrapopulations and on the gender and age of a host. Using field data, the sex ratio in infrapopulations of 7 flea species parasitic on 4 rodent species was analysed. Populations of 3 species (Nosopsyllus iranus, Parapulex chephrenis and Xenopsylla conformis) were significantly female-biased, whereas male bias was found in 1 species (Synosternus cleopatrae). In general, the sex ratio of fleas collected from an individual rodent did not differ significantly from the sex ratio in the entire flea population. Neither host gender, and age nor number of fleas co-occurring on a host affected (a) the sex ratio in flea infrapopulations and (b) the probability of an infrapopulation to be either female- or male-biased.  相似文献   

16.
Choice of breeding habitat can have a major impact on fitness. Sensitivity of habitat choice to environmental cues predicting reproductive success, such as density of harmful enemy species, should be favored by natural selection. Yet, experimental tests of this idea are in short supply. Brown-headed cowbirds Molothrus ater commonly reduce reproductive success of a wide diversity of birds by parasitizing their nests. We used song playbacks to simulate high cowbird density and tested whether cowbird hosts avoid such areas in habitat selection. Host species that made settlement decisions during manipulations were significantly less abundant in the cowbird treatment as a group. In contrast, hosts that settled before manipulations started and non-host species did not respond to treatments. These results suggest that hosts of cowbirds can use vocal cues to assess parasitism risk among potential habitat patches and avoid high risk habitats. This can affect community structure by affecting habitat choices of species with differential vulnerability.  相似文献   

17.
We studied reproductive performance in two flea species (Parapulex chephrenis and Xenopsylla ramesis) exploiting either a principal or one of eight auxiliary host species. We predicted that fleas would produce more eggs and adult offspring when exploiting (i) a principal host than an auxiliary host and (ii) an auxiliary host phylogenetically close to a principal host than an auxiliary host phylogenetically distant from a principal host. In both flea species, egg production per female after one feeding and production of new imago after a timed period of an uninterrupted stay on a host differed significantly between host species. In general, egg and/or new imago production in fleas feeding on an auxiliary host was lower than in fleas feeding on the principal host, except for the auxiliary host that was the closest relative of the principal host. When all auxiliary host species were considered, we did not find any significant relationship between either egg or new imago production in fleas exploiting an auxiliary host and phylogenetic distance between this host and the principal host. However, when the analyses were restricted to auxiliary hosts belonging to the same family as the principal host (Muridae), new imago production (for P. chephrenis) or both egg and new imago production (for X. ramesis) in an auxiliary host decreased significantly with an increase in phylogenetic distance between the auxiliary and principal host. Our results demonstrated that a parasite achieves higher fitness in auxiliary hosts that are either the most closely related to or the most distant from its principal host. This may affect host associations of a parasite invading new areas.  相似文献   

18.
Jensen WE  Cully JF 《Oecologia》2005,142(1):136-149
Local distributions of avian brood parasites among their host habitats may depend upon conspecific parasite density. We used isodar analysis to test for density-dependent habitat selection in brown-headed cowbirds (Molothrus ater) among tallgrass prairie adjacent to wooded edges, and prairie interior habitat (>100 m from wooded edges) with and without experimental perches. Eight study sites containing these three habitat treatments were established along a geographical gradient in cowbird abundance within the Flint Hills region of Eastern Kansas and Oklahoma, USA. The focal host species of our study, the dickcissel (Spiza americana), is the most abundant and preferred cowbird host in the prairie of this region. Cowbird relative abundance and cowbird:host abundance ratios were used as estimates of female cowbird density, whereas cowbird egg density was measured as parasitism frequency (percent of dickcissel nests parasitized), and parasitism intensity (number of cowbird eggs per parasitized nest). Geographical variation in cowbird abundance was independent of host abundance. Within study sites, host abundance was highest in wooded edge plots, intermediate in the experimental perch plots, and lowest in prairie interior. Cowbirds exhibited a pattern of density-dependent selection of prairie edge versus experimental perch and interior habitats. On sites where measures of cowbird density were lowest, all cowbird density estimates (female cowbirds and their eggs) were highest near (100 m) wooded edges, where host and perch availability are highest. However, as overall cowbird density increased geographically, these density estimates increased more rapidly in experimental perch plots and prairie interiors. Variation in cowbird abundance and cowbird:host ratios suggested density-dependent cowbird selection of experimental perch over prairie interior habitat, but parasitism levels on dickcissel nests were similar among these two habitats at all levels of local cowbird parasitism. The density-dependent pattern of cowbird distribution among prairie edge and interior suggested that density effects on perceived cowbird fitness are greatest at wooded edges. A positive relationship between daily nest mortality rates of parasitized nests during the nestling period with parasitism intensity levels per nest suggested a density-dependent effect on cowbird reproductive success. However, this relationship was similar among habitats, such that all habitats should have been perceived as being equally suitable to cowbirds at all densities. Other unmeasured effects on cowbird habitat suitability (e.g., reduced cowbird success in edge-dwelling host nests, cowbird despotism at edges) might have affected cowbird habitat selection. Managers attempting to minimize cowbird parasitism on sensitive cowbird hosts should consider that hosts in otherwise less-preferred cowbird habitats (e.g., habitat interiors) are at greater risk of being parasitized where cowbirds become particularly abundant.  相似文献   

19.
We compared the responses of two fleas, Xenopsylla dipodilli and Parapulex chephrenis simultaneously exposed to the odours of their rodent hosts, Gerbillus dasyurus (specific host ofX. dipodilli ) and Acomys cahirinus (specific host of P. chephrenis). We hypothesized that fleas are able to discriminate between host species by using an odour cue and predicted that X. dipodilli andP. chephrenis would select an odour of an appropriate host species. Xenopsylla dipodilli choseG. dasyurus significantly more often than A. cahirinus, whereas P. chephrenis choseA. cahirinus significantly more often than G. dasyurus. The ability to select an appropriate host species did not differ significantly either between flea species or between individuals of different sex or age classes within flea species. No X. dipodilli, but 67 of 150 P. chephrenis, refused to choose a host. The latency to move in an experimental maze was significantly shorter for X. dipodilli than P. chephrenis. The flea species also differed in the time taken from the beginning of the movement to the choice of a host, withX. dipodilli being faster than P. chephrenis. Neither flea sex nor age affected this parameter in either species. Females of both flea species produced significantly more eggs when they fed on their specific host than when they fed on the other host species. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

20.
中国云南部分人间鼠疫流行区蚤类区系调查(英文)   总被引:15,自引:0,他引:15  
归纳了中国云南 13个人间鼠疫流行区的调查资料 ,对调查疫区的蚤类区系进行了研究。总计捕获12 0 77只小兽 ,隶属啮齿目、食虫目及攀目 3个目中的 9科、2 9属、4 7种。从小兽体表共采获 9369只蚤 ,经分类鉴定 ,隶属 5科、18属、33种。 33种蚤及 4 7种小兽宿主均按其分类阶元详细列于文末。结果表明 ,山区蚤及小兽宿主的种数明显多于坝区。坝区农耕地的优势种相对简单 ,优势种地位突出 ,黄胸鼠及印鼠客蚤分别是最重要的宿主及蚤种 (构成比分别为 83 2 7%和 75 32 % )。山区的优势种相对较复杂 ,优势种的种类较多 ,但其构成比较低 ( 10 96%~ 4 7 95% )。黄胸鼠及绒鼠为山区地带的两种优势宿主 ,缓慢细蚤、端凹栉眼蚤、印鼠客蚤、偏远古蚤及短突栉眼蚤为山区地带的 5种优势蚤种。多数蚤种可寄生两种以上的小兽宿主 ,但其所寄生的主要宿主并不多。结果提示 ,作为疫区主要媒介的印鼠客蚤及其所对应的主要寄生宿主 (黄胸鼠 )在坝区突出的优势种地位 ,似可解释近年疫区的鼠疫病人主要出现在坝区的原因  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号