首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers using the CHARMM27 force field in the tensionless isothermal-isobaric (NPT) ensemble give highly ordered, gel-like bilayers with an area per lipid of approximately 48 A(2). To obtain fluid (L(alpha)) phase properties of DPPC bilayers represented by the CHARMM energy function in this ensemble, we reparameterized the atomic partial charges in the lipid headgroup and upper parts of the acyl chains. The new charges were determined from the electron structure using both the Mulliken method and the restricted electrostatic potential fitting method. We tested the derived charges in molecular dynamics simulations of a fully hydrated DPPC bilayer. Only the simulation with the new restricted electrostatic potential charges shows significant improvements compared with simulations using the original CHARMM27 force field resulting in an area per lipid of 60.4 +/- 0.1 A(2). Compared to the 48 A(2), the new value of 60.4 A(2) is in fair agreement with the experimental value of 64 A(2). In addition, the simulated order parameter profile and electron density profile are in satisfactory agreement with experimental data. Thus, the biologically more interesting fluid phase of DPPC bilayers can now be simulated in all-atom simulations in the NPT ensemble by employing our modified CHARMM27 force field.  相似文献   

2.
We have studied the action of some membranotropic agents (MTAs) on the parameters of mono- and multilayers of dipalmitoylphosphatidylcholine (DPPC). The MTAs used included an antimicrobial drug, decamethoxinum, the model amphiphilic agent stearoyl-L-alpha-alanine, and cholesterol as a reference substance. Using differential scanning calorimetry and the Langmuir monolayer technique, we measured the temperature and enthalpy of the main phase transition of DPPC, the mean molecular area, the collapse pressure and the free energy of the mixed monolayers of DPPC and MTA. A good correlation has been obtained between the structure of the MTA used and changes in the parameters of both mono- and multilayers. Thus, for cholesterol, its well-known condensing effect in the L alpha phase correlates with its behavior in the mixed monolayers. The disturbing action of decamethoxinum (depression of the phase transition in DPPC multilayers and relatively high free energy of mixing in monolayers) is presumably connected with interaction of its charged ammonium moieties with polar phospholipid heads. At the same time, stearoyl-L-alpha- alpha-alanine condensed the lipid layers and increased the melting point of DPPC, owing to its interaction with both polar and non-polar lipid moieties. One can conclude that the three MTAs used can really be considered as representative examples of three different types of behavior in mono- and multilayers.  相似文献   

3.
Molecular dynamics simulations have been used to study structural and dynamic properties of fully hydrated mixed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) bilayers at 0, 25, 50, 75, and 100 mol % DPPE. Simulations were performed for 50 ns at 350 K and 1 bar for the liquid-crystalline state of the mixtures. Results show that the average area per headgroup reduces from 0.65 +/- 0.01 nm(2) in pure DPPC to 0.52 +/- 0.01 nm(2) in pure DPPE systems. The lipid tails become more ordered with increasing DPPE concentration, resulting in a slight increase in membrane thickness (3.43 +/- 0.01 nm in pure DPPC to 4.00 +/- 0.01 nm in pure DPPE). The calculated area per headgroup and order parameter for pure DPPE deviates significantly from available experimental measurements, suggesting that the force field employed requires further refinement. In-depth analysis of the hydrogen-bond distribution in DPPE molecules shows that the amine groups strongly interact with the phosphate and carbonyl groups through inter/intramolecular hydrogen bonds. This yields a bilayer structure with DPPE headgroups preferentially located near the lipid phosphate and ester oxygens. It is observed that increasing DPPE concentrations causes competitive hydrogen bonding between the amine groups (hydrogen-donor) and the phosphate/carbonyl groups or water (hydrogen-acceptor). Due to the increasing number of hydrogen-donors from DPPE molecules with increasing concentration, DPPE becomes more hydrated. Trajectory analysis shows that DPPE molecules in the lipid mixtures move laterally and randomly around the membrane surface and the movement becomes more localized with increasing DPPE concentrations. For the conditions and simulation time considered, no aggregation or phase separation was observed between DPPC and DPPE.  相似文献   

4.
Correlation between lipid plane curvature and lipid chain order.   总被引:1,自引:1,他引:0       下载免费PDF全文
The 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE:POPC) system has been investigated by measuring, in the inverted hexagonal (HII) phase, the intercylinder spacings (using x-ray diffraction) and orientational order of the acyl chains (using 2H nuclear magnetic resonance). The presence of 20 wt% dodecane leads to the formation of a HII phase for the composition range from 0 to 39 mol% of POPC in POPE, as ascertained by x-ray diffraction and 2H nuclear magnetic resonance. The addition of the alkane induces a small decrease in chain order, consistent with less stretched chains. An increase in temperature or in POPE proportion leads to a reduction in the intercylinder spacing, primarily due to a decrease in the water core radius. A temperature increase also leads to a reduction in the orientational order of the lipid acyl chains, whereas the POPE proportion has little effect on chain order. A correlation is proposed to relate the radius of curvature of the cylinders in the inverted hexagonal phase to the chain order of the lipids adopting the HII phase. A simple geometrical model is proposed, taking into account the area occupied by the polar headgroup at the interface and the orientational order of the acyl chains reflecting the contribution of the apolar core. From these parameters, intercylinder spacings are calculated that agree well with the values determined experimentally by x-ray diffraction, for the variations of both temperature and POPE:POPC proportion. This model suggests that temperature increases the curvature of lipid layers, mainly by increasing the area subtended by the hydrophobic core through chain conformation disorder, whereas POPC content affects primarily the headgroup interface contribution. The frustration of lipid layer curvature is also shown to be reflected in the acyl chain order measured in the L alpha phase, in the absence of dodecane; for a given temperature, increased order is observed when the curling tendencies of the lipid plane are more pronounced.  相似文献   

5.
The thermotropic properties of triolein-rich, low-cholesterol dipalmitoyl phosphatidylcholine (DPPC) emulsion particles with well-defined chemical compositions (approximately 88% triolein, 1% cholesterol, 11% diacyl phosphatidylcholine) and particle size distributions (mean diameter, approximately 1000-1100 A) were studied in the absence and presence of apolipoprotein-A1 by a combination of differential scanning and titration calorimetry. The results are compared to egg yolk PC emulsions of similar composition and size. Isothermal titration calorimetry at 30 degrees C was used to saturate the emulsion surface with apo-A1 and rapidly quantitate the binding constants (affinity Ka = 11.1 +/- 3.5 x 10(6) M-1 and capacity N = 1.0 +/- 0.09 apo-A1 per 1000 DPPC) and heats of binding (enthalpy H = -940 +/- 35 kcal mol-1 apo-A1 or -0.92 +/- 0.12 kcal mol-1 DPPC). The entropy of association is -3070 cal deg-1 mol-1 protein or -3 cal deg-1 mol-1 DPPC. Without protein on the surface, the differential scanning calorimetry heating curve of the emulsion showed three endothermic transitions at 24.3 degrees C, 33.0 degrees C, and 40.0 degrees C with a combined enthalpy of 1.53 +/- 0.2 kcal mol-1 DPPC. With apo-A1 on the surface, the heating curve showed the three transitions more clearly, in particular, the second transition became more prominent by significant increases in both the calorimetric and Van't Hoff enthalpies. The combined enthalpy was 2.70 +/- 0.12 kcal mol-1 DPPC and remained constant upon repeated heating and cooling. Indicating that the newly formed DPPC emulsion-Apo-A1 complex is thermally reversible during calorimetry. Thus there is an increase in delta H of 1.17 kcal mol-1 DPPC after apo-A1 is bound, which is roughly balanced by the heat released during binding (-0.92 kcal) of apo-A1. The melting entropy increase, +3.8 cal deg-1 mol-1 DPPC of the three transitions after apo-A1 binds, also roughly balances the entropy (-3 cal deg-1 mol-1 DPPC) of association of apo-A1. These changes indicate that apo-A1 increases the amount of ordered gel-like phase on the surface of DPPC emulsions when added at 30 degrees C. From the stoichiometry of the emulsions we calculate that the mean area of DPPC at the triolein/DPPC interface is 54.5 A2 at 41 degrees C and 54.2 A2 at 30 degrees C. The binding of apo-A1 at 30 degrees C to the emulsion reduces the surface area per DPPC molecule from 54.2 A2 to 50.8 A2. At 30 degrees apo-A1 binds with high affinity and low capacity to the surface of DPPC emulsions and increases the packing density of the lipid domain to which it binds. Apo-A1 was also titrated onto DPPC emulsions at 45 degrees C. This temperature is above the gel liquid crystal transition. No heat was released or adsorbed. Furthermore, egg yolk phosphatidylcholine emulsions of nearly identical composition were also titrated at 30 degrees C with apo-A1 and were euthermic. Association constants were previously measured using a classical centrifugation assay and were used to calculate the entropy of apo-A1 binding (+28 cal deg-1 mol-1 apo-A1). This value indicates that apo-A1 binding to a fluid surface like egg yolk phosphatidylcholine or probably DPPC at 45 degrees C is hydrophobic and is consistent with hydrocarbon lipid or protein moities coming together and excluding water. Thus the binding of apo-A1 to partly crystalline surfaces is entropically negative and increases the order of the already partly ordered phases, whereas binding to liquid surfaces is mainly an entropically driven hydrophobic process.  相似文献   

6.
Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) are the main lipid components of the inner bacterial membrane. A computer model for such a membrane was built of palmitoyloleoyl PE (POPE) and palmitoyloleoyl PG (POPG) in the proportion 3:1, and sodium ions (Na+) to neutralize the net negative charge on each POPG (POPE-POPG bilayer). The bilayer was simulated for 25 ns. A final 10-ns trajectory fragment was used for analyses. In the bilayer interfacial region, POPEs and POPGs interact readily with one another via intermolecular hydrogen (H) bonds and water bridges. POPE is the main H-bond donor in either PEPE or PEPG H-bonds; PGPG H-bonds are rarely formed. Almost all POPEs are H-bonded and/or water bridged to either POPE or POPG but PE-PG links are favored. In effect, the atom packing in the near-the-interface regions of the bilayer core is tight. Na+ does not bind readily to lipids, and interlipid links via Na+ are not numerous. Although POPG and POPE comprise one bilayer, their bilayer properties differ. The average surface area per POPG is larger and the average vertical location of the POPG phosphate group is lower than those of POPE. Also, the alkyl chains of POPG are more ordered and less densely packed than the POPE chains. The main conclusion of this study is that in the PE-PG bilayer PE interacts more strongly with PG than with PE. This is a likely molecular-level event behind a regulating mechanism developed by the bacteria to control its membrane permeability and stability consisting in changes of the relative PG/PE concentration in the membrane.  相似文献   

7.
The influence of cholesterol and POPE on lung surfactant model systems consisting of DPPC/DPPG (80:20) and DPPC/DPPG/surfactant protein C (80:20:0.4) has been investigated. Cholesterol leads to a condensation of the monolayers, whereas the isotherms of model lung surfactant films containing POPE exhibit a slight expansion combined with an increased compressibility at medium surface pressure (10-30 mN/m). An increasing amount of liquid-expanded domains can be visualized by means of fluorescence light microscopy in lung surfactant monolayers after addition of either cholesterol or POPE. At surface pressures of 50 mN/m, protrusions are formed which differ in size and shape as a function of the content of cholesterol or POPE, but only if SP-C is present. Low amounts of cholesterol (10 mol %) lead to an increasing number of protrusions, which also grow in size. This is interpreted as a stabilizing effect of cholesterol on bilayers formed underneath the monolayer. Extreme amounts of cholesterol (30 mol %), however, cause an increased monolayer rigidity, thus preventing reversible multilayer formation. In contrast, POPE, as a nonbilayer lipid thought to stabilize the edges of protrusions, leads to more narrow protrusions. The lateral extension of the protrusions is thereby more influenced than their height.  相似文献   

8.
The thermotropic properties of the bipolar lipids, glycerol dialkylglycerol tetraether (GDGT) and glycerol dialkylnonitol tetraether (GDNT), were determined at different degrees of hydration and in mixtures with dipalmitoylphosphatidylcholine (DPPC). The number of water molecules rendered unfreezable by the GDNT molecule is 10+/-1.5 and that by the GDGT molecule 2.8+/-0.7 or about 1.1-1.5 H2O molecules per OH group. Binding of water molecules causes randomization of the two polar heads from the oriented form prevailing in the dry state. The hydration seems to be a cooperative process extending over a whole lipid domain. DPPC added in small amounts to GDNT interacts preferentially with the nonitol halves of the molecules separating them from the glycerol half molecules. In the cooperative interaction domain each DPPC molecule is surrounded by up to six GDNT molecules. Cooperative domains formed during the interaction of DPPC with GDGT are less pronounced. In both cases they affect the thermotropic properties of the system.  相似文献   

9.
The interaction of the native Alzheimer's peptide C-terminal fragment Abeta (29-42), and two mutants (G33A and G37A) with neutral lipid bilayers made of POPC and POPE in a 9:1 molar ratio was investigated by solid-state NMR. This fragment and the lipid composition were selected because they represent the minimum requirement for the fusogenic activity of the Alzheimer's peptide. The chemical shifts of alanine methyl isotropic carbon were determined by MAS NMR, and they clearly demonstrated that the major form of the peptide equilibrated in membrane is not in a helical conformation. (2)H NMR, performed with acyl chain deuterated POPC, demonstrated that there is no perturbation of the acyl chain's dynamics and of the lipid phase transition temperature. (2)H NMR, performed with alanine methyl-deuterated peptide demonstrated that the peptide itself has a limited mobility below and above the lipid phase transition temperature (molecular order parameter equal to 0.94). MAS (31)P NMR revealed a specific interaction with POPE polar head as seen by the enhancement of POPE phosphorus nuclei T(2) relaxation. All these results are in favor of a beta-sheet oligomeric association of the peptide at the bilayer interface, preferentially recruiting phosphatidyl ethanolamine polar heads.  相似文献   

10.
Madan B  Sharp KA 《Biophysical journal》2001,81(4):1881-1887
The heat capacities of hydration (dCp) of the five nucleic acid bases A, G, C, T, and U, the sugars ribose and deoxyribose, and the phosphate backbone were determined using Monte Carlo simulations and the random network model. Solute-induced changes in the mean length and root mean square angle of hydrogen bonds between hydration shell waters were used to compute dCp for these solutes. For all solutes the dCp is significantly more positive than predicted from accessible surface area (ASA) models of heat capacity. In ASA models, nitrogen, oxygen, and phosphorus atoms are considered as uniformly polar, therefore making a negative contribution to dCp. However, the simulations show that many of these polar atoms are hydrated by water whose hydrogen bonds are less distorted than in bulk, leading to a positive dCp. This is in contrast to the effect of polar groups seen previously in small molecules and amino acids, which increase the water H-bond distortion, giving negative dCp contributions. Our results imply that dCp accompanying DNA dehydration in DNA-ligand and DNA-protein binding reactions may be significantly more negative than previously believed and that dehydration is a significant contributor to the large decrease in heat capacity seen in experiments.  相似文献   

11.
Fluorescein-PE is a fluorescence probe that is used as a membrane label or a sensor of surface associated processes. Fluorescein-PE fluorescence intensity depends not only on bulk pH, but also on the local electrostatic potential, which affects the local membrane interface proton concentration. The pH sensitivity and hydrophilic character of the fluorescein moiety was used to detect conformational changes at the lipid bilayer surface. When located in the dipalmitoylphosphatidylcholine (DPPC) bilayer, probe fluorescence depends on conformational changes that occur during phase transitions. Relative fluorescence intensity changes more at pretransition than at the main phase transition temperature, indicating that interface conformation affects the condition in the vicinity of the membrane. Local electrostatic potential depends on surface charge density, the local dielectric constant, salt concentration and water organisation. Initial increase in fluorescence intensity at temperatures preceding that of pretransition can be explained by the decreased value of the dielectric constant in the lipid polar headgroups region related in turn to decreased water organisation within the membrane interface. The abrupt decrease in fluorescence intensity at temperatures between 25 degrees C and 35 degrees C (DPPC pretransition) is likely to be caused by an increased value of the electrostatic potential, induced by an elevated value of the dielectric constant within the phosphate group region. Further increase in the fluorescence intensity at temperatures above that of the gel-liquid phase transition correlates with the calculated decreased surface electrostatic potential. Above the main phase transition temperature, fluorescence intensity increase at a salt concentration of 140 mM is larger than with 14 mM. This results from a sharp decline of the electrostatic potential induced by the phosphocholine dipole as a function of distance from the membrane surface.  相似文献   

12.
Small-angle neutron scattering (SANS) experiments have been performed on large unilamellar liposomes prepared from 1,2-dilauroylphosphatidylcholine (DLPC), 1,2-dimyristoyl-phosphatidylcholine (DMPC) and 1,2-distearoylphosphatidylcholine (DSPC) in heavy water by extrusion through polycarbonate filters with 500 A pores. The neutron scattering intensity I(Q) in the region of scattering vectors Q corresponding to 0.0015 A(-2) < or = Q(2) < or = 0.0115 A(-2) was fitted using a step function model of bilayer neutron scattering length density and supposing that the liposomes are spherical and have a Gaussian distribution of radii. Using the lipid volumetric data, and supposing that the thickness of bilayer polar region equals to d(H) = 9+/-1 A and the water molecular volume intercalated in the bilayer polar region is the same as in the aqueous bulk aqueous phase, the steric bilayer thickness d(L), the lipid surface area A(L) and the number of water molecules per lipid molecule N intercalated in the bilayer polar region were obtained: d(L) = 41.58+/-1.93 A, A(L) = 57.18+/-1.00 A(2) and N = 6.53+/-1.93 in DLPC at 20 degrees C, d(L) = 44.26+/-1.42 A, A(L) = 60.01+/-0.75 A(2) and N = 7.37+/-1.94 in DMPC at 36 degrees C, and d(L) = 49.77+/-1.52 A, A(L) = 64.78+/-0.46 A(2) and N = 8.67+/-1.97 in DSPC at 60 degrees C. After correcting for area thermal expansivity alpha approximately 0.00417 K(-1), the lipid surface area shows a decrease with the lipid acyl chain length at 60 degrees C: A(L) = 67.56+/-1.18 A(2) in DLPC, A(L) = 66.33+/-0.83 A(2) in DMPC and A(L) = 64.78+/-0.46 A(2) in DSPC. It is also shown that a joint evaluation of SANS and small-angle X-ray scattering on unilamellar liposomes can be used to obtain the value of d(H) and the distance of the lipid phosphate group from the bilayer hydrocarbon region d(H1).  相似文献   

13.
Increasing methylation of the headgroup in DPPE results in an increase of minimum area per molecule in highly compressed monolayers at the air-water interface. The shape of solid domains, as observed by epifluorescence microscopy, also exhibits marked changes upon increasing headgroup methylation. Branching domains are observed in DPPE and DP(Me)PE, whereas U-shaped or round domains are observed in DP(Me)2PE and DPPC under our experimental conditions. The domain shape is determined more by the headgroup methylatin than by the corresponding shift in critical temperatures, as shown by the study of PCs of different acyl chain moieties. In mixed lipid monolayers, PC (phosphatidylcholine) and PE (phosphatidylethanolamine) do not mix ideally, as indicated by the non-linear variation of the average area per molecule with composition, and by distinct domain shapes in LE/LC (liquid expanded/liquid condensed) coexisting phases representing PE-enriched or PC-enriched domains in those mixed monolayers.  相似文献   

14.
The thermotropic phase behavior of aqueous dispersions of dipalmitoylphosphatidylcholine (DPPC) and its 1,2-dialkyl, 1-acyl 2-alkyl and 1-alkyl 2-acyl analogs was examined by differential scanning calorimetry, and the organization of these molecules in those hydrated bilayers was studied by Fourier transform infrared spectroscopy. The calorimetric data indicate that substitution of either or both of the acyl chains of DPPC with the corresponding ether-linked hydrocarbon chain results in relatively small increases in the temperature (< 4 degrees C) and enthalpy (< 1 kcal/mol) of the lipid chain-melting phase transition. The spectroscopic data reveal that replacement of one or both of the ester-linked hydrocarbon chains of DPPC with its ether-linked analog causes structural changes in the bilayer assembly, which result in an increase in the polarity of the local environments of the phosphate headgroups and of the ester carbonyl groups at the bilayer polar/apolar interface. The latter observation is unexpected, given that ester linkages are considered to be intrinsically more polar that ether linkages. This finding cannot be satisfactorily rationalized unless the conformation of the glycerol backbones of the analogs containing ether-linked hydrocarbon chains differs significantly from that of diacyl glycerolipids such as DPPC. A comparison of the alpha-methylene scissoring bands and the methylene wagging band progressions of these lipids with the corresponding absorption bands of specifically chain-perdeuterated analogs of DPPC also supports the conclusion that replacement of the ester-linked hydrocarbon chains of DPPC with the corresponding ether-linked analog induces conformational changes in the lipid glycerol backbone. The suggestion that the conformation of glycerol backbones in the alkyl-acyl and dialkyl derivatives of DPPC differs from that of the naturally occurring 1,2-diacyl glycerolipid suggests that mono- and di-alkyl glycerolipids may not be good models of their diacyl analogs. These results, and previously published evidence that DPPC analogs with ether-linked hydrocarbon chains spontaneously form chain-interdigitated gel phases at low temperatures, clearly indicate that the properties of lipid bilayers can be substantially altered by small changes in the chemical structures of their polar/polar interfaces, and highlight the critical role of the interfacial region as a determinant of the structure and organization of lipid assemblies.  相似文献   

15.
A theoretical model describing the dielectric properties of the lipid membrane-water interface region was developed. The rotating polar head groups (e.g. phosphatidylcholine) were simulated as a collection of interacting dipoles imbedded in a nonhomogeneous dielectric. The interactions between the nearest neighborhood were explicitly taken into account, while the other interactions were evaluated by means of the continuum theories. The values of the dielectric constant, its anisotropy and the spontaneous polarization of the interface were evaluated. As an application, we calculated the energy of interaction between an ion and the membrane polar head group region. The results indicate a small spontaneous polarization of the interface (1-1.7 Debyes per lipid molecule) due to the tilting angle of the choline residue with respect to the membrane surface. This dipolar field partially compensates that of opposite orientation originating from the ester group region, giving calculated overall dipolar potentials in better agreement with the experimental data. Our model suggests also a very strong dielectric anisotropy of the interface region, the component of the dielectric constant perpendicular to the membrane plane being much smaller than the parallel component.  相似文献   

16.
Structural features of protein-nucleic acid recognition sites   总被引:3,自引:0,他引:3  
Nadassy K  Wodak SJ  Janin J 《Biochemistry》1999,38(7):1999-2017
  相似文献   

17.
The fine details of the phase transition of dipalmitoylphosphoglycerocholine (DPPC) monolayers at air/NaCl solution interfaces were investigated at 21 +/- 1 degrees C by using the fluorescence after photobleaching technique employing 12-(9-anthroyloxy)stearic acid as fluorescent probe. The mode of compression of the monolayer (i.e., continuous compression or successive additions of the lipid at fixed area) together with the ionic strength of the subphase (0.1 or 1.0 M NaCl) were particularly studied. The photobleaching results show that the lateral diffusion coefficient of the probe molecules decreases drastically within the liquid-condensed phase, i.e., from the end of the liquid-expanded-liquid-condensed phase transition to the beginning of the solid-condensed phase. The molecular areas at which the phase transition occurs under the various experimental conditions, together with a parallel analysis of the hydration states and related molecular areas of the DPPC molecules in multilayers, strongly suggest that the steric hindrance associated with the hydration water of the polar head of DPPC molecules in the monolayer is responsible for the drastic decrease in diffusion coefficient in the liquid-condensed phase. Furthermore, the fluorescence characteristics of the probe molecules also show that, together with the aforementioned reorganization of the polar head, a structural reorganization of the aliphatic chains of the lipid molecules also takes place in the liquid-condensed phase. The liquid-condensed phase therefore appears as a transition region from liquid to solid phases in which the lipid molecules present a significant decrease in their lateral diffusion related to a structural reorganization of both their polar and aliphatic components.  相似文献   

18.
Structure of Sphingomyelin Bilayers: A Simulation Study   总被引:3,自引:1,他引:2       下载免费PDF全文
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC.  相似文献   

19.
Recently, evidence for cholesterol and phosphatidylcholine (PC) molecules to adapt superlattice arrangements in fluid lipid bilayers has been presented. Whether superlattice arrangements exist in other biologically relevant lipid membranes, such as phosphatidylethanolamine (PE)/PC, is still speculative. In this study, we have examined the physical properties of fluid 1-palmitoyl-2-oleoyl-PC (POPC) and 1-palmitoyl-2-oleoyl-PE (POPE) binary mixtures as a function of the POPE mole fraction (X(PE)) using fluorescence and Fourier transform infrared spectroscopy. At 30 degrees C, i.e., above the Tm of POPE and POPC, deviations, or dips, as well as local data scattering in the excimer-to-monomer fluorescence intensity ratio of intramolecular excimer forming dipyrenylphosphatidylcholine probe in POPE/POPC mixtures were detected at X(PE) approximately 0.04, 0.11, 0.16, 0.26, 0.33, 0.51, 0.66, 0.75, 0.82, 0.91, and 0.94. The above critical values of X(PE) coincide (within +/-0.03) with the critical mole fractions X(HX,PE) or X(R,PE) predicted by a headgroup superlattice model, which assumes that the lipid headgroups form hexagonal or rectangular superlattice, respectively, in the bilayer. Other spectroscopic data, generalized polarization of Laurdan and infrared carbonyl and phosphate stretching frequency, were also collected. Similar agreements between some of the observed critical values of X(PE) from these data and the X(HX,PE) or X(R,PE) values were also found. However, all techniques yielded critical values of X(PE) (e.g., 0.42 and 0.58) that cannot be explained by the present headgroup superlattice model. The effective cross-sectional area of the PE headgroup is smaller than that of the acyl chains. Hence, the relief of "packing frustration" of PE in the presence of PC (larger headgroup than PE) may be one of the major mechanisms in driving the PE and PC components to superlattice-like lateral distributions in the bilayer. We propose that headgroup superlattices may play a significant role in the regulation of membrane lipid compositions in cells.  相似文献   

20.
The interaction of four long-chain nicotinates, compounds that are of interest as potential chemopreventive agents, with dipalmitoylphosphatidylcholine (DPPC) was investigated in monolayers at the air-water interface and in fully hydrated bilayers. For the monolayer studies, the compression isotherms of mixtures of the respective nicotinate with DPPC were recorded at various compositions on a hydrochloric acid subphase (pH 1.9-2.1, 37 +/- 2 degrees C). The headgroup of the nicotinates (24-29 A2/molecule) is larger than that of the hydrophobic tail (20 A2/molecule). The pure nicotinates exhibit a temperature- and chain length-dependent transition from an expanded to a condensed phase. Analysis of the concentration dependence of the average molecular area at constant film pressure and the concentration dependence of the breakpoint of the phase transition from the expanded to the condensed state suggests that all four DPPC-nicotinate mixtures are partially miscible at the air-water interface. Although a complex phase behavior with several phase transitions was observed, differential scanning calorimetry studies of the four mixtures are also indicative of the partial miscibility of DPPC and the respective nicotinate. Overall, the complex phase behavior most likely results from the head-tail mismatch of the nicotinates and the geometric packing constraints in the two-component lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号