首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Background aimsSpinal cord injury (SCI) is a medically untreatable condition for which stem cells have created hope. Pre-clinical and clinical studies have established that these cells are safe for transplantation. The dose dependency, survivability, route of administration, cell migration to injury site and effect on sensory and motor behavior in an SCI-induced paraplegic model were studied.MethodsA spinal cord contusion injury model was established in rats. Bone marrow (BM) mesenchymal stromal cells (MSC) were tagged to facilitate tracing in vivo. Two different doses (2 and 5 million cells/kg body weight) and two different routes of infusion (site of injury and lumbar puncture) were tested during and after the spinal shock period. The animals were tested post-transplantation for locomotor capacity, motor control, sensory reflex, posture and body position. Stem cell migration was observed 1 month post-transplantation in spinal cord sections.ResultsThe overall results demonstrated that transplantation of BM MSC significantly improved the locomotor and sensory behavior score in the experimental group compared with the sham control group, and these results were dose dependent. All the infused stem cells could be visualized at the site of injury and none was visualized at the injected site. This indicated that the cells had survived in vivo, were probably chemoattracted and had migrated to the lesion site.ConclusionsMSC transplanted with a lumbar puncture method migrate to the site of injury and are the most suitable for SCI healing. These cells demonstrate a dose-dependent effect and promote functional recovery when injected during or after the spinal shock period.  相似文献   

2.
3.
Background aimsThe suppression of cell apoptosis using a biodegradable scaffold to replace the missing or altered extracellular matrix (ECM) could increase the survival of transplanted cells and thus increase the effectiveness of cell therapy.MethodsWe studied the best conditions for the proliferation and differentiation of human bone marrow stromal cells (hBMSC) when cultured on different biologic scaffolds derived from fibrin and blood plasma, and analyzed the best concentrations of fibrinogen, thrombin and calcium chloride for favoring cell survival. The induction of neural differentiation of hBMSC was done by adding to these scaffolds different growth factors, such as nerve growth factor (NGF), brain-derived-neurotrophic factor (BDNF) and retinoic acid (RA), at concentrations of 100 ng/mL (NGF and BDNF) and 1 μ/mL (RA), over 7 days.ResultsAlthough both types of scaffold allowed survival and neural differentiation of hBMSC, the results showed a clear superiority of platelet-rich plasma (PRP) scaffolds, mainly after BDNF administration, allowing most of the hBMSC to survive and differentiate into a neural phenotype.ConclusionsGiven that clinical trials for spinal cord injury using hBMSC are starting, these findings may have important clinical applications.  相似文献   

4.
BACKGROUND: Human mesenchymal stem cells (hMSC) are increasingly the focus of both basic and clinical research due to their ability to strike a balance between self-renewal and commitment to mesodermal differentiation. However, the promising therapeutic utility of hMSC in regenerative medical approaches requires detailed knowledge about their molecular characteristics. Therefore, genetic modification of hMSC provides a powerful tool to understand their complex molecular regulation mechanisms. METHODS: Here we describe a proof of concept approach of separate and combined gene transfer and gene silencing by nonviral DNA transfection of enhanced green fluorescent protein (EGFP) and EGFP-targeted small interfering RNAs (siRNAs) in hMSC. For optimization of nonviral DNA and siRNA transfer different liposomal-based transfection strategies were validated. RESULTS: The highest fraction of EGFP-expressing hMSC was obtained using Lipofectamine 2000 (50%) which also mediated the highest transfection rates of siRNAs into hMSC (>or=92%). Stably EGFP-expressing hMSC maintained their proliferation capacity paired with the ability to differentiate into different mesodermal lineages (bone, cartilage, and fat) without loss of transgene expression. Based on our nonviral nucleic acid delivery technique we showed efficient, functional, and long-term RNA interference (RNAi) in hMSC by gene specific knock-down of transiently and stably expressed EGFP (88-98%). CONCLUSIONS: This is the first demonstration of efficient nonviral transfer of both nucleic acids (DNA and siRNA) into hMSC, exhibiting the potential of targeted modification of hMSC. In particular, the combination of these techniques represents a powerful gene transfer/silencing strategy, thus facilitating detailed genetic approaches to study regulatory networks in stem cell differentiation processes.  相似文献   

5.
Background aimsMesenchymal stromal cells (MSCs) have the ability to self-renew and differentiate into various cell types. Their plasticity and easy availability make them promising candidates for regenerative medicine. However, for successful clinical application, MSCs need to be expanded under a Good Manufacturing Practices-compliant system to obtain a large quantity of these cells. Although the viability and potency of these in vitro-expanded MSCs need to be maintained during preparation and transportation before transplantation, these characteristics have not thoroughly been examined. Our goal in this study was to standardize MSC preparation and storage before their clinical application to ensure reproducible quality and potency for their clinically intended purpose.MethodsWe examined the viability, self-renewal capacity and differentiation capability of MSCs on short-term in vitro storage in saline or dextrose solution at 4°C and room temperature.ResultsMSCs harvested and suspended in saline for 1–2 h showed >90% viability regardless of storage temperature. However, when cells were stored for >2 h in saline, their viability decreased gradually over time. The viability of cells in dextrose deteriorated rapidly. MSCs lost colony-forming unit and differentiation capacities rapidly as storage time increased. Collectively, we found that a storage period >2 h resulted in a significant decrease in cell viability, cell proliferation capacity and differentiation potency.ConclusionsStorage of culture-harvested MSCs for >2 h is likely to result in suboptimal MSC-mediated tissue regeneration because of decreased cell viability and differentiation capacity.  相似文献   

6.
Mesenchymal stromal cells (MSCs) derived from human bone marrow are expected to be utilized for the purpose of tissue engineering, because of their extensive self-renewal or proliferation capability. The capability decreases after several passages, however. Basic fibroblast growth factor (bFGF) is commonly used for culture of various cells including bone marrow-derived MSCs. With the aim of conferring higher capability on human bone marrow MSCs, we introduced the bFGF gene into the passaged cells by retroviral system. The bFGF-expressing MSCs, even at 7 to 8 passages after the infection, showed consistent proliferation capability. The capability was not detected in control cells even in culture media containing the bFGF protein. Thus, we could not mimic the effect of forced expression of bFGF by exogenously adding the bFGF protein in culture media. Although we expressed the shortest isoform of bFGF, which was considered to be mostly cytosolic, we found the protein mostly in the nucleus. Our observations demonstrate not only an effective way to maintain proliferation potentials of MSCs, but also a possibility that there may be mechanistic and functional differences in the signal transduction events between endogenously expressed and exogenously added bFGF protein in MSCs.  相似文献   

7.
8.
Background aimsBone marrow stromal cells (BMSC) have been shown to provide neuroprotection after transplantation into the injured central nervous system. The present study investigated whether adult rat BMSC differentiated along a Schwann cell lineage could increase production of trophic factors and support neuronal survival and axonal regeneration after transplantation into the injured spinal cord.MethodsAfter cervical C4 hemi-section, 5-bromo-2-deoxyuridine (BrdU)/green fluorescent protein (GFP)-labeled BMSC were injected into the lateral funiculus at 1 mm rostral and caudal to the lesion site. Spinal cords were analyzed 2–13 weeks after transplantation.Results and ConclusionsTreatment of native BMSC with Schwann cell-differentiating factors significantly increased production of brain-derived neurotrophic factor in vitro. Transplanted undifferentiated and differentiated BMSC remained at the injection sites, and in the trauma zone were often associated with neurofilament-positive fibers and increased levels of vascular endothelial growth factor. BMSC promoted extensive in-growth of serotonin-positive raphaespinal axons and calcitonin gene-related peptide (CGRP)-positive dorsal root sensory axons into the trauma zone, and significantly attenuated astroglial and microglial cell reactions, but induced aberrant sprouting of CGRP-immunoreactive axons in Rexed's lamina III. Differentiated BMSC provided neuroprotection for axotomized rubrospinal neurons and increased the density of rubrospinal axons in the dorsolateral funiculus rostral to the injury site. The present results suggest that BMSC induced along the Schwann cell lineage increase expression of trophic factors and have neuroprotective and growth-promoting effects after spinal cord injury.  相似文献   

9.
Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM-MSCs was first verified in a pellet culture. The BM-MSCs were then either seeded onto a composite scaffold rhCo-PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM-MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM-MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM-MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell-biomaterial constructs for cartilage regeneration.  相似文献   

10.
Background aimsWe explored the potential therapeutic value of transplanting bone marrow (BM)-derived mesenchymal stromal cells (MSC) into utrophin/dystrophin-deficient double knock-out (dko) mice, a murine model of Duchenne muscular dystrophyMethodsMSC from male rats were isolated and transplanted into female dko mice via the caudal vein. Behavior and locomotor function were later evaluated, along with the expression of dystrophin and utrophin in the sarcolemma of myofiber tissues. The presence of grafted cells was confirmed via polymerase chain reaction for the sex-determining region of the Y-chromosomeResultsLocomotor activity improved significantly (P < 0.05) from 5 to 15 weeks after cell transplantation, as measured by traction, rotating rod and running wheel tests. We also found that the expression of dystrophin and utrophin increased significantly (P < 0.05) and progressively in the sarcolemma from 5 to 15 weeks after transplantation. The median lifespan of mice in the normal group (74.1 weeks) was significantly (P < 0.001) higher than those in the control (22.0 weeks) and transplantation (35.0 weeks) groups, and the median lifespan of mice in the transplantation group was significantly (P < 0.001) higher than that in the control groupConclusionsResults of this study demonstrate that BM MSC have potential value in xenogeneic transplantation therapy for muscular dystrophy.  相似文献   

11.
Background aimsThe Quantum® Cell Expansion System (Quantum; Terumo BCT, Inc, Lakewood, CO, USA) is a novel hollow fiber-based device that automates and closes the cell culture process, reducing labor intensive tasks such as manual cell culture feeding and harvesting. The manual cell selection and expansion processes for the production of clinical-scale quantities of bone marrow-derived human mesenchymal stromal cells (BM-hMSCs) have been successfully translated onto the Quantum platform previously. The formerly static, manual, in vitro process performed primarily on tissue culture polystyrene substrates may raise the question of whether BM-hMSCs cultured on a hollow fiber platform yields comparable cell quality.MethodsA rigorous battery of assays was used to determine the genetic stability of BM-hMSCs selected and produced with the Quantum. In this study, genetic stability was determined by assessing spectral karyotype, micronucleus formation and tumorigenicity to resolve chromosomal aberrations in the stem cell population. Cell phenotype, adherent growth kinetics and tri-lineage differentiation were also evaluated. HMSC bone marrow aspirates, obtained from three approved donors, were expanded in parallel using T225 culture flasks and the Quantum.ResultsBM-hMSCs harvested from the Quantum demonstrated immunophenotype, morphology and tri-lineage differentiation capacity characteristics consistent with the International Society of Cell Therapy standard for hMSCs. Cell populations showed no malignant neoplastic formation in athymic mice 60 days post-transplant, no clonal chromosomal aberrations were observed and no DNA damage was found as measured by micronucleus formation.ConclusionsQuantum-produced BM-hMSCs are of comparable quality and demonstrate analogous genetic stability to BM-hMSCs cultured on tissue culture polystyrene substrates.  相似文献   

12.
13.
The aging of many mammalian tissues is associated with replicative decline in somatic stem cells. Postponing this decline is a direct way of anti-aging. Bone marrow-derived multipotent stromal cells (BMSCs) hold promise for an increasing list of therapeutic uses due to their multilineage potential. Clinical application of BMSCs requires abundant cells that can be overcome by ex vivo expansion of cells, but often facing the replicative senescence problem. We demonstrated that taurine exhibited anti-replicative senescence effect on rat BMSCs by promoting colony forming unit-fibroblast formation and cell proliferation, shortening cell population doubling time, enormously inhibiting senescence-associated beta-galactosidase activity and slowing the loss of differentiation potential, while having no significant effect on the maximum passage number and total culture time, and slight influences on the cell surface CD molecules expressions. Taurine is a quite safe antioxidant and nutrient extensively used in food addition and clinical treatment. These suggested that taurine is a promising anti-replicative senescence additive for ex vivo expansion of BMSCs in experimental and clinical cell therapies.  相似文献   

14.
15.
Protective circulating Abs originate primarily from long-lived plasma cells in the bone marrow. However, the molecular and cellular basis of plasma cell longevity is unknown. We investigated the capacity of primary bone marrow-derived stromal cells to maintain plasma cell viability in vitro. Plasma cells purified from the bone marrow or lymph nodes died rapidly when plated in media, but a subpopulation of plasma cells survived and secreted high levels of Ab for up to 4 wk when cocultured with stromal cells. Ab secretion was inhibited by the addition of anti-very late Ag-4 to plasma cell/stromal cell cocultures indicating that direct interactions occur and are necessary between stromal cells and plasma cells. The addition of rIL-6 to plasma cells cultured in media alone partially relieved the sharp decline in Ab secretion observed in the absence of stromal cells. Moreover, when stromal cells from IL-6(-/-) mice were used in plasma cell/stromal cell cocultures, Ab levels decreased 80% after 7 days as compared with wild-type stromal cells. Further, IL-6 mRNA message was induced in stromal cells by coculture with plasma cells. These data indicate that bone marrow plasma cells are not intrinsically long-lived, but rather that plasma cells contact and modify bone marrow stromal cells to provide survival factors.  相似文献   

16.
《Cytotherapy》2020,22(1):21-26
Isolation of mesenchymal stromal cells (MSCs) from pretreated, hematologic patients is challenging. Especially after allogeneic hematopoietic cell transplantation (HCT), standard protocols using bone marrow aspirates fail to reliably recover sufficient cell numbers. Because MSCs are considered to contribute to processes that mainly affect the outcome after transplantation, such as an efficient lymphohematopoietic recovery, extent of graft-versus-host disease as well as the occurrence of leukemic relapse, it is of great clinical relevance to investigate MSC function in this context. Previous studies showed that MSCs can be isolated by collagenase digestion of large bone fragments of hematologically healthy patients undergoing hip replacement or knee surgeries. We have now further developed this procedure for the isolation of MSCs from hematologic patients after allogeneic HCT by using trephine biopsy specimens obtained during routine examinations. Comparison of aspirates and trephine biopsy specimens from patients after allogeneic HCT revealed a significantly higher frequency of clonogenic MSCs (colony-forming unit–fibroblast [CFU-F]) in trephine biopsy specimens (mean, 289.8 ± standard deviation 322.5 CFU-F colonies/1 × 106 total nucleated cells versus 4.2 ± 9.9; P < 0.0001). Subsequent expansion of functional MSCs isolated from trephine biopsy specimen was more robust and led to a significantly higher yield compared with control samples expanded from aspirates (median, 1.6 × 106; range, 0–2.3 × 107 P0 MSCs versus 5.4 × 104; range, 0–8.9 × 106; P < 0.0001). Using trephine biopsy specimens as MSC source facilitates the investigation of various clinical questions.  相似文献   

17.
Jung EJ  Kim SC  Wee YM  Kim YH  Choi MY  Jeong SH  Lee J  Lim DG  Han DJ 《Cytotherapy》2011,13(1):19-29
Background aimsRecent evidence has suggested that transplanted bone marrow (BM)-derived mesenchymal stromal cells (MSC) are able to engraft and repair non-hematopoietic tissues successfully, including central nervous system, renal, pulmonary and skin tissue, and may possibly contribute to tissue regeneration. We examined the cytoprotective effect of BM MSC on co-cultured, isolated pancreatic isletsMethodsPancreatic islets and MSC isolated from Lewis rats were divided into four experimental groups: (a) islets cultured alone (islet control); (b) islets cultured in direct contact with MSC (IM-C); (c) islets co-cultured with MSC in a Transwell system, which allows indirect cell contact through diffusible media components (IM-I); and (d) MSC cultured alone (MSC control). The survival and function of islets were measured morphologically and by analyzing insulin secretion in response to glucose challenge. Cytokine profiles were determined using a cytokine array and enzyme-linked immunosorbent assaysResultsIslets contact-cultured with MSC (IM-C) showed sustained survival and retention of glucose-induced insulin secretory function. In addition, the levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) were decreased, and tissue inhibitor of metalloproteinases-1 (TIMP-1) and vascular endothelial growth factor (VEGF) levels were increased at 4 weeks in both the IM-C and IM-I groupsConclusionsThese results indicate that contact co-culture is a major factor that contributes to islet survival, maintenance of cell morphology and insulin function. There might also be a synergic effect resulting from the regulation of inflammatory cytokine production. We propose that BM MSC are suitable for generating a microenvironment favorable for the repair and longevity of pancreatic islets.  相似文献   

18.
In vitro cellular proliferation and the ability to undergo multilineage differentiation make bone marrow-derived multipotent stromal cells (MSCs) potentially useful for clinical applications. Several methods have been described to isolate a homogenous bone marrow-derived MSCs population; however, none has been proven most effective, mainly due to their effects on proliferation and differentiation capability of the isolated cells. It is hypothesized that our newly established total cell pooling method may provide a better alternative as compared to the standard isolation method (density gradient centrifugation method). For the total cell pooling method, MSCs were isolated from rabbit bone marrow and were subsequently cultured in the growth medium without further separation as in the standard isolation method. The total cell pooling method was 65 min faster than the standard isolation method in completing cell isolation. Nevertheless, both methods did not differ significantly in the number of primary viable cells and population doubling time in the cultures (p?>?0.05). The isolated cells from both methods expressed CD29 and CD44 markers, but not CD45 markers. Furthermore, they displayed multilineage differentiation characteristics of chondroblasts, osteoblasts, and adipocytes. In conclusion, both methods provide similar efficiency in the isolation of rabbit bone marrow-derived MSCs; however, the total cell pooling method is technically simpler and more cost effective than the standard isolation method.  相似文献   

19.
Multipotential bone marrow stromal cells have the ability to differentiate along multiple connective tissue lineages including cartilage. In this study, we developed an efficient and reproducible procedure for the isolation of stromal cells from bone marrow aspirates of normal human donors based on the expression of endoglin, a type III receptor of the transforming growth factor-beta (TGF-beta) receptor family. We demonstrate that these cells have the ability of multiple lineage differentiation. Stromal cells represented 2-3% of the total mononuclear cells of the marrow. The cells displayed a fibroblastic colony formation in monolayer culture and maintained similar morphology with passage. Expression of cell surface molecules by flow cytometry displayed a stable phenotype with culture expansion. When cocultured with hematopoietic CD34(+) progenitor cells, stromal cells were able to maintain their ability to support hematopoiesis in vitro. Culture expanded stromal cells were placed in a 3-dimensional matrix of alginate beads and cultured in serum-free media in the presence of TGFbeta-3 for chondrogenic lineage progression. Increased expression of type II collagen messenger RNA was observed in the TGFbeta3 treated cultures. Immunohistochemistry performed on sections of alginate beads detected the presence of type II collagen protein. This isolation procedure for stromal cells and the establishment of the alginate culture system for chondrogenic progression will contribute to the understanding of chondrogenesis and cartilage repair.  相似文献   

20.
Human mesenchymal stromal cells (MSCs) expanded in vitro for cell therapy approaches need to be carefully investigated for genetic stability, by employing both molecular and conventional karyotyping. Reliability of cytogenetic analysis may be hampered in some MSC samples by the difficulty of obtaining an adequate number of metaphases. In an attempt to overcome this problem, a methodology apt to evaluate the cell‐cycle structure on synchronous MSCs was optimised. Results obtained in five independent experiments by comparing cell‐cycle analysis of synchronous and asynchronous MSC populations evaluated at early and late culture passages documented that in synchronous MSCs, 30% of cells entered G2/M phase after about 27–28 h of culture, while in asynchronous MSCs only 8% of cells in G2/M phase could be observed at the same time point. Cytogenetic analysis on synchronous MSCs allowed us to obtain 20–25 valuable metaphases/slide, whereas only 0–4 metaphases/slide were detectable in asynchronous preparations. J. Cell. Biochem. 112: 1817–1821, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号