首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium and calmodulin (CaM) play an important role in gravity signal transduction. However, the molecular and biochemical mechanisms involved in gravity signal transduction are not clearly understood. It is becoming evident that hydrogen peroxide is involved in gravity-induced response. Recent results indicate that Ca 2+/CaM is involved in hydrogen peroxide homeostasis by regulating catalase activity in plants (Yang and Poovaiah, 2002). It is well established that auxin controls differential growth during gravitropic bending. Results indicated that an auxin-responsive gene family (SAURs) encodes for Ca 2+ /CaM-binding proteins (Yang and Poovaiah, 2000a). To investigate the effects of gravity on the expression of genes involved in Ca 2+/CaM-mediated signaling, Arabidopsis and corn seedlings were subjected to simulated microgravity using the Random Positioning Machine (RPM), and hypergravity using the MidiCAR centrifuge. The changes in mRNA levels were studied. Selective and significant differences in gene expression were observed in simulated microgravity- and hypergravity- treated plants. The relevance of these genes in gravity signal perception and transduction is discussed.  相似文献   

2.
White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.  相似文献   

3.
4.
The starch-statolith theory of gravity reception has been tested with a mutant of Arabidopsis thaliana (L.) Heynh. which, lacking plastid phosphoglucomutase (EC 2.7.5.1) activity, does not synthesize starch. The hypocotyls and seedling roots of the mutant were examined by light and electron microscopy to confirm that they did not contain starch. In upright wild-type (WT) seedlings, starch-filled plastids in the starch sheath of the hypocotyl and in three of the five columellar layers of the root cap were piled on the cell floors, and sedimented to the ceilings when the plants were inverted. However, starchless plastids of the mutant were not significantly sedimented in these cells in either upright or inverted seedlings. Gravitropism of light-grown seedling roots was vigorous: e.g., 10o curvature developed in mutants rotated on a clinostat following a 5 min induction at 1 · g, compared with 14o in the WT. Curvatures induced during intervals from 2.5 to 30 min were 70% as great in the mutant as the WT. Thus under these conditions the presence of starch and the sedimentation of plastids are unnecessary for reception of gravity by Arabidopsis roots. Gravitropism by hypocotyls of light-grown seedlings was less vigorous than that by roots, but the mutant hypocotyls exhibited an average of 70–80% as much curvature as the WT. Roots and hypocotyls of etiolated seedlings and flower stalks of mature plants were also gravitropic, although in these cases the mutant was generally less closely comparable to the WT. Thus, starch is also unnecessary for gravity reception in these tissues.Abbreviations PAR photosynthetically active radiation - PAS periodic acid-Schiff's reagent - PGM phosphoglucomutase - WT wild-type  相似文献   

5.
重力对地球上生物的生长、发育、代谢及繁殖等具有重要影响.植物细胞的重力敏感性已被众多研究所证明,在空间微重力环境或地面模拟微重力环境下,植物表现特殊的微重力反应.微重力或模拟微重力会对植物体生长产生一系列的影响.综述微重力及模拟微重力对植物生长的影响,并对近期这一领域的研究进行了概括.  相似文献   

6.
Seedlings of Cucurbitaceae plants form a protuberance, termed peg, on the transition zone between hypocotyl and root. Our spaceflight experiment verified that the lateral positioning of a peg in cucumber seedlings is modified by gravity. It has been suggested that auxin plays an important role in the gravity controlled positioning of a peg on the ground. Furthermore, cucumber seedlings grown in microgravity developed a number of the lateral roots that grew towards the water containing substrate in the culture vessel, whereas on the ground they oriented perpendicular to the primary root growing down. The response of the lateral roots in microgravity was successfully mimicked by clinorotation of cucumber seedlings on the three dimensional clinostat. However, this bending response of the lateral roots was observed only in an aeroponic culture of the seedlings but not in solid medium. We considered the response of the lateral roots in microgravity and on clinostat as positive hydrotropism that could easily be interfered by gravitropism on the ground. This system with cucumber seedlings is thus a useful model of spaceflight experiment for the study of the gravimorphogenesis, root hydrotropism and their interaction.  相似文献   

7.
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.  相似文献   

8.
The "starch‐statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground‐based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS‐81. Seedlings of wild‐type (WT) Arabidopsis , two reduced‐starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight, hypocotyls of WT seedlings responded to a unilateral 60‐min stimulus provided by a 1‐ g centrifuge while those of the starch‐deficient strains did not. Thus, the strain with the greatest amount of starch responded to the stimulus given in‐flight, and, therefore, these data support the starch‐statolith model for gravity sensing.  相似文献   

9.
In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be gravity-dependent and has become a model system for plant-gravity response. Peg development requires rapid cell expansion, a process thought to be catalyzed by α -expansins, and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new α -expansin cDNAs from cucumber seedlings ( Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two α -expansins ( CsExp3 and CsExp4 ) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g ). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g , while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g ) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4 , and the clinostat did not simulate the microgravity environment well.  相似文献   

10.
In STS-95 space experiments we have demonstrated that microgravity conditions resulted in automorphosis in etiolated pea (Pisum sativum L. cv. Alaska) seedlings (Ueda et al. 1999). Automorphosis-like growth and development in etiolated pea seedlings were also induced under simulated microgravity conditions on a 3-dimensional (3-D) clinostat, epicotyls being the most oriented toward the direction far from the cotyledons. Detail analysis of epicotyl bending revealed that within 36 h after watering, no significant difference in growth direction of epicotyls was observed in between seedlings grown on the 3-D clinostat and under 1 g conditions, differential growth near the cotyledonary node resulting in epicotyl bending of ca. 45 degrees toward the direction far from the cotyledons. Thereafter epicotyls continued to grow almost straightly keeping this orientation on the 3-D clinostat. On the other hand, the growth direction in etiolated seedlings changed to antigravity direction by negative gravitropic response under 1 g conditions. Automorphological epicotyl bending was also phenocopied by the application of auxin polar transport inhibitors such as 9-hydroxyfluorene-9-carboxylic acid, N-(1-naphtyl)phthalamic acid and 2,3,5-triiodobenzoic acid. These results together with the fact that auxin polar transport activity in etiolated pea epicotyls was substantially reduced in space suggested that reduced auxin polar transport is closely related to automorphosis. Strenuous efforts to learn how gravity contributes to the auxin polar transport in etiolated pea epicotyls in molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin-efflux and influx carrier proteins, respectively. Based on the results of these gene expression under simulated microgravity conditions, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.  相似文献   

11.
Morphogenesis in cucumber seedlings is negatively controlled by gravity   总被引:4,自引:0,他引:4  
 Seedlings of most cucurbitaceous plants develop a peg (protuberance caused by cell outgrowth) on the transition zone between the hypocotyl and root. The peg is necessary for removing the seed coat after germination. In our spaceflight experiments on the STS-95 space shuttle, Discovery, we found that cucumber (Cucumis sativus L.) seedlings grown under microgravity conditions developed two pegs symmetrically at the transition zone. Thus, cucumber seedlings potentially develop two pegs and do not require gravity for peg formation itself, but on the ground the development of one peg is suppressed in response to gravity. This may be considered as negative control of morphogenesis by gravity. Received: 17 August 1999 / Accepted: 4 October 1999  相似文献   

12.
Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.  相似文献   

13.
Kiss JZ  Millar KD  Edelmann RE 《Planta》2012,236(2):635-645
While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions.  相似文献   

14.
The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F μg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants. Received: 12 February 1999 / Accepted: 9 March 1999  相似文献   

15.
Acetylcholinesterase (AChE) activity has previously been studied by this laboratory and shown to occur at the interface between the stele and cortex of the mesocotyl of maize (Zea mays L.) seedlings. In this work we studied the distribution of AChE activity in 5-d-old maize seedlings following a gravity stimulus. After the stimulus, we found an asymmetric distribution of the enzyme in the coleoptile, the coleoptile node, and the mesocotyl of the stimulated seedlings using both histochemical and colorimetric methods for measuring the hydrolysis of acetylthiocholine. The hydrolytic capability of the esterase was greater on the lower side of the horizontally placed seedlings. Using the histochemical method, we localized the hydrolytic capability in the cortical cells around the vascular stele of the tissues. The hydrolytic activity was inhibited 80 to 90% by neostigmine, an inhibitor of AChE. When neostigmine was applied to the corn kernel, the gravity response of the seedling was inhibited and no enzyme-positive spots appeared in the gravity-stimulated seedlings. We believe these results indicate a role for AChE in the gravity response of maize seedlings.  相似文献   

16.
17.
Abstract. The rate of curvature of etiolated cress ( Lepi-dium sativum L. ) hypocotyls in response to gravity (negative geotropism) was retarded by red or blue light; far-red irradiation was without effect. The timing of the irradiation period in relation to the presentation for geostimulus markedly affected the response. When seedlings were irradiated during the 1–2 h period of geostimulus, blue light was more effective than red at retarding curvature; when seedlings were irradiated prior to geostimulus, only red light affected geocurvature. These results are interpreted as a further example of the kinetically distinct effects of red and blue light on hypocotyl development. Blue light elicited a rapid, immediate response effective only during the period of irradiation; red light induced a response characterized by a lag period and persistence in subsequent darkness. Etiolated mustard seedlings showed similar responses to light and gravity. The results are discussed in relation to the possibility that two photosystems operate in hypocotyl growth.  相似文献   

18.
19.
We review the graviresponse under true and simulated microgravity conditions on a clinostat in higher plants, and its regulation in molecular bases, especially on the aspect of auxin polar transport in etiolated pea (Pisum sativum L. cv. Alaska) seedlings which were the plant materials subjected to STS-95 space experiments. True and simulated microgravity conditions substantially affected growth and development in etiolated pea seedlings, especially the direction of growth of stems and roots, resulting in automorphosis. In etiolated pea seedlings grown in space, epicotyls were the most oriented toward the direction far from the cotyledons, and roots grew toward the aerial space of Plant Growth Chamber. Automorphosis observed in space were well simulated by a clinorotation on a 3-dimensional clinostat and also phenocopied by the application of auxin polar transport inhibitors of 2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid and 9-hydroxyfluorene-9-carboxylic acid. Judging from the results described above together with the fact that activities of auxin polar transport in epicotyls of etiolated pea seedlings grown in space substantially were reduced, auxin polar transport seems to be closely related to automorphosis. Strenuous efforts to learn in molecular levels how gravity contributes to the auxin polar transport in etiolated pea epicotyls resulted in successful identification of PsPIN2 and PsAUX1 genes located in plasma membrane which products are considered to be putative efflux and influx carriers of auxin, respectively. Based on the results of expression of PsPIN2 and PsAUX1 genes under various gravistimulations, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.  相似文献   

20.
植物向重性的机理研究与植物在微重力环境下的生长发育有关。本文在地基1×g重力场上进行了幼苗重力反应实验,结果表明:重力引起水平放置的幼苗过氧化物酶在根尖组织上、下侧的差异分布;在重力场上水平放置的幼苗其根尖向高钙(Ca2+)—侧弯曲生长;当给倒置幼苗的顶端照光时其负向地性消失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号