首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we used mouse ileal loops to investigate the interaction of enterohemorrhagic Escherichia coli (EHEC) O157:H7 with the mouse intestinal mucosa. With a dose of 10(9) and 3 h incubation, EHEC O157 was detected in the lumen and to a lesser extent associated with the epithelium. Typical attaching and effacing (A/E) lesions were seen, albeit infrequently. While the effector protein Tir was essential for A/E lesion formation, the bacterial type III secretion system adaptor protein TccP was dispensable. These results suggest that A/E lesions on mouse intestinal mucosa can be formed independently of robust actin polymerization.  相似文献   

2.
Adhesion of Shiga toxin-producing Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to human colonic epithelium is a critical step for infection by this type of bacteria. Here, we demonstrate that adherence of EHEC O157:H7 to cultured human colonic T84 epithelial monolayers can be blocked by heparin and heparan sulfate in a dose-dependent fashion. In doing this, heparin and heparan sulfate also prevent dysfunction of the T84 barrier and disorganization of epithelial tight junction protein ZO-1 caused by EHEC O157:H7. This inhibition by heparin and heparan sulfate seems to result from a block in the binding interactions of bacteria intimin with epithelial β1 integrins. This study provides evidence, for the first time, that heparin and heparan sulfate can serve as novel effective blockers in preventing EHEC O157:H7 infection.  相似文献   

3.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) can produce attaching and effacing (AE) lesions on intestinal epithelium in vitro and in vivo. A gene necessary to cause the AE lesion has been identified and designated Escherichia coli attaching and effacing A (eaeA) gene. In this study, an alkaline phosphatase (ALP)-conjugated oligonucleotide probe for the eaeA gene was developed and used to detect the eaeA gene among 163 strains of classical EPEC and 25 strains of EHEC O157. The prevalence rates of eaeA gene in the strains of classical EPEC and EHEC O157 were 51.5 and 100%, respectively. The eaeA-positive rate (60.0%) in strains of class I EPEC serogroups (O26, O55, O86, O111, O119, O125, O126, O127, O128ab, and O142) was significantly higher than that (22.9%) in strains of the class II EPEC serogroups (O18, O44, O114) (P<0.01). A total of 109 eaeA-positive classical EPEC and EHEC O157 were positive for fluorescent actin staining (FAS) assay, whereas 79 eaeA-negative classical EPEC were negative. Both the sensitivity and specificity of the eaeA probe versus the FAS assay positivity were 100%. Thus, use of the ALP-conjugated oligonucleotide probe for the eaeA gene would be specific and reliable in identifying the adherence capability of EPEC and EHEC.  相似文献   

4.
Infectious diseases due to enterohemorrhagic Escherichia coli (EHEC) are characterized by diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. The adherence of EHEC on intestinal epithelial cells is a first step for developing these diseases. In the present study, we examined whether EHEC O157:H7 adhere to intestinal epithelial cells of mice and cause F-actin accumulation in the epithelial cells following the intragastric inoculation of the pathogen. Fecal shedding of the EHEC O157:H7 strain was observed in ICR mice up to 3 weeks. Fecal shedding periods of the type III secretion system-related gene (espA and sepL) deletion mutants were clearly shorter than that of the wild-type EHEC O157:H7 strain. The EHEC O157:H7 colonies were found on the epithelial surfaces of the ceca in association with F-actin accumulation beneath the attached bacteria.  相似文献   

5.
The outer membrane adhesins of enteropathogenic Escherichia coli, Citrobacter rodentium, and enterohemorrhagic E. coli (EHEC) O157:H7 that mediate attach and efface intestinal lesions are classified as intimin alpha, beta, and gamma, respectively. Each of these intimin types binds to its cognate, bacterially encoded receptor (called Tir for translocated intimin receptor) to promote tight adherence of the organism to the host-cell plasma membrane. We previously reported that gamma intimin of EHEC O157:H7 also bound to a eucaryotic receptor that we determined was nucleolin. The objective of this study was to investigate in vitro and in vivo the interactions of intimins alpha, beta, and gamma with nucleolin in the presence of Tir from EHEC O157:H7. Protein binding experiments demonstrated that intimin of types alpha, beta, and gamma bound nucleolin with similar affinity. Moreover, all three intimin types co-localized with regions of nucleolin expressed on the surface of HEp-2 cells. When intimin alpha, beta, or gamma bound to Tir in vitro, the intimin interaction with nucleolin was blocked. Both Tir and nucleolin accumulated beneath intimin-presenting bacteria that had attached to the surface of HEp-2 cells. Taken together, these findings suggest that nucleolin is involved in bacterial adherence promoted by all intimin types and that Tir and nucleolin compete for intimin during adherence.  相似文献   

6.
Enterohemorrhagic Escherichia coli (EHEC) are food-borne pathogens that can cause serious infections ranging from diarrhea to hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Translocation of Shiga-toxins (Stx) from the gut lumen to underlying tissues is a decisive step in the development of the infection, but the mechanisms involved remain unclear. Many bacterial pathogens target the follicle-associated epithelium, which overlies Peyer's patches (PPs), cross the intestinal barrier through M cells and are captured by mucosal macrophages. Here, translocation across M cells, as well as survival and proliferation of EHEC strains within THP-1 macrophages were investigated using EHEC O157:H7 reference strains, isogenic mutants, and 15 EHEC strains isolated from HC/HUS patients. We showed for the first time that E. coli O157:H7 strains are able to interact in vivo with murine PPs, to translocate ex vivo through murine ileal mucosa with PPs and across an in vitro human M cell model. EHEC strains are also able to survive and to produce Stx in macrophages, which induce cell apoptosis and Stx release. In conclusion, our results suggest that the uptake of EHEC by M cells and underlying macrophages in the PP may be a critical step in Stx translocation and release in vivo. A new model for EHEC infection in humans is proposed that could help in a fuller understanding of EHEC-associated diseases.  相似文献   

7.
Enterohaemorrhagic Escherichia coli O157:H7 (EHEC) is a clinically important foodborne pathogen that colonizes human colon epithelium and induces acute colonic inflammation, but does not invade the epithelial cells. Whereas Shiga toxin (Stx) and bacterial flagellin have been studied for their ability to upregulate the production of proinflammatory chemokines by cultured human colon cancer cell lines, the relevance of studies in colon cancer cell lines to the production of proinflammatory signals by normal epithelial cells in EHEC-infected human colon is not known. We show herein that Stx does not bind to human colon epithelium in vivo. Moreover, globotriaosylceramide (Gb3/CD77) synthase, the enzyme required for synthesis of the Gb3/CD77 receptor for Stx, was not expressed by normal or inflamed human colon epithelium in vivo. In contrast, Toll-like receptor (TLR) 5, the receptor for bacterial flagellin, was expressed by normal human colon epithelium and by colon epithelium in human intestinal xenografts. EHEC H7 flagellin instilled in the lumen of human colon xenografts that contain an intact human epithelium upregulated the expression of epithelial cell proinflammatory chemokines, which was accompanied by a subepithelial influx of neutrophils. Isogenic mutants of EHEC that lacked flagellin did not significantly upregulate prototypic neutrophil and dendritic cell chemoattractants by model human colon epithelia, irrespective of Stx production. We conclude that EHEC H7 flagellin and not Stx is the major EHEC factor that directly upregulates proinflammatory chemokine production by human colon epithelium in vivo.  相似文献   

8.
肠出血性大肠杆菌(enterohemorrhage E-coli,EHEC)是一种重要的人畜共患病,世界各地包括中国都有不同规模的暴发流行。EHEC有多种血清型,其中毒力最强血清型是0157:H7。EHEC0157:H7感染除可使人发生常规腹泻外,还可在5%-10%的病例中引发严重并发症,甚至死亡。该菌是重要的食源性致病菌,危害严重,缺乏有效的防治手段,而抗生素治疗可能会加剧溶血性尿毒症(haemoluticuraemicsyndrome,HUS)。由于以上特点EHEC0157:H7成为世界公共卫生问题,引起微生物学家和公共卫生工作者的广泛关注。目前,临床针对EHEC感染只是对症治疗和适当的抗茵治疗。粘附是EHEC感染宿主细胞的第一步,没有这一步,细菌和宿主肠道细胞之间不会发生任何的相互作用,而且对于许多病原菌来说,粘附具有宿主特异性。本文概述了EHEC的流行病学及粘附机理,并对近年在EHEC研究中的发现一些新型粘附因子和一些假设的定植因子的研究背詈及作用机理作一综述。  相似文献   

9.
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen and tightly adheres to human colonic epithelium by forming attaching/effacing lesions. To reach the epithelial surface, EHEC must penetrate the thick mucus layer protecting the colonic epithelium. In this study, we investigated how EHEC interacts with the intestinal mucus layer using mucin‐producing LS174T colon carcinoma cells and human colonic mucosal biopsies. The level of EHEC binding and attaching/effacing lesion formation in LS174T cells was higher compared to mucin‐deficient colon carcinoma cell lines, and initial adherence was independent of the presence of flagellin, Escherichia coli common pilus, or long polar fimbriae. Although EHEC infection did not affect gene expression of secreted mucins, it resulted in reduced MUC2 glycoprotein levels. This effect was dependent on the catalytic activity of the secreted metalloprotease StcE, which reduced the inner mucus layer and thereby promoted EHEC access and binding to the epithelium in vitro and ex vivo. Given the lack of efficient therapies against EHEC infection, StcE may represent a suitable target for future treatment and prevention strategies.  相似文献   

10.
Following central administration, neuropeptides that decrease the level of cAMP induce feeding. Conversely, cAMP activating neuropeptides tend to elicit satiety. When the inhibitory effect of neuropeptide Y (NPY) on the hypothalamic cAMP production was blocked by pertussis toxin, the potent orexigenic effect of NPY was lost. These findings suggest that there may be a link between hypothalamic cAMP and the central regulation of food intake. In this report, we show that the injection of the membrane-permeable cAMP agonist, adenosine-3',5'-cyclic monophosphorothioate Sp-isomer (Sp-cAMP), into perifornical hypothalamus (PFH) significantly inhibited schedule-induced and NPY-induced food intake for up to 4h. This inhibitory effect was normalized within 24h. A taste aversion could not be conditioned to Sp-cAMP treatment, suggesting that the anorectic response was not due to malaise. Sp-cAMP administration significantly increased the active protein kinase A (PKA) activity in dorsomedial (DMH) and ventromedial (VMH), but not in lateral (LH) hypothalamus. Consistently, food deprivation lowered, while refeeding normalized endogenous cAMP content in DMH and VMH, but not in LH areas. No significant effect of adenosine-3',5'-cyclic monophosphorothioate Rp-isomer (Rp-cAMP, cAMP antagonist) was observed on hypothalamic PKA activity, schedule-induced, or NPY-induced food intake. These findings suggest that the increase in cAMP level and PKA activity in DMH and VMH areas may trigger a satiety signal.  相似文献   

11.
Verotoxins (VTs) are important virulence factors of enterohaemorrhagic Escherichia coli (EHEC), a group of bacteria associated with severe disease sequelae in humans. The potent cytotoxic activity of VTs is important in pathogenicity, resulting in the death of cells expressing receptor Gb3 (globotriaosylceramide). EHEC, particularly serotype O157:H7, frequently colonize reservoir hosts (such as cattle) in the absence of disease, however, the basis to avirulence in this host has been unclear. The objective of this study was assessment of interaction between VT and intestinal epithelium, which represents the major interface between the host and enteric organisms. Bovine intestinal epithelial cells expressed Gb3 in vitro in primary cell cultures, localizing specifically to proliferating crypt cells in corroboration with in situ immunohistological observations on intestinal mucosa. Expression of receptor by these cells contrasts with the absence of Gb3 on human intestinal epithelium in vivo. Despite receptor expression, VT exhibited no cytotoxic activity against bovine epithelial cells. Sub-cellular localization of VT indicated that this toxin was excluded from endoplasmic reticulum but localized to lysosomes, corresponding with abrogation of cytotoxicity. VT intracellular trafficking was unaffected by treatment of primary cell cultures with methyl-beta-cyclodextrin, indicating that Gb3 in these cells is not associated with lipid rafts but is randomly distributed in the membrane. The combination of Gb3 isoform, membrane distribution and VT trafficking correlate with observations of other receptor-positive cells that resist verocytotoxicity. These studies demonstrate that intestinal epithelium is an important determinant in VT interaction with major implications for the differential consequences of EHEC infection in reservoir hosts and humans.  相似文献   

12.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote the formation of actin-rich pedestals via translocated type III effectors. Two EHEC type III secreted effectors, Tir and EspFu/TccP, are key players for pedestal formation. We discovered that an EHEC effector protein called Non-LEE-encoded Ligase (NleL) is an E3 ubiquitin ligase. In vitro, we showed that the NleL C753 residue is critical for its E3 ligase activity. Functionally, we demonstrated that NleL E3 ubiquitin ligase activity is involved in modulating Tir-mediated pedestal formation. Surprisingly, EHEC mutant strain deficient in the E3 ligase activity induced more pedestals than the wild-type strain. The canonical EPEC strain E2348/69 normally lacks the nleL gene, and the ectopic expression of the wild-type EHEC nleL, but not the catalytically-deficient nleL(C753A) mutant, in this strain resulted in fewer actin-rich pedestals. Furthermore, we showed that the C. rodentium NleL homolog is a E3 ubiquitin ligase and is required for efficient infection of murine colonic epithelial cells in vivo. In summary, our study demonstrated that EHEC utilizes NleL E3 ubiquitin ligase activity to modulate Tir-mediated pedestal formation.  相似文献   

13.
14.
AIM: To evaluate the potential for polyclonal antibodies targeting enterohaemorrhagic Escherichia coli (EHEC) virulence determinants to prevent colonization of host cells by E. coli O157:H7. METHODS AND RESULTS: Rats and laying hens were immunized with recombinant proteins from E. coli O157:H7, EspA, C-terminal intimin or EscF. Rat antisera (IgG) or chicken egg powders (IgY) were assessed for their ability to inhibit growth and colonization-associated processes of E. coli O157:H7. Mammalian antisera with antibodies to intimin, EspA or EscF effectively reduced adherence of the pathogen to HeLa cells (P<0.05) and prevented type III secretion of Tir. Similarly, HeLa cells treated with chicken egg powder containing antibodies against intimin or EspA were protected from EHEC adherence (P<0.05). Neither egg nor rat antibody preparations had any antibacterial effect on the growth of EHEC (P>0.05). CONCLUSIONS: Antibody preparations targeting EHEC adherence-associated factors were effective at preventing adhesion and intimate colonization-associated events. SIGNIFICANCE AND IMPACT OF THE STUDY: This work indicates that immunotherapy with anti-adherence antibodies can reduce E. coli O157:H7 colonization of host cells. Passive immunization with specific antibodies may have the potential to reduce E. coli O157:H7 colonization in hosts such as cattle or humans.  相似文献   

15.
Enterohaemorrhagic Escherichia coli (EHEC) are food-borne intestinal pathogens with a low infectious dose. Adhesion of some EHEC strains to epithelial cells is attributed, in part, to intimin, but other factors may be required for the intestinal colonizing ability of these bacteria. In order to identify additional adherence factors of EHEC, we generated transposon mutants of a clinical EHEC isolate of serotype O111:H-, which displayed high levels of adherence to cultured Chinese hamster ovary (CHO) cells. One mutant was markedly deficient in CHO cell adherence, human red blood cell agglutination and autoaggregation. Sequence analysis of the gene disrupted in this mutant revealed a 9669 bp novel chromosomal open reading frame (ORF), which was designated efa1, for EHEC factor for adherence. efa1 displayed 28% amino acid identity with the predicted product of a recently described ORF from the haemolysin-encoding plasmid of EHEC O157:H7. The amino termini of the putative products of these two genes exhibit up to 38% amino acid similarity to Clostridium difficile toxins A and B. efa1 occurred within a novel genetic locus, at least 15 kb in length, which featured a low G+C content, several insertion sequence homologues and a homologue of the Shigella flexneri enterotoxin ShET2. DNA probes prepared from different regions of efa1 hybridized with all of 116 strains of attaching-effacing E. coli (AEEC) of a variety of serotypes, including enteropathogenic E. coli (EPEC) and EHEC, but with none of 91 non-AEEC strains. Nevertheless, efa1 was not required for the attachment-effacement phenotype, and the efa1 locus was not physically linked to the locus for enterocyte effacement (LEE) pathogenicity island, which is responsible for this phenotype in EPEC. These findings suggest that efa1 encodes a novel virulence-associated determinant of AEEC, which contributes to the adhesive capacity of these bacteria.  相似文献   

16.
In type 2 diabetes, beta-cells become glucose unresponsive, contributing to hyperglycemia. To address this problem, we recently created clonal insulin-producing cell lines from the INS-1 insulinoma line, which exhibit glucose responsiveness ranging from poor to robust. Here, mechanisms that determine secretory performance were identified by functionally comparing glucose-responsive 832/13 beta-cells with glucose-unresponsive 832/2 beta-cells. Thus, insulin secretion from 832/13 cells maximally rose 8-fold in response to glucose, whereas 832/2 cells responded only 1.5-fold. Insulin content in both lines was similar, indicating that differences in stimulus-secretion coupling account for the differential secretory performance. Forskolin or isobutylmethylxanthine markedly enhanced insulin secretion from 832/13 but not from 832/2 cells, suggesting that cAMP is essential for the enhanced secretory performance of 832/13 cells. Indeed, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, rp-isomer (Rp-8-Br-cAMPS) an inhibitor of protein kinase A (PKA), inhibited insulin secretion in response to glucose with or without forskolin. Interestingly, whereas forskolin markedly increased cAMP in 832/2 cells, 832/13 cells exhibited only a marginal rise in cAMP. This suggests that 832/13 cells are more sensitive to cAMP. Indeed, the cAMP-induced exocytotic response in patch-clamped 832/13 cells was 2-fold greater than in 832/2 cells. Furthermore, immunoblotting revealed that expression of the catalytic subunit of PKA was 2-fold higher in 832/13 cells. Moreover, when the regulatory subunit of PKA was overexpressed in 832/13 cells, to reduce the level of unbound and catalytically active kinase, insulin secretion and PKA activity were blunted. Our findings show that cAMP-PKA signaling correlates with secretory performance in beta-cells.  相似文献   

17.
To examine signaling mechanisms relevant to cAMP/protein kinase A (PKA)-dependent endothelial cell barrier regulation, we investigated the impact of the cAMP/PKA inhibitors Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS) and PKA inhibitor (PKI) on bovine pulmonary artery and bovine lung microvascular endothelial cell cytoskeleton reorganization. Rp-cAMPS as well as PKI significantly increased the formation of actin stress fibers and intercellular gaps but did not alter myosin light chain (MLC) phosphorylation, suggesting that the Rp-cAMPS-induced contractile phenotype evolves in an MLC-independent fashion. We next examined the role of extracellular signal-regulated kinases (ERKs) in Rp-cAMPS- and PKI-induced actin rearrangement. The activities of both ERK1/2 and its upstream activator Raf-1 were transiently enhanced by Rp-cAMPS and linked to the phosphorylation of the well-known ERK cytoskeletal target caldesmon. Inhibition of the Raf-1 target ERK kinase (MEK) either attenuated or abolished Rp-cAMPS- and PKI-induced ERK activation, caldesmon phosphorylation, and stress fiber formation. In summary, our data elucidate the involvement of the p42/44 ERK pathway in cytoskeletal rearrangement evoked by reductions in PKA activity and suggest the involvement of significant cross talk between cAMP- and ERK-dependent signaling pathways in endothelial cell cytoskeletal organization and barrier regulation.  相似文献   

18.
Attaching-effacing (A/E) lesions following natural and experimental infection with Escherichia coli O157:H7 have been seen in neonatal and 3-4-month-old weanling but not older cattle. To test the hypothesis that the adult bovine large intestinal epithelium is resistant to the development of A/E lesions, colonic and rectal mucosal tissue explants from 18-month-old steers were inoculated with E. coli O157:H7 and examined. Epithelial cells of inoculated explants developed A/E lesions at the bacterial attachment sites, providing evidence that the large intestinal mucosal epithelium may be a site of infection that contributes to carriage of E. coli O157:H7 in adult cattle.  相似文献   

19.
肠出血性大肠杆菌O157感染防治研究进展   总被引:15,自引:0,他引:15  
肠出血性大肠杆菌 (EHEC)感染是一种重要的新发传染病 ,O15 7是EHEC的一个主要菌型 ,感染该菌可使人患腹泻、出血性结肠炎 (HC)、溶血性尿毒综合征 (HUS)等 ,死亡率较高。EHECO15 7感染在许多国家包括我国都有暴发流行。EHECO15 7产生的粘附因子Intimin可引起粘附擦拭 (A/E)损伤 ,并可产生致死性的毒素Stx。抗生素治疗可使患者并发HUS危险性增加 ,临床上无特效的治疗药物 ,疫苗研究将对EHECO15 7的控制起重要作用。  相似文献   

20.
The type III secreted protein Tir from Enterohemorrhagic Escherichia coli (EHEC O157:H7) plays a central role in adherence and pedestal formation during infection. Little is known about how Tir domains outside of the amino-terminus contribute to efficient Tir secretion and translocation. We found a 6 amino acid (519-524) carboxy-terminal region which was required for efficient Tir secretion and translocation. Interestingly, EHEC O157:H7 Tir(Delta)519-524 was efficiently secreted when expressed in the related pathogen enteropathogenic E. coli. These data suggest that this region may play a role in maintaining EHEC O157:H7 Tir in a secretion-competent conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号