首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 A protocol was developed for establishing embryogenic suspension cultures from in vitro-grown, thin shoot-tip sections of the banana cultivar Rasthali. The best medium for callus induction was an MS-based medium supplemented with 2 mg/l 2,4-D and 0.2 mg/l zeatin. The callus was transferred to liquid medium to establish embryogenic cell suspensions. These cultures were subsequently used for Agrobacterium-mediated transformation. The Agrobacterium tumefaciens strain EHA105 containing the binary vector pVGSUN with the als gene as a selectable marker and an intron-containing the gusA gene as a reporter gene was used for transformations. The herbicide Glean was used as a selection agent. Two hundred putative transformants were recovered, of which a set of 16 was tested by histochemical analysis for GUS expression and by Southern blot analysis with a probe for the gusA gene. The plants were positive for GUS expression and integration of the gusA gene. Two of the transformants were grown to maturity under greenhouse conditions. Bananas were harvested to test GUS expression by histochemical analysis. The fruit from both transgenics tested positive for GUS expression. Received: 22 February 2000 / Revision received: 2 October 2000 / Accepted: 5 October 2000  相似文献   

2.
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.  相似文献   

3.
4.
The β‐glucuronidase (GUS) gene is a widely used reporter gene in transgenic research. This study shows that although histochemical localisation of GUS activity may be very specific, differences in incubation conditions and tissue status can lead to artificial localisations that are independent of gene activity. The objective of the current studies was to evaluate the factors that affect the in‐situ localisation of β‐glucuronidase using transgenic tobacco plants as model tissues. The aspects considered include tissue size as well as and the addition of surfactants, vacuum infiltration and chemical fixatives. Transgenic tobacco plants exhibited variable staining patterns dependent on the size of tissue assayed and the treatments that affected the infiltration of substrate. A gradient of blue staining was observed in larger tissue pieces (10 mm2), where staining in central areas was light blue in contrast to edges, which stained deep indigo. More intense staining was associated with peripheral cell layers and regions adjacent to leaf veins. Thinner tissue strips incubated under similar conditions exhibited intense and even X‐Gluc staining. Addition of Triton X‐100 (1%) surfactant and vacuum infiltration (2 min) produced considerably quicker and more uniform staining (intense and consistent indigo blue colour) of the examined tissue after a 4 to 6‐h incubation. Chemical fixation of tissues before GUS assay resulted in quantitative and histochemical differences in enzyme activity that were dependent on the fixative type and duration. Quantitative measurements using the MUG fluorometric assay showed that Histochoice? provided the highest retention of GUS activity, maintaining more than 80 and 50% of the activity after fixation for 15 and 30 min, respectively. Activity in decreasing order was obtained with paraformaldehyde, glutaraldehyde, ethanol and FAA. GUS activity was affected not only by the type of fixative, but also by the duration of fixation with longer fixation producing lower GUS activity. From the experiments performed it can be concluded that those treatments that enhance substrate penetration, i.e., the addition of surfactant and vacuum infiltration, improve the consistency and speed of X‐Gluc staining.  相似文献   

5.
The promoter of the protoplast auxin-regulated (parAt) gene of tobacco, which is expressed throughout the tissues of hairy roots, can be useful for developing a bioconversion system with hairy roots. The parAt gene is shown to be expressed in roots of seedlings and in those of mature tobacco plants. The 5-upstream region of parAt was fused to the coding sequence of the ß-d-glucuronidase (GUS) gene to generate the parAt-GUS fusion gene, which was introduced into the binary vector for Agrobacterium. Hairy roots that carried the fusion gene were obtained (parAt-GUS/hairy root) by infecting tobacco plants with A. rhizogenes carrying the fusion gene in the binary vector. Biochemical analysis with 4-methylumbelliferyl ß-d-glucuronide (MUG), a substrate for GUS, showed that the level of GUS activity was tenfold higher than that of hairy roots carrying the reporter GUS gene, which is linked to the cauliflower mosaic virus 35S RNA promoter (35S-GUS/hairy root). We also examined the rate of conversion of MUG to 4-methylumbel-liferone (MU) by hairy roots when MUG was added to the culture medium of the parAt-GUS/hairy roots. The hairy roots converted MUG to MU at more than ten times as high efficiency as the 35S-GUS/hairy roots. In addition to tobacco, the parAt-GUS gene was similarly expressed in hairy roots from Atropa and Arabidopsis. These results suggest that the promoter of the parAt gene is a useful tool for conversion of various metabolites by hairy root cultures. Correspondence to: Y. Machida  相似文献   

6.
We have detected a plant β-glucuronidase activity, present in several tissues and organs of plant species belonging to different families. The fluorimetric β-glucuronidase assay was used to partially characterize this activity in post-ribosomal supernatants of tobacco leaves. The tobacco activity is very stable at low temperatures, but quickly inactivated above 45°C. It is relatively resistant to proteases and insensitive to-SH group reagents and to ionic conditions. It does not require, nor is it inhibited by, divalent cations. Although these properties are shared by theEscherichia coli β-glucuronidase, the two activities can be distinguished by: (i) their different sensitivity to the specific inhibitor saccharic acid-1,4-lactone; (ii) their different thermal stability (iii) their different pH optima (5.0 for the plant activity and close to neutral for the bacterial enzyme). Therefore, under appropriate experimental conditions, it should be possible to assay theE. coli β-glucuronidase in transgenic plants without interference from the endogenous plant activity.  相似文献   

7.
A chimeric gene consisting of the -glucuronidase (gusA) reporter gene under the control of the metallothionein-like promoter cgMT1 from the tropical tree Casuarina glauca was introduced into Nicotiana tabacum via Agrobacterium tumefaciens and into Oryza sativa by particle bombardment. The strongest histochemical staining for GUS activity was observed in the root system of the transgenic plants, and especially in lateral roots. In contrast, a relatively low level of reporter gene expression was seen in the aerial tissues and GUS staining was located mainly in the plant vascular system. The average ratio of GUS activity between root and leaf was found to be 13:1 in tobacco and 1.5:1 in rice. The pattern of cgMT1 promoter activity in floral organs was found to be different in tobacco and rice. High levels of gusA gene expression were detected in the ovules, pollen grains and tapetum, whereas in rice PcgMT1 directs expression to the vascular system of the floral organs. These results suggest that PcgMT1 is potentially useful in molecular breeding to express genes of interest whose products are preferentially needed in roots.  相似文献   

8.
 Synthesis of five different Sudan-β-d-glucuronides (I, II, III, IV, and RedB) was performed by condensation of a set of red Sudan diazo dyes with methyl (1-deoxy-2,3,4-tri-O-acetyl-1-trichloroacetimidoyl-α-d-glucopyran)uronate. After the acid and alcohol groups had been deprotected, the resulting compounds were used for histochemical localization of β-glucuronidase (GUS) activity in transgenic plants (Petunia hybrida, Arabidopsis thaliana, and Nicotiana tabacum) that contained the GUS reporter system. Because the cleavage of the β-glucuronide results in the liberation of an insoluble Sudan dye, Sudan substrates gave no diffusion artifacts as described for the commonly used 5-bromo-4-chloro-3-indolyl-β-d-glucuronide (X-gluc). A comparison of assays with different Sudan glucuronides and X-gluc demonstrated that the SudanIV variant is a valuable glucuronide substrate for the precise histochemical localization of GUS activity in transgenic plants. Received: 9 December 1999 / Revision received: 25 January 2000 / Accepted: 26 January 2000  相似文献   

9.
Biotransformation of ursolic acid by the filamentous fungus Syncephalastrum racemosum (Cohn) Schroter AS 3.264 yielded five metabolites. Their structures were identified as 3β,21β-dihydroxy-urs-11-en-28-oic acid-13-lactone, 3β,7β,21β-trihydroxy-urs-11-en-28-oic acid-13-lactone, 1β,3β-dihydroxy-urs-12-en-21-one-28-oic acid, 1β,3β,21β-trihydroxy-urs-12-en-28-oic acid and 11,26-epoxy-3β,21β-dihydroxy-urs-12-en-28-oic acid based on NMR and MS spectroscopic analyses. The condensation reactions to form 28-oic acid-13-lactone ring and 11,26-epoxy ring are not frequently seen for the biotransformation of triterpenoids. One compound showed moderate inhibitory activity against protein tyrosine phosphatase 1B (PTP1B).  相似文献   

10.
Herbicide-resistant sweet potato plants were produced through biolistics of embryogenic calli derived from shoot apical meristems. Plant materials were bombarded with the vectors containing the β-glucuronidase gene (gusA) and the herbicide-resistant gene (bar). Selection was carried out using phosphinothricin (PPT). Transformants were screened by the histochemical GUS and Chlorophenol Red assays. PCR and Southern-blot analyses indicated the presence of introduced bar gene in the genomic DNA of the transgenic plants. When sprayed with Basta, the transgenic sweet potato plants was tolerant to the herbicide. Hence, we report successful transformation of the bar gene conferring herbicide resistance to sweet potato.  相似文献   

11.
《Plant science》2001,161(2):239-247
Agrobacterium-mediated transformation of Vigna radiata L. Wilczek has been achieved. Hypocotyl and primary leaves excised from 2-day-old in-vitro grown seedlings produced transgenic calli on B5 basal medium supplemented with 5×10−6 M BAP, 2.5×10−6 M each of 2,4-D and NAA and 50 mg l−1 kanamycin after co-cultivation with Agrobacterium tumefaciens strains, LBA4404 (pTOK233), EHA105 (pBin9GusInt) and C58C1 (pIG121Hm) all containing β-glucuronidase (gusA) and neomycin phosphotransferase II (nptII) marker genes. Transformed calli were found resistant to kanamycin up to 1000 mg.l−1. Gene expression of kanamycin resistance (nptII) and gusA in transformed calli was demonstrated by nptII assay and GUS histochemical analysis, respectively. Stable integration of T-DNA into the genome of transformed calli of mungbean was confirmed by Southern blot analysis. Transgenic calli could not regenerate shoots on B5 or B5 containing different cytokinins or auxins alone or in combination. However, for the first time, transformed green shoots showing strong GUS activity were regenerated directly from cotyledonary node explants cultured after co-cultivation with LBA4404 (pTOK233) on B5 medium containing 6-benzylaminopurine (5×10−7 M) and 75 mg l−1 kanamycin. The putative transformed shoots were rooted on B5+indole-3-butyric acid (5×10−6 M) within 10–14 days and resulted plantlets subsequently developed flowers and pods with viable seeds in vitro after 20 days of root induction. The stamens, pollen grains and T0 seeds showed GUS activity. Molecular analysis of putative transformed plants revealed the integration and expression of transgenes in T0 plants and their seeds.  相似文献   

12.
Kernel culture was assessed for evaluating novel gene expression in developing maize (Zea mays L.) seeds by comparing the transient expression of maize ubiquitin (Ubi-1) promoter-driven β-glucuronidase (GUS) delivered by particle bombardment in kernels grown in culture with those grown in planta. With kernels from either source, GUS expression, as determined by histochemical staining, was widespread in young, actively growing kernels, but it diminished with kernel age and by 25 days after pollination was found only in the embryo. Transient expression of Ubi-1 in kernels grown in vitro was not affected by wounding, ethylene treatment, pathogen invasion, or heat shock. In contrast, the plant hormones indole-3-acetic acid and kinetin both stimulated transient Ubi-1 expression in the endosperm, particularly at the periphery. Transient gene expression in developing maize seeds grown in vitro should allow for facile and rapid evaluation of the tissue-specificity and environmental responses of novel gene constructs in developing maize seeds. Received: 31 July 1997 / Revision received: 13 October 1997 / Accepted: 31 October 1997  相似文献   

13.
Two furanoditerpenes, 2α,3α-epoxy-2,3,7,8α-tetrahydropenianthic acid methyl ester (1) and 2α,3α-epoxy-2,3-dihydropenianthic acid methyl ester (2) were isolated and identified from the root of Arcangelisia flava (L.) Merr. The configuration of 1 was determined by X-ray crystallographic analysis and two-dimensional NMR. Fibraurin (3), fibleucin (4), 2β, 3α-dihydroxy-2,3,7,8α-tetrahydropenianthic acid-2,17-lactone (5), p-hydroxybenzaldehyde and vanillin were also isolated and identified by NMR and EI-MS or FAB-MS. The 2β, 3α-dihydroxy-2,3,7,8α-tetrahydropenianthic acid-2,17-lactone (5) showed the highest antifungal activity of the isolated five furanoditerpenes against a white-rot fungus (Trametes versicolor) and a brown-rot fungus (Fomitopsis palustris).  相似文献   

14.
The tissue-specificity of the sugarcane bacilliform virus (SCBV) promoter was investigated in oat, barley, and wheat to determine whether its expression pattern in one species was predictive of promoter specificity in the other closely related Gramineae species. Progeny of transgenic plants produced using constructs containing the SCBV promoter driving gusA were sampled at different stages of plant development and stained for GUS activity using a histochemical assay. Overall, the GUS staining patterns were most similar between oat and barley. In all three species, similar GUS staining patterns were observed in mature endosperms, leaves, and floral bracts of developing infloresences. No GUS staining was detected in oat embryos whereas the entire barley embryo was stained, and GUS staining was confined to the scutellum of wheat embryos. Oat and barley stems exhibited GUS staining whereas no GUS staining was observed in stems of the transgenic wheat plants. The SCBV promoter conferred strong GUS staining intensity in most tissues of oat and barley but was generally weaker in wheat. These differences in SCBV promoter specificity indicate that promoter evaluation should be conducted in the target species of interest rather than by extrapolation from expression patterns in other species.  相似文献   

15.
Two β-galaclosidases (β-Galase-I and -II, EC 3.2.1.23) and two α-l -arabinofuranosidases (α-l -Arafase-I and -II. EC 3.2.1.55). were purified from mesophyll tissues of spinach (Spinacia oleracea L.), using chromatography on DEAE-cellulose, lactose-conjugated Sepharose CL-4B, and Sephadex G-100, or on hydroxylapatite and Sephadex G-150. The apparent molecular mass (Mr) of β-Galase-I and -II, respectively, were estimated to be 38 000 and 58 000 on SDS-PAGE and 64 000 and 60 000 on gel-permeation chromatography, indicating that the former was a dimeric protein. The isoelectric points of β-Galase-I and -II were 6.9 and 5.2, respectively. Both enzymes hydrolyzed maximally p-nitrophenyl (PNP) β-galactoside at pH 4.3, and were activated about 2-fold in the presence of BSA (100 μg ml?1). The activity of both enzymes was inhibited strongly by heavy metal ions and p-chloromercuriberszoate (p-CMB). d -Galactono-(1→4)-lactone and d -galactal served as potent competitive inhibitors for the enzymes. β-Galase-I and -II could be distinguished from each other in their relative rates and kinetic properties in the hydrolysis of aryl β-galactosides as well as of lactose and galacto-oligosaccharides. In particular. β-Galase-I exhibited a preferential exowise cleavage of β-1,6-galactotriose and β-1.3-galactan. α-l -Arafase-l (Mr 118000) and -II (M, 68 000) were optimally active on PNP α-l -arabinofuranoside at pH 4.8 and gave Km values of 1.2 and 2.2 mM. respectively. l -Arabino-(1 → 4)-lactone. Ag+, and SDS acted as inhibitors for the isozymes. α-l Arafase-I was characterized by its activity to hydrolyze PNP β-d -xylopyranoside besides PNP α-l -arabinofuranoside. inhibition by d -xylose and d -glucono-(1 → 5)-lactone. and less sensitivity to Hg2+. Cu2+, and p-CMB. Sugar beet arabinan was hydrolyzed rapidly by α-l Arafase-II at one-half the rate for PNP α-l arabinofuranoside, while the polysaccharide was less susceptible to α-l Arafase-I. A spinach leaf arabinogalactan-protein was practically resistant to the action of β-Galases, but its susceptibility to the enzymes increased remarkably after prior hydrolysis with α-l Arafase-Il.  相似文献   

16.
17.
The objective of this study was to determine the effect of short-term (4 days) and long-term (8 days) heat stress (35°C) on sink activity of maize (Zea mays L.) kernels. Beginning at 3 days after pollination (DAP) kernels were grown in vitro at 25°C and 24 h later were transferred to 35°C for either 4 or 8 days. Each treatment had a control that was maintained continously at 25°C. Two experiments were designed to examine the uptake and distribution of 14C among hexoses, sucrose and starch in the pedicel placento-chalazal (pedicel/p-c). endosperm, and pericarp tissues of kernels exposed to heat stress for 4 or 8 days. Kernels cultured in vitro were placed in 14C-sucrose medium either during the period of heat stress (experiment 1; 5 to 13 DAP) or immediately following heat-stress treatments (experiment 2; 10 to 22 DAP). In both experiments no significant effect of heat stress was observed on the total radioactivity accumulated in the kernels until about 17 DAP, after which heat-stressed kernels accumulated less 14C than the control. During the linear fill period, the endosperm of kernels exposed to heat stress accumulated more radioactivity associated with hexoses and sucrose and less radioactivity incorporated into starch, as compared to the control. Kernels heat stressed for 4 days showed a partial recovery in starch synthesis by 21 DAP, but to levels of only 65% of that of the control. Kernels heat stressed for 8 days did not recover. When 14C-sucrose was supplied during the heat stress period (5–13 DAP). kernels from all treatments accumulated more hexoses that sucrose in the pedicel/p-c. However, during the period following heat stress (10–22 DAP), pedicel/p-c accumulated sucrose, but only in kernels exposed to long-term heat stress. Soluble invertase activity was inhibited by both short-term and long-term heat stress, whereas the activity of insoluble invertase was affected only by long-term heat stress. These results support the hypothesis that the disruption of kernel growth and more particularly endosperm starch biosynthesis, in response to heat stress, is mainly associated with changes in carbon utilization and partitioning between the different nonstructural carbohydrates within the endosperm rather than with a limitation in carbon supply to the kernel. Therefore, the effect on sink activity does not seem to be attributable to a thermal disruption of kernel uptake of sugars, but rather it is a consequence of heat perturbation of other physiological processes such as endosperm sugar metabolism and starch biosynthesis.  相似文献   

18.
Twelve independent lines were transformed by particle bombardment of soybean embryogenic suspension cultures with the tobacco anthranilate synthase (ASA2) promoter driving the uidA (beta-glucuronidase, GUS) reporter gene. ASA2 appears to be expressed in a tissue culture specific manner in tobacco (Song H-S, Brotherton JE, Gonzales RA, Widholm JM. Tissue culture specific expression of a naturally occurring tobacco feedback-insensitive anthranilate synthase. Plant Physiol 1998;117:533-43). The transgenic lines also contained the hygromycin phosphotransferase (hpt) gene and were selected using hygromycin. All the selected cultures or the embryos that were induced from these cultures expressed GUS measured histochemically. However, no histochemical GUS expression could be found in leaves, stems, roots, pods and root nodules of the plants formed from the embryos and their progeny. Pollen from some of the plants and immature and mature seeds and embryogenic cultures initiated from immature cotyledons did show GUS activity. Quantitative 4-methylumbelliferyl-glucuronide (MUG) assays of the GUS activity in various tissues showed that all with observable histochemical GUS activity contained easily measurable activities and leaves and stems that showed no observable histochemical GUS staining did contain very low but measurable MUG activity above that of the untransformed control but orders of magnitude lower than the constitutive 35S-uidA controls used. Low but clearly above background levels of boiling sensitive GUS activity could be observed in the untransformed control immature seeds and embryogenic cultures using the MUG assay. Thus in soybean the ASA2 promoter drives readily observable GUS expression in tissue cultures, pollen and seeds, with only extremely low levels seen in vegetative tissues of the plants. The ASA2 driven expression seen in mature seed was, however, much lower than that seen with the constitutive 35S promoter; less than 2% in seed coats and less than 0.13% in cotyledons and embryo axes. The predominate tissue culture specific expression pattern of the ASA2 promoter may be useful for genetic transformation of crops.  相似文献   

19.
A simple and reproducible Agrobacterium-mediated transformation protocol for a recalcitrant legume plant, lentil (Lens culinaris M.) is reported. Application of wounding treatments and efficiencies of three Agrobacterium tumefaciens strains, EHA105, C58C1, and KYRT1 were compared for T-DNA delivery into lentil cotyledonary node tissues. KYRT1 was found to be on average 2.8-fold more efficient than both EHA105 and C58C1 for producing transient β-glucuronidase (GUS) gene (gus) expression on cotyledonary petioles. Wounding of the explants, use of an optimized transformation protocol with the application of acetosyringone and vacuum infiltration treatments in addition to the application of a gradually intensifying selection regime played significant roles in enhancing transformation frequency. Lentil explants were transformed by inoculation with Agrobacterium tumefaciens strain, KYRT1 harboring a binary vector pTJK136 that carried neomycin phosphotransferase gene (npt-II) and an intron containing gusA gene on its T-DNA region. GUS-positive shoots were micrografted on lentil rootstocks. Transgenic lentil plants were produced with an overall transformation frequency of 2.3%. The presence of the transgene in the lentil genome was confirmed by GUS assay, PCR, RT-PCR and Southern hybridization. The transgenic shoots grafted on rootstocks were successfully transferred to soil and grown to maturity in the greenhouse. GUS activity was detected in vegetative and reproductive organs of T0, T1, T2 and T3 plants. PCR assays of T1, T2 and T3 progenies confirmed the stable transmission of the transgene to the next generations.  相似文献   

20.
Summary A biolistic particle gun was used to deliver genetic material into intact yam cells. Cultured suspension cells of D. alata were bombarded with microprojectiles coated with pBI221.2 DNA and histochemical assays were carried out to show transient GUS expression in bombarded cells. Stably transformed D. alata cells were recovered from cultured cells after bombardment with microprojectiles coated with pRT99gus harbouring both the nptII and uidA genes. Bombarded cells were selected on a medium containing geneticin (G418). Two months after bombardment, calli resistant to G418 were assayed for GUS expression. There was a 100% correlation between resistance to G418 and GUS expression. From these calli, four cell lines were established and GUS activity in each line was determined fluorometrically. The use of a specific GUS inhibitor showed that the GUS activity was due to the introduced uidA gene rather than to any intrinsic GUS-like activity originating from the plant. Incorporation of the introduced DNA into the plant genomic DNA was confirmed by Southern analysis.Abbreviations GUS -glucuronidase - MU 4-Methylumbelliferone - MUG 4-Methylumbelliferyl--D-glucuronide - PVP Polyvinylpyrrolidone - SDS Sodium dodecyl sulphate - TAE Tris-acetate-EDTA buffer - X-Gluc 5-Bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号