首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The porcine esophageal mucosa has been proposed as a substitute for the buccal mucosa barrier on ex vivo permeability studies mainly due to its large surface area as well as its easier preparation. Therefore, this study compared the ex vivo permeability parameters of two drugs (carmabazepine (CBZ) and triamcinolone acetonide (TAC)) with different permeabilities and physicochemical properties through buccal and esophageal mucosae using a Franz diffusion cell system and HPLC as detection method. The freezing effects on drug permeability parameters were also evaluated by comparing them when fresh and frozen tissues were used. The barrier properties were not affected by the freezing process since the obtained parameters for both drugs were similar in frozen and fresh tissues (buccal and esophageal mucosae). However, an increase of CBZ retention was shown in frozen tissues. Fresh and frozen esophageal mucosae provided higher permeation of TAC than on buccal mucosae while the obtained permeability parameters for CBZ were similar on both mucosae. According to our results, porcine esophageal mucosa could be used as a substitute for buccal mucosa on ex vivo studies involving CBZ but not TAC. Frozen tissues could be used as substitute for fresh tissues in both cases. However, any substitution should be done with care and only if previous tests were performed, because the results could differ depending on the tested drug.  相似文献   

2.
The aim of the present study was to prepare and evaluate a novel buccal adhesive system (NBAS) containing propranolol hydrochloride (PH). A special punch was fabricated and used while preparing an NBAS. Solubility of PH in phosphate buffer solution (pH 6.6), partition coefficient between phosphate buffer (pH 6.6) and 1-octanol, and permeability coefficient through the porcine buccal mucosa were performed and found to be 74.66 mg/mL, 5.17, and 5.6, respectively. Stability of NBAS was determined in natural human saliva, and it was found that both PH and device are stable in human saliva. NBAS was evaluated by weight uniformity, thickness, hardness, friability, swelling, mucoadhesive strength, in vitro drug release, and in vivo human acceptability studies. Swelling index was higher (4.4) for formulations containing hydroxyl propyl methyl cellulose (HPMC) K4M alone, and it decreases with its decreasing concentration in the NBAS. Mucoadhesive strength (MS) was measured by using a modified apparatus. All NBASs showed higher MS with porcine buccal mucosa when compared with that of rabbit buccal mucosa. NBASs containing carbopol (CP) 934P and HPMC K4M at the ratio of 1∶1 showed higher MS (44.76 g) with porcine buccal mucosa when compared with 1∶2 (39.76 g), 0∶1 (23.29 g), and 1∶0 (22.22 g) ratios, respectively. The mechanism of PH release was found to be by non-Fickian diffusion (value of “n” between 0.5 and 1.0) and followed first order kinetics. In vivo human acceptability study showed that the newly prepared NBAS was comfortable in the human buccal cavity. It can be concluded that NBAS is a superior, novel system that overcomes the draw-back associated with the conventional buccal adhesive tablet.  相似文献   

3.
The properties of amorphous solid proteins influence the texture and stability of low-moisture foods, the shelf-life of pharmaceuticals, and the viability of seeds and spores. We have investigated the relationship between molecular mobility and oxygen permeability in dry food protein films—bovine α-lactalbumin (α-La), bovine β-lactoblobulin (β-Lg), bovine serum albumin (BSA), soy 11S globulin, and porcine gelatin—using phosphorescence from the triplet probe erythrosin B. Measurements of the phosphorescence decay in the absence (nitrogen) and presence (air) of oxygen versus temperature provide estimates of the non-radiative decay rate for matrix-induced quenching (k TS0) and oxygen quenching (k Q[O2]) of the triplet state. Since the oxygen quenching constant is the product of the oxygen solubility ([O2]) and a term (k Q) proportional to the oxygen diffusion coefficient, it is a measure of the oxygen permeability through the films. For all proteins except gelatin, Arrhenius plots of k TS0 reveal a gradual increase of apparent activation energy across a broad temperature range starting at ∼50 °C; this suggests that there is a steady increase in the available modes of molecular motion with increasing temperature within the protein matrix. Arrhenius plots for k Q[O2] were linear for all proteins with activation energies ranging from 24 to 29 kJ/mol. The magnitude of the oxygen quenching constants varied in the different proteins; the rates were approximately 10-fold higher in α-La, β-Lg, and BSA than in 11S glycinin and gelatin. Although the rate of oxygen permeability was not directly affected by the increased mobility of the protein matrix, plots of k Q[O2] versus k TS0 were linear over nearly three orders of magnitude in the protein films, suggesting that the matrix mobility plays a specific role in modulating oxygen permeability. This effect may reflect differences in matrix-free volume that directly influence both mobility and oxygen solubility.  相似文献   

4.
Delivery of 5-aza-2′-deoxycytidine (decitabine) across porcine buccal mucosa was evaluated as an alternative to the complex intravenous infusion regimen currently used to administer the drug. A reproducible high-performance liquid chromatography method was developed and optimized for the quantitative determination of this drug. Decitabine showed a concentration-dependent passive diffusion process across porcine buccal mucosa. An increase in the ionic strength of the phosphate buffer from 100 to 400 mM decreased the flux from 3.57±0.65 to 1.89±0.61 μg/h/cm2. Trihydroxy bile salts significantly enhanced the flux of decitabine at a 100 mM concentration (P>.05). The steady-state flux of decitabine in the presence of 100 mM of sodium taurocholate and sodium glycocholate was 52.65±9.48 and 85.22±7.61 μg/cm2/h, respectively. Two dihydroxy bile salts, sodium deoxytaurocholate and sodium deoxyglycocholate, showed better enhancement effect than did trihydroxy bile salts. A 38-fold enhancement in flux was achieved with 10 mM of sodium deoxyglycocholate. Published: July 13, 2007  相似文献   

5.
The pharmaceutical industry is in need of rapid and accurate methods to screen new drug leads for intestinal permeability potential in the early stages of drug discovery. Excised human jejunal mucosa was used to investigate the permeability of the small intestine to four oral drugs, using a flow-through diffusion system. The four drugs were selected as representative model compounds of drug classes 1 and 3 according to the biopharmaceutics classification system (BCS). The drugs selected were zidovudine, propranolol HCl, didanosine, and enalapril maleate. Permeability values from our in vitro diffusion model were compared with the BCS permeability classification and in vivo and in vitro gastrointestinal drug permeability. The flux rates of the four drugs were influenced by the length of the experiment. Both class 1 drugs showed a significantly higher mean flux rate between 2 and 6 h across the jejunal mucosa compared to the class 3 drugs. The results are therefore in line with the drugs’ BCS classification. The results of this study show that the permeability values of jejunal mucosa obtained with the flow-through diffusion system are good predictors of the selected BCS class 1 and 3 drugs’ permeation, and it concurred with other in vitro and in vivo studies.  相似文献   

6.
Predictions from two previously published models and a new model for the relative change in cuticular permeability with boiling point, octanol/air partition coefficient, and/or molar volume of a wide range of diffusants (not including ions and large hydrophilic compounds) are compared with each other and to experimental data sets not used for model parameterization. While the models work in a similar way for all cuticles for which data are available, it is not yet possible to predict in absolute terms the permeability of any cuticles for which no data are available-that is, while the slope of a plot representing the change in permeability with diffusant properties is predictable, the position of the linear relationship along the ordinate needs to be determined experimentally for each type of cuticle at or near the relevant temperature(s).  相似文献   

7.
The aim of the present study was to develop and evaluate a buccal adhesive tablet containing ondansetron hydrochloride (OH). Special punches and dies were fabricated and used while preparing buccal adhesive tablets. The tablets were prepared using carbopol (CP 934), sodium alginate, sodium carboxymethylcellulose low viscosity (SCMC LV), and hydroxypropylmethylcellulose (HPMC 15cps) as mucoadhsive polymers to impart mucoadhesion and ethyl cellulose to act as an impermeable backing layer. The formulations were prepared by direct compression and characterized by different parameters such as weight uniformity, content uniformity, thickness, hardness, swelling index, in vitro drug release studies, mucoadhesive strength, and ex vivo permeation study. As compared with the optimized formulation composed of OH—5 mg, CP 934—30 mg, SCMC LV—165 mg, PEG 6000—40 mg, lactose—5 mg, magnesium stearate—1.5 mg, and aspartame—2 mg, which gave the maximum release (88.15%), non-bitter (OH) that form namely ondansetron base and complexed ondansetron was used in order to make the selected formulation acceptable to human. The result of the in vitro release studies and permeation studies through bovine buccal mucosa revealed that complexed ondansetron gave the maximum release and permeation. The stability of drug in the optimized adhesive tablet was tested for 6 h in natural human saliva; both the drug and device were found to be stable in natural human saliva. Thus, buccal adhesive tablet of ondansetron could be an alternative route to bypass the hepatic first-pass metabolism and to improve the bioavailability of (OH).  相似文献   

8.
Nicotine (NCT) buccal tablets consisting of sodium alginate (SA) and nicotine–magnesium aluminum silicate (NCT–MAS) complexes acting as drug carriers were prepared using the direct compression method. The effects of the preparation pH levels of the NCT–MAS complexes and the complex/SA ratios on NCT release, permeation across mucosa, and mucoadhesive properties of the tablets were investigated. The NCT–MAS complex-loaded SA tablets had good physical properties and zero-order release kinetics of NCT, which indicate a swelling/erosion-controlled release mechanism. Measurement of unidirectional NCT release and permeation across porcine esophageal mucosa using a modified USP dissolution apparatus 2 showed that NCT delivery was controlled by the swollen gel matrix of the tablets. This matrix, which controlled drug diffusion, resulted from the molecular interactions of SA and MAS. Tablets containing the NCT–MAS complexes prepared at pH 9 showed remarkably higher NCT permeation rates than those containing the complexes prepared at acidic and neutral pH levels. Larger amounts of SA in the tablets decreased NCT release and permeation rates. Additionally, the presence of SA could enhance the mucoadhesive properties of the tablets. These findings suggest that SA plays the important role not only in controlling release and permeation of NCT but also for enhancing the mucoadhesive properties of the NCT–MAS complex-loaded SA tablets, and these tablets demonstrate a promising buccal delivery system for NCT.  相似文献   

9.
Delivery of 5-aza-2 -deoxycytidine (decitabine) across porcine buccal mucosa was evaluated as an alternative to the complex intravenous infusion regimen currently used to administer the drug. A reproducible high-performance liquid chromatography method was developed and optimized for the quantitative determination of this drug. Decitabine showed a concentration-dependent passive diffusion process across porcine buccal mucosa. An increase in the ionic strength of the phosphate buffer from 100 to 400 mM decreased the flux from 3.57 +/- 0.65 to 1.89 +/- 0.61 microg/h/cm2. Trihydroxy bile salts significantly enhanced the flux of decitabine at a 100 mM concentration (P > .05). The steady-state flux of decitabine in the presence of 100 mM of sodium taurocholate and sodium glycocholate was 52.65 +/- 9.48 and 85.22 +/- 7.61 microg/cm2/h, respectively. Two dihydroxy bile salts, sodium deoxytaurocholate and sodium deoxyglycocholate, showed better enhancement effect than did trihydroxy bile salts. A 38-fold enhancement in flux was achieved with 10 mM of sodium deoxyglycocholate.  相似文献   

10.
The aim of this study was to evaluate two in vitro models, Caco-2 monolayer and rat intestinal mucosa, regarding their linear correlation with in vivo bioavailability data of therapeutic peptide drugs after oral administration in rat and human. Furthermore the impact of molecular mass (Mm) of the according peptides on their permeability was evaluated. Transport experiments with commercially available water soluble peptide drugs were conducted using Caco-2 cell monolayer grown on transwell filter membranes and with freshly excised rat intestinal mucosa mounted in Using type chambers. Apparent permeability coefficients (P (app)) were calculated and compared with in vivo data derived from the literature. It was shown that, besides a few exceptions, the Mm of peptides linearly correlates with permeability across rat intestinal mucosa (R (2) = 0.86; y = -196.22x + 1354.24), with rat oral bioavailability (R (2) = 0.64; y = -401.90x + 1268.86) as well as with human oral bioavailability (R (2) = 0.91; y = -359.43x + 1103.83). Furthermore it was shown that P (app) values of investigated hydrophilic peptides across Caco-2 monolayer displayed lower permeability than across rat intestinal mucosa. A correlation between P (app) values across rat intestinal mucosa and in vivo oral bioavailability in human (R (2) = 0.98; y = 2.11x + 0.34) attests the rat in vitro model to be a very useful prediction model for human oral bioavailability of hydrophilic peptide drugs. Presented correlations encourage the use of the rat in vitro model for the prediction of human oral bioavailabilities of hydrophilic peptide drugs.  相似文献   

11.
The purpose of this study was to determine the effect of permeation enhancers on the transbuccal delivery of 5-fluorouracil (FU). The effect of permeation enhancers on in vitro buccal permeability was assessed using sodium deoxycholate (SDC), sodium dodecyl sulphate (SDS), sodium tauroglycocholate (STGC), and oleic acid and their concentrations for absorption enhancement were optimized. STGC appeared to be most effective for enhancing the buccal permeation of FU than the other enhancers. These enhancements by STGC were statistically significant (p < 0.05) compared to control. The order of permeation enhancement was STGC > SDS > SDC > oleic acid. Histological investigations were performed on buccal mucosa and indicated no major morphological changes. The enhancing effect of STGC on the buccal absorption of FU was evaluated from the mucoadhesive gels in rabbits. The absolute bioavailability of FU from mucoadhesive gels containing STGC increased 1.6-fold as compared to the gels containing no permeation enhancer. The mean residence time and mean absorption time considerably increased following administration of gel containing penetration enhancer compared with the gel without penetration enhancer.  相似文献   

12.
M Koter  K Gwo?dziński 《Cytobios》1988,53(213):95-98
The effect of elevated temperatures on the permeability of non-electrolyte spin labels, hydrophilic TEMPOL and more hydrophobic TEMPO across the porcine lymphocyte membrane was investigated. In the range of 41-44 degrees C, temperature-induced changes in the permeation constant were lower for TEMPO than TEMPOL. The data obtained may suggest that the permeability of spin labels across the membrane is sensitive to changes of temperature especially above 43 degrees C.  相似文献   

13.
This work combines several methods in an integrated strategy to develop a matrix for buccal administration. For this purpose, tablets containing selected mucoadhesive polymers loaded with a model drug (omeprazole), free or in a complexed form with cyclodextrins, and in the absence and presence of alkali agents were subjected to a battery of tests. Mucoadhesion studies, including simple factorial analysis, in vitro release studies with both model-dependent and model-independent analysis, and permeation studies were performed. Mucoadhesive profiles indicated that the presence of the drug decreases the mucoadhesion profile, probably due its hydrophobic character. In tablets loaded with the drug complexed with β-cyclodextrin or methyl-β-cyclodextrin, better results were obtained with the methylated derivative. This effect was attributed to the fact that in the case of β-cyclodextrin, more hydroxyl groups are available to interact with the mucoadhesive polymers, thus decreasing the mucoadhesion performance. The same result was observed in presence of the alkali agent (l-arginine), in this case due to the excessive hydrophilic character of l-arginine. Drug release from tablets was also evaluated, and results suggested that the dissolution profile with best characteristics was observed in the matrix loaded with omeprazole complexed with methyl-β-cyclodextrin in the presence of l-arginine. Several mathematical models were applied to the dissolution curves, indicating that the release of the drug, in free or in complexed state, from the mucoadhesive matrices followed a super case II transport, as established on the basis of the Korsmeyer–Peppas function. The feasibility of drug buccal administration was assessed by permeation experiments on porcine buccal mucosa. The amount of drug permeated from mucoadhesive tablets presented a maximum value for the system containing drug complexed with the methylated cyclodextrin derivative in presence of l-arginine. According to these results, the system containing the selected polymer mixture and the drug complexed with methyl-β-cyclodextrin in presence of l-arginine showed a great potential as a buccal drug delivery formulation, in which a good compromise among mucoadhesion, dissolution, and permeation properties was achieved.  相似文献   

14.
A mathematical model of the transport of fluorescein across the blood-retina barrier in the transient state and the subsequent diffusion of fluorescein in the vitreous body is presented. The function of the barrier is lumped in a single parameter—the permeability. The sensitivity of this parameter due to changes in the other parameters of the model is given. This establishes the foundation for the quantitative assessment of the barrier function through vitreous fluorophotometry.  相似文献   

15.
A nonlinear model of a recombinant Escherichia coli producing porcine growth hormone (pGH) fermentation was developed. The model was used to calculate a glucose feeding and temperature strategy to optimize the production of pGH. Simulations showed that the implementation of optimal feed and temperature profiles was sensitive to the maximum specific growth rate, and a mismatch could result in excessive acetate production and a significant reduction in pGH yield. An optimization algorithm was thus developed, using feedback control, to counter the effects of uncertainty in the specific growth rate and thus determine an optimal operating strategy for pGH production. This policy was experimentally implemented in a 10 L fermenter and resulted in a 125% increase in productivity over the previous best experimental result with this system—in spite of significant plant-model mismatch.  相似文献   

16.
Given the established role of Chlamydia spp. as causative agents of both acute and chronic diseases, search for new antimicrobial agents against these intracellular bacteria is required to promote human health. Isoflavones are naturally occurring phytoestrogens, antioxidants and efflux pump inhibitors, but their therapeutic use is limited by poor water-solubility and intense first-pass metabolism. Here, we report on effects of isoflavones against C. pneumoniae and C. trachomatis and describe buccal permeability and initial formulation development for biochanin A. Biochanin A was the most potent Chlamydia growth inhibitor among the studied isoflavones, with an IC50 = 12 µM on C. pneumoniae inclusion counts and 6.5 µM on infectious progeny production, both determined by immunofluorescent staining of infected epithelial cell cultures. Encouraged by the permeation of biochanin A across porcine buccal mucosa without detectable metabolism, oromucosal film formulations were designed and prepared by a solvent casting method. The film formulations showed improved dissolution rate of biochanin A compared to powder or a physical mixture, presumably due to the solubilizing effect of hydrophilic additives and presence of biochanin A in amorphous state. In summary, biochanin A is a potent inhibitor of Chlamydia spp., and the in vitro dissolution results support the use of a buccal formulation to potentially improve its bioavailability in antichlamydial or other pharmaceutical applications.  相似文献   

17.
The temperature dependence of the coefficient of water self-diffusion across plane-parallel multib-ilayers of dioleoylphosphatidylcholine oriented on a glass support was studied in the 20–60°C range by pulsed field gradient NMR. The coefficient for transbilayer diffusion of water proved almost four orders of magnitude smaller than for bulk water, and 10 times smaller than that for lateral diffusion of lipid under the same conditions. The temperature dependence obeyed the Arrhenius law with apparent activation energy of 41 kJ/mol, much higher than that for bulk water (18 kJ/mol). The experimental data were analyzed using the “dissolution-diffusion” model, by simulating water passage through membrane channels, and by examining water exchange in states with different modes of translational mobility, including pore channels and bilayer defects. Each approach could take into account the role of bilayer permeability and assess the apparent activation energy for water diffusion in the hydrophobic part of the bilayer, which proved close to the value for bulk water. Estimates were obtained for water diffusion coefficients in the system, coefficients of bilayer permeability for water, and the influence of bilayer defects on the lateral and transverse diffusion coefficients.  相似文献   

18.
Buccal patches for the delivery of atenolol using sodium alginate with various hydrophilic polymers like carbopol 934 P, sodium carboxymethyl cellulose, and hydroxypropyl methylcellulose in various proportions and combinations were fabricated by solvent casting technique. Various physicomechanical parameters like weight variation, thickness, folding endurance, drug content, moisture content, moisture absorption, and various ex vivo mucoadhesion parameters like mucoadhesive strength, force of adhesion, and bond strength were evaluated. An in vitro drug release study was designed, and it was carried out using commercial semipermeable membrane. All these fabricated patches were sustained for 24 h and obeyed first-order release kinetics. Ex vivo drug permeation study was also performed using porcine buccal mucosa, and various drug permeation parameters like flux and lag time were determined.  相似文献   

19.
The drying characteristics of pomegranate arils were investigated in temperature range of 50–70 °C. The increase in drying air temperature resulted in a decrease in drying time. The drying rate was found to increase with temperature, thereby reducing the total drying time. Thirteen drying models were evaluated in the kinetics research. The goodness of fit of the proposed models was evaluated by using the determination of coefficient (R 2 ), mean relative percent error (P), reduced chi-square (χ 2), and root means square error (RMSE). The Midilli et al. model showed a better fit to experimental drying data as compared to other models. Effective moisture diffusivity (D eff) ranged from 9.447 × 10−11 to 3.481 × 10−10 m2/s as calculated by the Fick’s second law of diffusion. The temperature dependence of the value of effective moisture diffusivity followed an Arrhenius-type relationship. The activation energy for the moisture diffusion was determined to be 60.34 kJ/mol.  相似文献   

20.
Penicillium camembertii was cultivated on a jellified peptone—lactate based medium to simulate the composition of Camembert cheese. Diffusional limitations due to substrate consumption were not involved in the linear growth recorded during culture, while nitrogen (peptone) limitation accounted for growth cessation. Examination of gradients confirmed that medium neutralization was the consequence of lactate consumption and ammonium production. The diffusion of the lactate assimilated from the core to the rind and that of the ammonium produced from the rind to the core was described by means of a diffusion/reaction model involving a partial linking of consumption or production to growth. The model matched experimental data throughout growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号