首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During remodeling progress post myocardial infarction, the contribution of neoangiogenesis to the infarct-bed capillary is insufficient to support the greater demands of the hypertrophied but viable myocardium resulting in further ischemic injury to the viable cardiomyocytes at risk. Here we reported the bio-assay-guided identification and isolation of angiogenic tannins (angio-T) from Geum japonicum that induced rapid revascularization of infarcted myocardium and promoted survival potential of the viable cardiomyocytes at risk after myocardial infarction. Our results demonstrated that angio-T displayed potent dual effects on up-regulating expression of angiogenic factors, which would contribute to the early revascularization and protection of the cardiomyocytes against further ischemic injury, and inducing antiapoptotic protein expression, which inhibited apoptotic death of cardiomyocytes in the infarcted hearts and limited infarct size. Echocardiographic studies demonstrated that angio-T-induced therapeutic effects on acute infarcted myocardium were accompanied by significant functional improvement by 2 days after infarction. This improvement was sustained for 14 days. These therapeutic properties of angio-T to induce early reconstitution of a blood supply network, prevent apoptotic death of cardiomyocytes at risk, and improve heart function post infarction appear entirely novel and may provide a new dimension for therapeutic angiogenesis medicine for the treatment of ischemic heart diseases.  相似文献   

2.
Summary Both cell therapy and angiogenic growth factor gene therapy have been applied to animal studies and clinical trials. Little is known about the direct comparison between cell therapy and angiogenic growth factor gene therapy. The goal of this study was to compare the effects of human bone marrow-derived mesenchymal stem cells (hMSCs) transplantation and injection of angiogenic growth factor genes in a model of acute myocardial infarction in mice. The hMSCs were obtained from adult human bone marrow and expanded in vitro. The purity and characteristics of hMSCs were identified by flow cytometry and immunophenotyping. Immediately after ligation of the left anterior descending coronary artery in male severe combined immunodeficient (SCID) mice, culture-expanded hMSCs or angiogenic growth factor genes were injected intramuscularly at the left anterior free wall. The engrafted hMSCs were positive for cardiac marker, desmin. Infarct size was significantly smaller in the hMSCs-treated group than in the angiopoietin-1 (Ang-1) or vascular endothelial growth factor (VEGF)-treated group at day 28 after infarction. hMSCs transplantation was better in decreasing left ventricular end-diastolic dimension and increasing fractional shortening than Ang1 or VEGF gene therapy. Capillary density was markedly increased after hMSCs transplantation than Ang1 and VEGF gene therapy. In conclusion, intramyocardial transplantation of hMSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium. hMSCs are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Transplantation of MSCs may become the future therapy for acute myocardial infarction for myocardial regeneration.  相似文献   

3.
Mesenchymal stem cells (MSCs) are pluripotent cells that differentiate into a variety of cells, including cardiomyocytes and endothelial cells. However, little information is available regarding the therapeutic potency of systemically delivered MSCs for myocardial infarction. Accordingly, we investigated whether intravenously transplanted MSCs induce angiogenesis and myogenesis and improve cardiac function in rats with acute myocardial infarction. MSCs were isolated from bone marrow aspirates of isogenic adult rats and expanded ex vivo. At 3 h after coronary ligation, 5 x 10(6) MSCs (MSC group, n=12) or vehicle (control group, n=12) was intravenously administered to Lewis rats. Transplanted MSCs were preferentially attracted to the infarcted, but not the noninfarcted, myocardium. The engrafted MSCs were positive for cardiac markers: desmin, cardiac troponin T, and connexin43. On the other hand, some of the transplanted MSCs were positive for von Willebrand factor and formed vascular structures. Capillary density was markedly increased after MSC transplantation. Cardiac infarct size was significantly smaller in the MSC than in the control group (24 +/- 2 vs. 33 +/- 2%, P <0.05). MSC transplantation decreased left ventricular end-diastolic pressure and increased left ventricular maximum dP/dt (both P <0.05 vs. control). These results suggest that intravenous administration of MSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium.  相似文献   

4.
Beraprost sodium, an orally active prostacyclin analogue, has vasoprotective effects such as vasodilation and antiplatelet activities. We investigated the therapeutic potential of beraprost for myocardial ischemia. Immediately after coronary ligation of Sprague-Dawley rats, beraprost (200 microg/kg/day) or saline was subcutaneously administered for 28 days. Four weeks after coronary ligation, administration of beraprost increased capillary density in ischemic myocardium, decreased infarct size, and improved cardiac function in rats with myocardial infarction. Beraprost markedly increased the number of CD34-positive cells and c-kit-positive cells in plasma. Also, four weeks after coronary ligation of chimeric rats with GFP-expressing bone marrow, bone marrow-derived cells were incorporated into the infarcted region and its border zone. Treatment with beraprost increased the number of GFP/von Willebrand factor-double-positive cells in the ischemic myocardium. These results suggest that beraprost has beneficial effects on ischemic myocardium partly by its ability to enhance neovascularization in ischemic myocardium by mobilizing bone marrow cells.  相似文献   

5.
We tested the hypothesis that granulocyte colony-stimulating factor (G-CSF) administration would enhance the efficacy of cellular cardiomyoplasty with embryonic stem (ES) cell-derived cardiomyocytes in infarcted myocardium. Three weeks after myocardial infarction by cryoinjury, Sprague-Dawley rats were randomized to receive either an injection of medium, ES cell-derived cardiomyocyte transplantation, G-CSF administration, or a combination of G-CSF administration and ES cell-derived cardiomyocyte transplantation. Eight weeks after treatment, the cardiac tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. The left ventricular (LV) dimensions and function of the treated heart were evaluated by echocardiography. Transplanted ES cell-derived cardiomyocytes survived and participated in the myocardial regeneration in the infarcted heart. A combination of G-CSF treatment and ES cell-derived cardiomyocyte transplantation significantly promoted angiogenesis and reduced the infarct area and cell apoptosis in the infarcted myocardium compared with ES cell-derived cardiomyocyte transplantation alone. The combination therapy also attenuated LV dilation, as compared with ES cell-derived cardiomyocyte transplantation alone. G-CSF treatment can enhance the efficacy of cellular cardiomyoplasty by ES cell-derived cardiomyocyte transplantation to treat myocardial infarction.  相似文献   

6.
Background aimsIt has been demonstrated that transplantation of human cord blood-derived unrestricted somatic stem cells (USSC) in a porcine model of acute myocardial infarction (MI) significantly improved left ventricular (LV) function and prevented scar formation as well as LV dilation. Differentiation, apoptosis and macrophage mobilization at the infarct site could be excluded as the underlying mechanisms. The paracrine effect of the cells is most likely to be observed as the cause for the USSC treatment. The aim of our study was to examine the cardiomyocyte metabolism and the role of high-energy phosphates at the marginal infarct.MethodsUSSC were transplanted into the myocardium of the LV, which was supplied by a ligated circumflex artery. Forty-eight hours later, the hearts were harvested and biopsies were performed from the marginal infarct zone surrounding the site of the cell injection. The concentrations of creatinine phosphate (CP), adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) were determined by chromatography.ResultsThe concentration of ADP, ATP and CP in the marginal zone of the infarction was significantly higher in the USSC group. The mean global left ventricular ejection fraction (LVEF) (SD) was 64% (8%) before MI; post-MI, LVEF decreased to 35% (9%).ConclusionsPreservation of high-energy phosphates in the marginal infarct zone suggests that the preservation of energy reserves of surviving cardiomyocytes is a possible mechanism of action of transplanted stem cells in acutely ischemic myocardium.  相似文献   

7.
Intracoronary injection of the bone marrow-derived mononuclear cells (MNCs) is emerging as a potentially novel therapy for ischemic heart failure. This study was aimed at assessing the efficacy of intracoronary MNC delivery in the myocardium. The in vivo distribution and myocardial homing of intracoronarily delivered MNCs in experimental Chinese swine with acute myocardial infarction (AMI) created by occlusion of left anterior descending (LAD) coronary artery for 90 min. MNCs radiolabeled with 18F-fluoro-deoxy-glucose (18F-FDG) were delivered using a coronary catheter into the infarct-related coronary artery 1 week after AMI. Dual-nuclide single photon emission computed tomography (SPECT) revealed that 1 h after cell infusion, 6.8 +/- 1.8% of 18F-FDG-labeled MNCs occurred in the infarcted myocardium with the remaining activity found primarily in the liver and spleen. In the heart, MNCs were detected predominantly in the under-perfused myocardium. The infused cells retained in the hearts at a rate highly correlated with the under-perfused lesional sizes. Pathological examination further demonstrated that 6 weeks after infusion, compared to controls, the hearts receiving MNCs exhibited less fibrosis and inflammatory infiltrate, more viable tissue, and higher vascular density. Cardiac function was significantly improved in the MNC-infused hearts. Thus, 18F-FDG labeling and dual-nuclide SPECT imaging is capable of monitoring in vivo distribution and homing of MNCs after intracoronary infusion. MNC coronary delivery may improve cardiac function and positive ventricular remodeling in the heart with AMI.  相似文献   

8.
The midterm effects of cardiac telocytes (CTs) transplantation on myocardial infarction (MI) and the cellular mechanisms involved in the beneficial effects of CTs transplantation are not understood. In the present study, we have revealed that transplantation of CTs was able to significantly decrease the infarct size and improved cardiac function 14 weeks after MI. It has established that CT transplantation exerted a protective effect on the myocardium and this was maintained for at least 14 weeks. The cellular mechanism behind this beneficial effect on MI was partially attributed to increased cardiac angiogenesis, improved reconstruction of the CT network and decreased myocardial fibrosis. These combined effects decreased the infarct size, improved the reconstruction of the LV and enhanced myocardial function in MI. Our findings suggest that CTs could be considered as a potential cell source for therapeutic use to improve cardiac repair and function following MI, used either alone or in tandem with stem cells.  相似文献   

9.
Myocardial infarction (MI) is characterized by ventricular remodeling, hypertrophy of the surviving myocardium, and an insufficient angiogenic response. Thyroxine is a powerful stimulus for myocardial angiogenesis. Male rats that underwent coronary artery ligation and subsequent MI were given 3,5-diiodothyropropionic acid (DITPA; MI+DITPA group) during a 3-wk period. We evaluated ventricular remodeling using echocardiography and histology and myocardial vessel growth using image analysis. Protein expression was assessed using Western blotting and immunohistochemistry. This study tested the hypothesis that the thyroxine analog DITPA facilitates angiogenesis and influences postinfarction remodeling in the surviving hypertrophic myocardium. The increase in the region of akinesis (infarct expansion) was blunted in the MI+DITPA rats compared with the MI group (3 vs. 21%); the treated rats had smaller percent increases in the left ventricular (LV) volume (64 +/- 14 vs. 95 +/- 12) and the LV volume-to-mass ratio (47 +/- 13 vs. 84 +/- 10) as well as a blunted decrease in ejection fraction (-9 +/- 8 vs. -30 +/- 7%). Arteriolar length density was higher after treatment in the largest (>50% of the free wall) infarcts (64 +/- 3 vs. 43 +/- 7). Angiogenic growth factors [vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)] and the angiopoietin receptor tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Tie-2) values were elevated during the first week after infarction. DITPA did not cause additional increases in VEGF or Tie-2 values but did induce an increase in bFGF value after 3 days of treatment. This study provides the first evidence for an anatomical basis, i.e., attenuated ventricular remodeling and arteriolar growth, for improved function attributed to DITPA therapy of the infarcted heart. The favorable influences of DITPA on LV remodeling after large infarction are principally due to border zone preservation.  相似文献   

10.
The alphavbeta3-integrin is expressed in angiogenic vessels in response to hypoxia and represents a potential novel target for imaging myocardial angiogenesis. This study evaluated the feasibility of noninvasively tracking hypoxia-induced alphavbeta3-integrin activation within the myocardium as a marker of angiogenesis early after myocardial infarction. Acute myocardial infarction was produced by coronary artery occlusion in rodent and canine studies. A novel (111)In-labeled radiotracer targeted at the alphavbeta3-integrin ((111)In-RP748) was used to localize regions of hypoxia-induced angiogenesis early after infarction. In rodent studies, the specificity of (111)In-RP748 for alphavbeta3-integrin was confirmed with a negative control compound ((111)In-RP790), and regional uptake of these compounds correlated with (201)Tl perfusion and a (99m)Tc-labeled nitroimidazole (BRU59-21), which was used as a quantitative marker of myocardial hypoxia. The ex vivo analysis demonstrated that only (111)In-RP748 was selectively retained in infarcted regions with reduced (201)Tl perfusion and correlated with uptake of BRU59-21. In canine studies, myocardial uptake of (111)In-RP748 was assessed using in vivo single-photon-emission computed tomography (SPECT), ex vivo planar imaging, and gamma well counting of myocardial tissue and correlated with (99m)Tc-labeled 2-methoxy-2-methyl-propyl-isonitrile ((99m)Tc-sestamibi) perfusion. Dual-radiotracer in vivo SPECT imaging of (111)In-RP748 and (99m)Tc-sestamibi provided visualization of (111)In-RP748 uptake within the infarct region, which was confirmed by ex vivo planar imaging of excised myocardial slices. Myocardial (111)In-RP748 retention was associated with histological evidence of alphavbeta3-integrin expression/activation in the infarct region. (111)In-RP748 imaging provides a novel noninvasive approach for evaluation of hypoxia-induced alphavbeta3-integrin activation in myocardium early after infarction and may prove useful for directing and evaluating angiogenic therapies in patients with ischemic heart disease.  相似文献   

11.
Nicorandil has been shown to induce an infarct-limiting effect similar to that induced by the early phase of ischemic preconditioning (PC). The goals of this study were to determine whether nicorandil induces a delayed cardioprotection that is analogous to the late phase of ischemic PC and, if so, whether nicorandil-induced late PC is associated with upregulation of cardioprotective proteins. Chronically instrumented, conscious rabbits received vehicle (intravenous normal saline; control group, n = 10), nicorandil (100 microg/kg bolus + 30 microg x kg(-1) x min(-1) i.v. for 60 min; nicorandil group, n = 10), or ischemic PC (6 cycles of 4-min coronary occlusion/4-min reperfusion; PC group, n = 8). Twenty-four hours later, rabbits underwent a 30-min coronary occlusion, followed by 3 days of reperfusion. Myocardial infarct size was significantly reduced in rabbits pretreated with nicorandil (27.5 +/- 5.3% of the risk region) or with ischemia (30.3 +/- 4.2%) versus controls (59.1 +/- 4.7%, P < 0.05 vs. both). Furthermore, the expression of cyclooxygenase-2 (COX-2) and Bcl-2 was significantly elevated (+38% and +126%, respectively; P < 0.05) in myocardium of rabbits given nicorandil 24 h earlier versus controls. We conclude that nicorandil induces delayed cardioprotection against myocardial infarction similar to that afforded by the late phase of ischemic PC, possibly by upregulating COX-2 and Bcl-2.  相似文献   

12.
Mesenchymal stem cells (MSCs) from healthy donors improve cardiac function in experimental acute myocardial infarction (AMI) models. However, little is known about the therapeutic capacity of human MSCs (hMSCs) from patients with ischemic heart disease (IHD). Therefore, the behavior of hMSCs from IHD patients in an immune-compromised mouse AMI model was studied. Enhanced green fluorescent protein-labeled hMSCs from IHD patients (hMSC group: 2 x 10(5) cells in 20 microl, n = 12) or vehicle only (medium group: n = 14) were injected into infarcted myocardium of NOD/scid mice. Sham-operated mice were used as the control (n = 10). Cardiac anatomy and function were serially assessed using 9.4-T magnetic resonance imaging (MRI); 2 wk after cell transplantation, immunohistological analysis was performed. At day 2, delayed-enhancement MRI showed no difference in myocardial infarction (MI) size between the hMSC and medium groups (33 +/- 2% vs. 36 +/- 2%; P = not significant). A comparable increase in left ventricular (LV) volume and decrease in ejection fraction (EF) was observed in both MI groups. However, at day 14, EF was higher in the hMSC than in the medium group (24 +/- 3% vs. 16 +/- 2%; P < 0.05). This was accompanied by increased vascularity and reduced thinning of the infarct scar. Engrafted hMSCs (4.1 +/- 0.3% of injected cells) expressed von Willebrand factor (16.9 +/- 2.7%) but no stringent cardiac or smooth muscle markers. hMSCs from patients with IHD engraft in infarcted mouse myocardium and preserve LV function 2 wk after AMI, potentially through an enhancement of scar vascularity and a reduction of wall thinning.  相似文献   

13.
Study of physiological angiogenesis and associated signalling mechanisms in adult heart has been limited by the lack of a robust animal model. We investigated thyroid hormone‐induced sprouting angiogenesis and the underlying mechanism. Hypothyroidism was induced in C57BL/6J mice by feeding with propylthiouracil (PTU). One year of PTU treatment induced heart failure. Both 12 weeks‐ (young) and 1 year‐PTU (middle age) treatment caused a remarkable capillary rarefaction observed in capillary density. Three‐day Triiodothyronine (T3) treatment significantly induced cardiac capillary growth in hypothyroid mice. In cultured left ventricle (LV) tissues from PTU‐treated mice, T3 also induced robust sprouting angiogenesis where pericyte‐wrapped endothelial cells formed tubes. The in vitro T3 angiogenic response was similar in mice pre‐treated with PTU for periods ranging from 1.5 to 12 months. Besides bFGF and VEGF164, PDGF‐BB was the most robust angiogenic growth factor, which stimulated notable sprouting angiogenesis in cultured hypothyroid LV tissues with increasing potency, but had little effect on tissues from euthyroid mice. T3 treatment significantly increased PDGF receptor beta (PDGFR‐β) protein levels in hypothyroid heart. PDGFR inhibitors blocked the action of T3 both on sprouting angiogenesis in cultured LV tissue and on capillary growth in vivo. In addition, activation of Akt signalling mediated in T3‐induced angiogenesis was blocked by PDGFR inhibitor and neutralizing antibody. Our results suggest that hypothyroidism leads to cardiac microvascular impairment and rarefaction with increased sensitivity to angiogenic growth factors. T3‐induced cardiac sprouting angiogenesis in adult hypothyroid mice was associated with PDGF‐BB, PDGFR‐β and downstream activation of Akt.  相似文献   

14.
Background Previous study demonstrated the improvement of cardiac function was proportional to the number of cells implanted. Therefore, increasing cell survival in the infarcted myocardium might contribute to the improvement of the functional benefit of cell transplantation. Methods and results MSCs were treated with IGF-1 in vitro and infused into the acute myocardial infarction rats via the tail vein. After treatment of MSCs with IGF-1 for 48 h, flow cytometric analysis showed marked enhancement of expression of CXCR4 in the cell surface. After 4 weeks of transplantation, we found 1) a greater number of engrafted MSCs arrived and survived in the peri-infarct region; 2) TnT protein expression and capillary density were enhanced; 3) LV cavitary dilation, transmural infarct thinning, deposition of total collagen in the peri-infarct region and cardiac dysfunction were attenuated. Conclusion 1) IGF-1 treatment has time-dependent and dose-dependent effects on CXCR4 expression in MSCs in vitro. 2) IGF-1 improves the efficacy of MSCs transplantation in a rat model of myocardial infarction mainly via enhancement of the number of cells attracted into the infarcted heart. These findings provide a novel stem cell therapeutic avenue against ischemic heart disease.  相似文献   

15.
Transplantation of adult marrow stromal cells (MSCs) has been developed as a new method of treating severe ischemia diseases by therapeutic angiogenesis. Erythropoietin (EPO) is capable of inducing angiogenesis and inhibiting MSCs apoptosis. The effect of EPO on the therapeutic potency of MSCs transplantation in a rat model of limb ischemia was investigated in the current study. The results indicate that the combined treatment with MSC transplantation and EPO infusion is superior to MSC transplantation alone in the treatment of limb ischemia. MSCs transplantation and EPO infusion could enhance the angiogenic effect of each other to achieve a better therapeutic effect. This combination therapy may become a more effective approach for ischemia diseases of the limbs.  相似文献   

16.
Recent studies suggest that the therapeutic effects of stem cell transplantation following myocardial infarction (MI) are mediated by paracrine factors. One of the main goals in the treatment of ischemic heart disease is to stimulate vascular repair mechanisms. Here, we sought to explore the therapeutic angiogenic potential of mesenchymal stem cell (MSC) secretions. Human MSC secretions were collected as conditioned medium (MSC-CM) using a clinically compliant protocol. Based on proteomic and pathway analysis of MSC-CM, an in vitro assay of HUVEC spheroids was performed identifying the angiogenic properties of MSC-CM. Subsequently, pigs were subjected to surgical left circumflex coronary artery ligation and randomized to intravenous MSC-CM treatment or non-CM (NCM) treatment for 7 days. Three weeks after MI, myocardial capillary density was higher in pigs treated with MSC-CM (645 ± 114 vs 981 ± 55 capillaries/mm(2); P = 0.021), which was accompanied by reduced myocardial infarct size and preserved systolic and diastolic performance. Intravenous MSC-CM treatment after myocardial infarction increases capillary density and preserves cardiac function, probably by increasing myocardial perfusion.  相似文献   

17.
We hypothesised that angiopoietin-1 (Ang-1), in conjunction with vascular endothelial growth factor (VEGF) gene therapy, can enhance arteriogenesis and angiogenesis during myocardial ischemia. Mice were given a single intramyocardial injection of saline, phVEGF-A(165) and phAng-1 or a combination thereof into the non-ischemic normal heart or into the ischemic border zone of the infarcted heart. In the normal and the ischemic myocardium, gene transfer of phVEGF-A(165) alone increased the myocardial capillary density by 16% and 36%, respectively, and phAng-1 had a similar effect. In the normal heart, the ratio of arteriolar to capillary densities increased with phVEGF-A(165) and more so in the ischemic myocardium where phAng-1 also had an effect. Furthermore, the combination of plasmids induced an up to 7.5-fold increase. Transient overexpression of VEGF-A(165) boosts endogenous arteriogenesis in addition to capillary angiogenesis. Ang-1 further boosts this effect at the arteriolar level.  相似文献   

18.
The aim of this present study is to investigate the impacts of combinatorial simvastatin administration and endothelial progenitor cell (EPC) transplantation on therapeutic angiogenesis in an athymic nude mouse model of hind limb ischemia. Athymic nude mice were divided into four groups (n = 10/group): vehicle administration plus PBS injection (control), simvastatin administration plus PBS injection (simvastatin), vehicle administration plus EPC transplantation (EPC), and simvastatin administration plus EPC transplantation (combination). The combination therapy had the greatest laser Doppler blood perfusion imager (LDPI) index and capillary density among the four groups. Importantly, this combination therapy significantly reduced apoptosis of ischemic skeletal muscle cells in part through downregulation of Bax and upregulation of Bcl-2 compared with the other groups. Moreover, the combination therapy exhibited the highest efficacy of increasing the ratio of phospho-Akt to Akt among the four groups. Taken together, the simvastatin and EPC combination therapy promotes powerful angiogenesis in hindlimb ischemia. The combination therapy not only inhibites apoptosis of ischemic skeletal muscle cells partially via downregulation of Bax and upregulation of Bcl-2, but also activates Akt phosphorylation significantly. These efficacies may be mediated by the angiogenic potency of simvastatin, EPCs, and by the beneficial effects of simvastatin on transplanted EPCs as well.  相似文献   

19.
20.
Our previous work has shown strong expression of COX-2 in the myocardium of patients with end-stage ischemic heart failure. The purpose of this study was to determine the cellular expression of this enzyme in the setting of acute myocardial infarction (AMI) and determine the role of COX-2 in experimental animals using a selective COX-2 inhibitor. Experimental AMI was induced in rats by ligating the left coronary artery. Animals were either treated with a selective COX-2 inhibitor (5 mg x kg(-1) x day(-1)) or vehicle. Three days after ligation, cardiac function was assessed and infarct size was determined. Myocardial specimens were immunostained with antiserum to COX-2. Plasma concentration of prostanoids was measured by enzyme immunoassay. There was strong expression of COX-2 in the myocytes, endocardium, vascular endothelial cells, and macrophages in the infarcted zone of the myocardium. In contrast, little expression was seen in the myocardium of control rats. Animals treated with the COX-2 inhibitor showed a significant improvement in left ventricular (LV) end-diastolic pressure (P < 0.05) and LV systolic pressure (P < 0.01), and a reduction in infarct size (P < 0.05). Inhibition of COX-2 significantly decreased plasma concentration of thromboxane B2 (P < 0.05); however, it did not affect 6-keto-prostaglandin F1alpha. Induction of COX-2 during AMI appears to contribute to myocardial injury, and treatment with the specific inhibitor of the enzyme ameliorated the course of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号