首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Left ventricular dysfunction in swine with a recent myocardial infarction (MI) is associated with neurohumoral activation, including increased catecholamines and endothelin (ET). Although the increase in ET may serve to maintain blood pressure and, hence, perfusion of essential organs such as the heart and brain, it could also compromise myocardial perfusion by evoking coronary vasoconstriction. In the present study, we tested the hypothesis that endogenous ET contributes to perturbations in myocardial O2 balance during exercise in remodeled myocardium of swine with a recent MI. For this purpose, 26 chronically instrumented swine (10 with and 16 without MI) were studied at rest and while running on a treadmill at 1-4 km/h. After MI, plasma ET increased from 3.2 +/- 0.4 to 4.9 +/- 0.3 pM (P < 0.05). In normal swine, blockade of ETA (by EMD-122946) or ETA-ETB (by tezosentan) receptors resulted in an increase in coronary venous PO2, i.e., coronary vasodilation at rest, which decreased during exercise. In contrast, neither ETA nor ETA-ETB receptor blockade resulted in coronary vasodilation in swine with MI. Coronary vasoconstriction to intravenous ET-1 infusion in awake resting swine was blunted after MI. To investigate whether factors released by cardiac myocytes contributed to decreased vascular responsiveness to ET, we performed ET-1 dose-response curves in isolated coronary arterioles (70-200 microm). Vasoconstriction to ET-1 in isolated arterioles from MI swine was enhanced. In conclusion, the vasoconstrictor influence of endogenous as well as exogenous ET on coronary circulation in vivo is reduced. Because the response of isolated coronary arterioles to ET is increased after MI, the reduced vasoconstrictor influence in vivo suggests modulation of ET receptor sensitivity by cardiac myocytes, which may serve to maintain adequate myocardial perfusion.  相似文献   

2.
The role of ATP-sensitive K(+) (K(ATP)(+)) channels in vasomotor tone regulation during metabolic stimulation is incompletely understood. Consequently, we studied the contribution of K(ATP)(+) channels to vasomotor tone regulation in the systemic, pulmonary, and coronary vascular bed in nine treadmill-exercising swine. Exercise up to 85% of maximum heart rate increased body O(2) consumption fourfold, accommodated by a doubling of both cardiac output and body O(2) extraction. Mean aortic pressure was unchanged, implying that systemic vascular conductance (SVC) also doubled, whereas pulmonary artery pressure increased almost in parallel with cardiac output, so that pulmonary vascular conductance (PVC) increased only 25 +/- 9% (both P < 0.05). Myocardial O(2) consumption tripled during exercise, which was paralleled by an equivalent increase in O(2) supply so that coronary venous PO(2) was maintained. Selective K(ATP)(+) channel blockade with glibenclamide (3 mg/kg iv), decreased SVC by 29 +/- 4% at rest and by 10 +/- 2% at 5 km/h (both P < 0.05), whereas PVC was unchanged. Glibenclamide decreased coronary vascular conductance and hence myocardial O(2) delivery, necessitating an increase in O(2) extraction from 76 +/- 2% to 86 +/- 2% at rest and from 79 +/- 2% to 83 +/- 1% at 5 km/h. Consequently, coronary venous PO(2) decreased from 25 +/- 1 to 17 +/- 1 mmHg at rest and from 23 +/- 1 to 20 +/- 1 mmHg at 5 km/h (all values are P < 0.05). In conclusion, K(ATP)(+) channels dilate the systemic and coronary, but not the pulmonary, resistance vessels at rest and during exercise in swine. However, opening of K(ATP)(+) channels is not mandatory for the exercise-induced systemic and coronary vasodilation.  相似文献   

3.
Several studies have indicated an interaction between the renin-angiotensin (ANG II) system and endothelin (ET) in the regulation of vascular tone. Previously, we have shown that both ET and ANG II exert a vasoconstrictor influence on the coronary resistance vessels of awake normal swine. Here, we investigated whether the interaction between ANG II and ET exists in the control of coronary resistance vessel tone at rest and during exercise using single and combined blockade of angiotensin type 1 (AT(1)) and ET(A)/ET(B) receptors. Since both circulating ANG II and ET levels are increased after myocardial infarction (MI), we investigated if the interaction between these systems is altered after MI. In awake healthy swine, coronary vasodilation in response to ET(A)/ET(B) receptor blockade in the presence of AT(1) blockade was similar to vasodilation produced by ET(A)/ET(B) blockade under control conditions. In awake swine with a 2- to 3-wk-old MI, coronary vasodilator responses to individual AT(1) and ET(A)/ET(B) receptor blockade were virtually abolished, despite similar coronary arteriolar AT(1) and ET(A) receptor expression compared with normal swine. Unexpectedly, in the presence of AT(1) blockade (which had no effect on circulating ET levels), ET(A)/ET(B) receptor blockade elicited a coronary vasodilator response. These findings suggest that in normal healthy swine the two vasoconstrictor systems contribute to coronary resistance vessel control in a linear additive manner, i.e., with negligible cross-talk. In contrast, in the remodeled myocardium, cross-talk between ANG II and ET emerges, resulting in nonlinear redundant control of coronary resistance vessel tone.  相似文献   

4.
Prostacyclin and nitric oxide (NO) are produced by the endothelium in response to physical forces such as shear stress. Consequently, both NO and prostacyclin may increase during exercise and contribute to metabolic vasodilation. Conversely, NO has been hypothesized to inhibit prostacyclin production. We therefore investigated the effect of cyclooxygenase (COX) inhibition on exercise-induced vasodilation of the porcine systemic, pulmonary, and coronary beds before and after inhibition of NO production. Swine were studied at rest and during treadmill exercise at 1-5 km/h, before and after COX inhibition with indomethacin (10 mg/kg iv), and in the absence and presence of NO synthase inhibition with N(omega)-nitro-l-arginine (l-NNA; 20 mg/kg iv). COX inhibition produced systemic vasoconstriction at rest, which waned during exercise. The systemic vasoconstriction by COX inhibition was enhanced after l-NNA, particularly at rest. In the coronary circulation, COX inhibition also resulted in vasoconstriction at rest and during exercise. However, vasoconstriction was not modified by pretreatment with l-NNA. In contrast, COX inhibition had no effect on the pulmonary circulation, either at rest or during exercise. Moreover, a prostanoid influence in the pulmonary circulation could not be detected after l-NNA. In conclusion, endogenous prostanoids contribute importantly to systemic and coronary tone in awake swine at rest but are not mandatory for exercise-induced vasodilation in these beds. Endogenous prostanoids are not mandatory for the regulation of pulmonary resistance vessel tone. Finally, NO blunts the contribution of prostanoids to vascular tone regulation in the systemic but not in the coronary and pulmonary beds.  相似文献   

5.
Coronary blood flow is controlled via several vasoactive mediators that exert their effect on coronary resistance vessel tone through activation of K(+) channels in vascular smooth muscle. Because Ca(2+)-activated K(+) (K(Ca)(+)) channels are the predominant K(+) channels in the coronary vasculature, we hypothesized that K(Ca)(+) channel activation contributes to exercise-induced coronary vasodilation. In view of previous observations that ATP-sensitive K(+) (K(ATP)(+)) channels contribute, in particular, to resting coronary resistance vessel tone, we additionally investigated the integrated control of coronary tone by K(Ca)(+) and K(ATP)(+) channels. For this purpose, the effect of K(Ca)(+) blockade with tetraethylammonium (TEA, 20 mg/kg iv) on coronary vasomotor tone was assessed in the absence and presence of K(ATP)(+) channel blockade with glibenclamide (3 mg/kg iv) in chronically instrumented swine at rest and during treadmill exercise. During exercise, myocardial O(2) delivery increased commensurately with the increase in myocardial O(2) consumption, so that myocardial O(2) extraction and coronary venous Po(2) (Pcv(O(2))) were maintained constant. TEA (in a dose that had no effect on K(ATP)(+) channels) had a small effect on the myocardial O(2) balance at rest and blunted the exercise-induced increase in myocardial O(2) delivery, resulting in a progressive decrease of Pcv(O(2)) with increasing exercise intensity. Conversely, at rest glibenclamide caused a marked decrease in Pcv(O(2)) that waned at higher exercise levels. Combined K(Ca)(+) and K(ATP)(+) channel blockade resulted in coronary vasoconstriction at rest that was similar to that caused by glibenclamide alone and that was maintained during exercise, suggesting that K(Ca)(+) and K(ATP)(+) channels act in a linear additive fashion. In conclusion, K(Ca)(+) channel activation contributes to the metabolic coronary vasodilation that occurs during exercise. Furthermore, in swine K(Ca)(+) and K(ATP)(+) channels contribute to coronary resistance vessel control in a linear additive fashion.  相似文献   

6.
The role of excitatory amino acid (EAA) receptors in the rostral ventrolateral medulla (RVLM) in maintaining resting sympathetic vasomotor tone remains unclear. It has been proposed that EAA receptors in the RVLM mediate excitatory inputs both to presympathetic neurons and to interneurons in the caudal ventrolateral medulla (CVLM), which then provide a counterbalancing inhibition of RVLM presympathetic neurons. In this study, we tested this hypothesis by determining the effect of blockade of EAA receptors in the RVLM on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), after inhibition of CVLM neurons. In anesthetized rats, bilateral injections of muscimol in the CVLM increased MAP, HR, and RSNA. Subsequent bilateral injections of kynurenic acid (Kyn, 2.7 nmol) in the RVLM caused a modest reduction of approximately 20 mmHg in the MAP but had no effect, when compared with the effect of vehicle injection alone, on HR or RSNA. By approximately 50 min after the injections of Kyn or vehicle in the RVLM, the MAP had stabilized at a level close to its original baseline level, but the HR and RSNA stabilized at levels above baseline. The results indicate that removal of tonic EAA drive to RVLM neurons has little effect on the tonic activity of RVLM presympathetic neurons, even when inputs from the CVLM are blocked. Thus the tonic activity of RVLM presympathetic neurons under these conditions is dependent on excitatory synaptic inputs mediated by non-EAA receptors and/or the autoactivity of these neurons.  相似文献   

7.
The present study examined whether regulation ofcoronary tone in conduit arteries (>1.0 mm ID) is altered by exercisetraining. Yucatan miniature swine were treadmill trained for 16-20wk (Ex) and compared with sedentary counterparts (Sed).Endothelium-denuded arterial rings were stretched to optimal length andallowed to equilibrate for 60 min. Inhibition of eitherCa2+-activated channels [1mM tetraethylammonium (TEA) or 10 nM iberiotoxin (IBTX)] orvoltage-dependent K+ channels[1 mM 4-aminopyridine (4-AP)] significantlyincreased resting tension in both groups; however, the effect of allK+-channel blockers was greater inEx. Addition of 1 mM sodium nitroprusside reduced resting tension inboth groups, confirming the presence of active basal tone; however,sodium nitroprusside-sensitive tone was increased approximately twofoldin Ex compared with Sed group. Perforated patch-clamp experiments onisolated smooth muscle cells demonstrated no effect of exercisetraining on whole cell TEA-sensitive, 4-AP-sensitive, or basalK+ current. Similarly, whereasTEA, 4-AP, and IBTX all decreased resting membrane potential, there wasno difference in depolarization between groups. The greater effect ofTEA on resting tension in Ex could be mimicked in Sed by addition ofthe Ca2+-channel agonist BAY K8644. In conclusion, the greater response toK+-channel blockers after exercisetraining is consistent with an increased contribution ofK+ channels to regulation of basaltone in conduit coronary arteries. The lack of an effect of training onK+ current characteristics ormembrane potential responses in isolated cells suggests that arequisite factor for enhancedK+-channel activation in arteriesfrom Ex, possibly stretch, is absent in isolated cells.

  相似文献   

8.
We examined the central hemodynamic (n = 5) and leg blood flow (n = 9) responses to one- and two-leg bicycle exercise in nine ambulatory patients with chronic heart failure due to left ventricular systolic dysfunction (ejection fraction 17 +/- 9%). During peak one- vs. two-leg exercise, leg blood flow (thermodilution) tended to be higher (1.99 +/- 0.91 vs. 1.67 +/- 0.91 l/min, P = 0.07), whereas femoral arteriovenous oxygen difference was lower (13.6 +/- 3.1 vs. 15.0 +/- 2.9 ml/dl, P less than 0.01). Comparison of data from exercise stages matched for single-leg work rate during one- vs. two-leg exercise demonstrated that cardiac output was similar while both oxygen consumption and central arteriovenous oxygen differences were lower, indicating relative improvement in the cardiac output response at a given single-leg work rate during one-leg exercise. This was accompanied by higher leg blood flow (1.56 +/- 0.76 vs. 1.83 +/- 0.72 l/min, P = 0.02) and a tendency for leg vascular resistance to be lower (92 +/- 54 vs. 80 +/- 48 Torr.l-1.min, P = 0.08) without any change in blood lactate. These data indicate that, in patients with chronic heart failure, leg vasomotor tone is dynamically regulated, independent of skeletal muscle metabolism, and is not determined solely by intrinsic abnormalities in skeletal muscle vasodilator capacity. Our results suggest that relative improvements in central cardiac function may lead to a reflex release of skeletal muscle vasoconstrictor tone in this disorder.  相似文献   

9.
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.  相似文献   

10.
Vascular smooth muscle contracts on increases of extracellular pH (pH(o)) and relaxes on pH(o) decreases possibly resulting from changes in transsarcolemmal Ca(2+) influx. Therefore, we studied store-operated Ca(2+) entry (SOCE; i.e. capacitative Ca(2+) entry (CCE)) during acidification (pH(o)=6.5) and alkalinization (pH(o)=8.0) in isolated porcine coronary smooth muscle cells (SMCs) by monitoring cytoplasmic Ca(2+) ([Ca(2+)](i)) and divalent cation entry (Mn(2+) quench) with fura-2/AM-fluorometry. Additionally, we evaluated the contribution of SOCE to pH(o)-dependent changes in isometric tension of porcine coronary smooth muscle strips. SOCE elicited in SMCs by the SERCA inhibitor BHQ was strongly modulated by pH(o) showing a decrease upon acidification and vice versa an increase upon alkalinization. BHQ-mediated tension of smooth muscle strips also revealed strong pH(o) dependence. In contrast, L-VOC-dependent tension ([K(+)](o)=20 and 40 mmol l(-1)) was remarkably less affected by pH(o) changes. Moreover, refilling of depleted Ca(2+) stores after repeated M(3)-cholinergic receptor stimulation could be almost completely inhibited by SKF 96365 and was markedly reduced by acidification and considerably enhanced by alkalinization pointing to a major role of SOCE in refilling. We conclude that vascular tone particularly responds to alterations in pH(o) whenever SOCE substantially contributes to the amount of activator Ca(2+) for contraction.  相似文献   

11.
12.
A 66-year-old female was referred for primary coronary intervention because of acute inferior STelevation myocardial infarction. Electrocardiography also showed atrial fibrillation. Coronary angiography showed a distal occlusion of the right coronary artery. Two different wires did not pass the occlusion, but dislodged the apparent thrombus more distally. No abnormalities were seen in the course of the recanalised part of the vessel. The sequential angiographic images together with the presence of atrial fibrillation are highly suggestive of coronary embolism as the cause of the myocardial infarction. Anticoagulation and rate control strategy was initiated. The patient was discharged in good condition. (Neth Heart J 2009;17:297–9.)  相似文献   

13.
The aim of the study was to verify whether the infusion of a lipid emulsion causes a rise in vascular pressure related to an imbalance in the production of vasoconstricting and vasodilatating eicosanoids. Segments of umbilical veins were perfused with and without 1.5 μM indomethacin (cyclooxygenase inhibitor) in solutions differing only in their lipid content (control vs. lipid). The lipid-induced higher pressure (p < 0.05) was associated with an inhibition (p < 0.05) in the output of the vasodilatator PGI2, and an increase (p < 0.01) in the production of the vasoconstrictor PGF2. Indomethacin abolished differences in pressure, but produced a rise (p < 0.01) in vascular tone of both the control and lipid-containing solutions by inhibiting PGI2 synthesis. Prostacyclin was the only eicosanoid significantly correlated (p < 0.01) to vascular tone. The lipid emulsion was therefore linked to the inhibition of the conversion of PGH2 to PGI2. The ensuing greater PGH2 availability would result in vivo, in the increased synthesis of vasoconstricting eicosanoids. The lipid-containing solution produced vasoactive responses similar to those reported with tert-butyl hydroperoxide, suggesting that hydroperoxides contaminating commonly used lipid emulsions could be causing a prostanoid-dependent vasoconstricton.  相似文献   

14.
Twenty patients with blood pressure over 180/110 mm Hg one hour after admission to a coronary care unit with recent acute myocardial infarction were given intravenous diazoxide in a bolus of 300 mg. The average blood pressure before diazoxide was 194/122 mm Hg. Blood pressure fell considerably in all patients, though six patients required two injections. The average fall was 58 mm Hg systolic and 40 mm Hg diastolic. No patient became severely hypotensive. The heart rate increased by an average of 10 beats/min. In nine patients the electrocardiographic changes immediately after the administration of diazoxide suggested an increase in myocardial injury. Though none of the patients seemed to deteriorate clinically from the diazoxide the electrocardiographic changes suggested that the use of intravenous diazoxide to lower blood pressure in patients with acute myocardial infarction might possibly be deleterious.  相似文献   

15.
16.
A 55-year-old man was referred for the evaluation of frequent chest pain and syncope. While in the hospital, he experienced severe chest pain accompanied by transient ST segment elevation and a slight elevation of cardiac enzyme levels. Multiple coronary arteriograms were recorded at various times during an interval of 2 months. On one occasion, the results were normal; on another occasion, they showed total occlusion of the left anterior descending, diagonal, and circumflex coronary arteries. The occlusion was completely relieved with sublingual nitroglycerin. Because the patient's clinical condition deteriorated rapidly, double aortocoronary saphenous vein bypass was performed to the left anterior descending and circumflex coronary arteries. During the induction of anesthesia, ventricular fibrillation occurred, and the patient died from refractory recurrent fibrillation 4 hours after surgery. Postmortem examination revealed normal coronary arteries, patent vein grafts, and multiple focal areas of recent and old myocardial fibrosis. Thus, it appears that coronary spasm, in the presence of otherwise normal coronary arteries, can produce myocardial infarction with necrosis, and that medical management may provide a more successful method of treating such patients.  相似文献   

17.
A significant rise in systemic blood pressure (of up to 160–225%) mainly produced by an increase in total peripheral vascular resistance was observed after micro-injecting glycine caudally into the ventrolateral medulla in cats (to a depth of no more than 700 µm from the ventral surface). This was accompanied by a less pronounced alteration in cardiac output and heartbeat. Using horseradish peroxidase retrograde axonal transport techniques, direct connections were identified from a number of neuronal groups located caudally on the ventrolateral medulla (including those lying in close proximity to the ventral surface) to the mediodorsal lateral tegmental field. These neuronal groups are not identical to known groups of catecholaminergic neurons. The findings obtained complement our comprehension of the mechanisms governing interaction at the dorsal and ventral bulbar areas involved in regulation of vascular tone.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 10–18, January–February, 1990.  相似文献   

18.
The study relates to the character of tirone effect (chemical trap of superoxide--anions) on regulation of coronary vessel tone and myocardial contractile function in normal and changed cell redox-state of coronary and cardiac vessels. The experiments were performed in 64 female Wistar rats (180-320 g). The coronary blood flow and myocardial contractile junction were studied in isolated heart preparations. To determine the role of superoxide-anions in regulation of coronary vessel tone, tirone was added to the perfusion solution (4,5-dihydroxy-1,3-benzene disulfonic acid, 10 mm, Sigma USA). Preliminary injection of N-acetyl-L-cysteine evoked a 16 % increase, whereas injection of L-buthionine-(S,R)-sulfoximine reduced concentration of nonprotein thiol group in the myocardium and erythrocytes of experimental animals by 37%. The influence of superoxide anions on the cardiac vessel tone and myocardial contractile function was due to nitric monoxide participation the concentration of which increased in binding of superoxide anions and was directly dependent on concentration of sulfhydrilis groups in the cardiac cells. The oxygen active forms and cellular redox-state seem to play an important role in the regulation mechanisms of the coronary vessel tone and myocardial contractile function.  相似文献   

19.
20.
Shock-induced vulnerability and defibrillation have been mostly studied in structurally normal hearts. However, defibrillation therapy is normally applied to patients with diseased hearts, frequently those with prior myocardial infarction (MI). Shock-induced vulnerability and defibrillation have not been well studied under this condition. We sought to examine the mechanisms of shock-induced arrhythmogenesis and arrhythmia maintenance in a rabbit model of healed MI (4 wk or more postinfarction). Ligation of the lateral division or posterolateral division of the left coronary artery at a level of 40-70% from the apex was performed 53 +/- 21 days before acute experiments. Shock-induced vulnerability was assessed in infarcted (n = 8) and structurally normal (n = 8) hearts by delivering internal monophasic shocks at different shock strengths and delivery phases. Electrical activities from the anterior epicardium during shock application and during shock-induced arrhythmias were optically recorded and quantitatively analyzed. Ligation resulted in a transmural left ventricular free wall infarction mainly located at the apical region with a consistent endocardial border zone (BZ) as confirmed by histological studies. There were significant increases in the incidence, severity, and duration of shock-induced arrhythmias in the infarcted hearts versus controls due to 1) postshock break-excitation wavefronts that frequently originated near the infarction BZ and 2) the existence of an infarction BZ that created an anatomic reentry pathway and facilitated arrhythmia maintenance. In conclusion, the infarction BZ contributes to both increased shock-induced arrhythmogenesis and arrhythmia maintenance in the rabbit model of healed MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号