首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of either the A(1) or the A(3) adenosine receptor (A(1)R or A(3)R, respectively) elicits delayed cardioprotection against infarction, ischemia, and hypoxia. Mitochondrial contribution to the progression of cardiomyocyte injury is well known; however, the protective effects of adenosine receptor activation in cardiac cells with a respiratory chain deficiency are poorly elucidated. The aim of our study was to further define the role of A(1)R and A(3)R activation on functional tolerance after inhibition of the terminal link of the mitochondrial respiratory chain with sodium azide, in a state of normoxia or hypoxia, compared with the effects of the mitochondrial ATP-sensitive K(+) channel opener diazoxide. Treatment with 10 mM sodium azide for 2 h in normoxia caused a considerable decrease in the total ATP level; however, activation of adenosine receptors significantly attenuated this decrease. Diazoxide (100 muM) was less effective in protection. During treatment of cultured cardiomyocytes with hypoxia in the presence of 1 mM sodium azide, the A(1)R agonist 2-chloro-N(6)-cyclopentyladenosine was ineffective, whereas the A(3)R agonist 2-chloro-N(6)-iodobenzyl-5'-N-methylcarboxamidoadenosine (Cl-IB-MECA) attenuated the decrease in ATP level and prevented cell injury. Cl-IB-MECA delayed the dissipation in the mitochondrial membrane potential during hypoxia in cells impaired in the mitochondrial respiratory chain. In cells with elevated intracellular Ca(2+) concentration after hypoxia and treatment with NaN(3) or after application of high doses of NaN(3), Cl-IB-MECA immediately decreased the elevated intracellular Ca(2+) concentration toward the diastolic control level. The A(1)R agonist was ineffective. This may be especially important for the development of effective pharmacological agents, because mitochondrial dysfunction is a leading factor in the pathophysiological cascade of heart disease.  相似文献   

2.
Adenosine is a biologically active molecule that is formed at sites of metabolic stress associated with trauma and inflammation, and its systemic level reaches high concentrations in sepsis. We have recently shown that inactivation of A2A adenosine receptors decreases bacterial burden as well as IL-10, IL-6, and MIP-2 production in mice that were made septic by cecal ligation and puncture (CLP). Macrophages are important in both elimination of pathogens and cytokine production in sepsis. Therefore, in the present study, we questioned whether macrophages are responsible for the decreased bacterial load and cytokine production in A2A receptor-inactivated septic mice. We showed that A2A KO and WT peritoneal macrophages obtained from septic animals were equally effective in phagocytosing opsonized E. coli. IL-10 production induced by opsonized E. coli was decreased in macrophages obtained from septic A2A KO mice as compared to WT counterparts. In contrast, the release of IL-6 and MIP-2 induced by opsonized E. coli was higher in septic A2A KO macrophages than WT macrophages. These results suggest that peritoneal macrophages are not responsible for the decreased bacterial load and diminished MIP-2 and IL-6 production that are observed in septic A2A KO mice. In contrast, peritoneal macrophages may contribute to the suppressive effect of A2A receptor inactivation on IL-10 production during sepsis.  相似文献   

3.
钙激活氯离子通道对大鼠肺动脉张力的调节作用   总被引:1,自引:0,他引:1  
目的:研究钙激活氯离子通道及其通道阻断剂尼氟灭酸(niflumic acid,NFA)、indaryloxyacetic acid(IAA-94)在苯福林(phenylephrine,PE)引起的肺动脉收缩中的作用。方法:常规离体血管灌流法检测肺动脉环张力;采用钙荧光探针(Fura-2/AM)负载急性酶分离法(胶原酶Ⅰ型和木瓜蛋白酶)获得的大鼠肺动脉平滑肌细胞(PASMCs),观察NFA和IAA-94对PE诱导的PASMCs胞浆游离钙离子浓度([Ca^2+]i)的影响,用荧光分光光度计法检测[Ca^2+]i。结果:钙激活氯离子通道阻断剂NFA和IAA-94可以舒张PE引起的肺动脉环收缩;NFA和IAA-94对KCl引起的血管收缩无影响;PE可以引起[Ca^2+]i升高,NFA和IAA-94对PE诱导[Ca^2+]i升高无影响。结论:钙激活氯离子通道在生理状态下与血管活性药(PE)引起的肺动脉张力变化有关,这为研究其在低氧肺血管收缩中的作用提供了新的线索。  相似文献   

4.
To determine whether A1 adenosine receptors (AR) participate in adenosine-induced changes of coronary flow, isolated hearts from A1AR(-/-) and A1AR(+/+) mice were perfused under constant pressure, and the effects of nonselective and selective agonists were examined. Adenosine, 5'-N-ethylcarboxamidoadenosine (NECA, nonselective), and the selective A2AAR agonist 2-2-carboxyethylphenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680) augmented maximal coronary vasodilation in A1AR(-/-) hearts compared with A1AR(+/+) hearts. Basal coronary flow was increased (P < 0.05) in A1AR(-/-) hearts compared with A1AR(+/+) hearts: 2.548 +/- 0.1 vs. 2.059 +/- 0.17 ml/min. In addition, selective activation of A1AR with 2-chloro-N6-cyclopentyladenosine (CCPA) at nanomolar concentrations (1-100 nM) did not significantly change coronary flow; at higher concentrations, CCPA increased coronary flow in A1AR(-/-) and A1AR(+/+) hearts. Because deletion of A1AR increased basal coronary flow, it is speculated that this effect is due to removal of an inhibitory influence associated with A1AR. Adenosine and NECA at approximately EC50 (100 and 50 nM, respectively) increased coronary flow in A1AR(+/+) hearts to 177.86 +/- 8.75 and 172.72 +/- 17% of baseline, respectively. In the presence of the selective A1AR antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 50 nM), the adenosine- and NECA-induced increase in coronary flow in A1AR(+/+) hearts was significantly augmented to 216.106 +/- 8.35 and 201.61 +/- 21.89% of normalized baseline values, respectively. The adenosine- and NECA-induced increase in coronary flow in A1AR(-/-) hearts was not altered by DPCPX. These data indicate that A1AR may inhibit or negatively modulate coronary flow mediated by other AR subtypes (A2A and A2B).  相似文献   

5.
We examined the responses of newborn piglet pulmonary resistance arteries (PRAs) to 5,6-epoxyeicosatrienoic acid (5,6-EET), a cytochrome P-450 metabolite of arachidonic acid. In PRAs preconstricted with a thromboxane A(2) mimetic, 5,6-EET caused a concentration-dependent dilation. This dilation was partially inhibited by the combination of charybdotoxin (CTX) and apamin, inhibitors of large and small conductance calcium-dependent potassium (K(Ca)) channels, and was abolished by depolarization of vascular smooth muscle with KCl. Disruption of the endothelium significantly attenuated the dilation, suggesting involvement of one or more endothelium-derived vasodilator pathways in this response. The dilation was partially inhibited by nitro-L-arginine (L-NA), an inhibitor of nitric oxide synthase (NOS), but was unaffected by indomethacin, a cyclooxygenase (COX) inhibitor. The combined inhibition of NOS and K(Ca) channels with L-NA, CTX, and apamin abolished 5,6-EET-mediated dilation. Similarly, combined inhibition of NOS and COX abolished the response. We conclude that 5,6-EET is a potent vasodilator in newborn piglet PRAs. This dilation is mediated by redundant pathways that include release of nitric oxide (NO) and COX metabolites and activation of K(Ca) channels. The endothelium dependence of this response suggests that 5,6-EET is not itself an endothelium-derived hyperpolarizing factor (EDHF) but may induce the release of one or more endothelium-derived relaxing factors, such as NO and/or EDHF.  相似文献   

6.
Coronary tone is determined by a balance between endogenously produced endothelin and metabolic dilators. We hypothesized that coronary vasodilation during augmented metabolism is the net result of decreased endothelin production and increased production of vasodilators. Isolated rat myocytes were stimulated at 0, 200, and 400 beats/min to modify metabolism. Supernatant from these preparations was added to isolated coronary arterioles with and without blocking vasoactive pathways (adenosine, bradykinin, and endothelin). Chronically instrumented swine were studied while resting and running on a treadmill before and after endothelin type A (ET(A)) receptor blockade. The vasodilatory properties of the supernatant increased with increased stimulation frequencies. Combined blockade of adenosine and bradykinin receptors abolished vasodilation in response to supernatant of stimulated myocytes. ET(A) blockade increased vasodilation to supernatant of unstimulated myocytes but did not affect dilation to supernatant of myocytes stimulated at 400 beats/min. In vivo, ET(A) blockade resulted in coronary vasodilation at rest, which waned during exercise. Thus endothelin has a tonic constrictor influence through the ET(A) receptor at low myocardial metabolic demand but its influence decreased during increased metabolism.  相似文献   

7.
We set out to determine the effect of peptide YY(3-36) (PYY(3-36)) on the gastric muscle tone in conscious rats by measuring intragastric pressure (IGP) during intragastric nutrient drink infusion. After an overnight fast, a chronically implanted gastric fistula was connected to a custom-made nutrient drink infusion system and a catheter to measure IGP. IGP was measured before and during the infusion of a nutrient drink (Nutridrink; 0.5 ml/min) until 10 ml was infused. Rats were treated with PYY(3-36) (0, 33, and 100 pmol·kg(-1)·min(-1)) in combination with a subcutaneous injection of the Y(2) receptor antagonists JNJ31020028 (10 mg/kg) or BIIE0246 (2 mg/kg). Experiments were also performed after subdiaphragmatic vagotomy and after pretreatment with 3 ml of nutrient drink (to mimic a fed state). IGP was compared as the average IGP during nutrient infusion, represented as means ± SE and compared using ANOVA. PYY(3-36) dose dependently increased the IGP during nutrient infusion (4.7 ± 0.3, 5.7 ± 0.5 and 7.3 ± 0.7 mmHg; P < 0.01) while JNJ31020028 and BIIE0246 could block this increase [4.4 ± 0.5 (P < 0.001) and 4.8 ± 0.4 (P < 0.05) mmHg, respectively]. Also in vagotomized rats, PYY(3-36) was able to significantly increase the IGP during, an effect attenuated by JNJ31020028. BIIE0246 and JNJ31020028 were not able to decrease the IGP when no PYY(3-36) was administered. PYY(3-36) increased gastric tone through an Y(2) receptor-mediated mechanism that does not involve the vagus nerve. Y(2) receptor antagonists were not able to decrease gastric tone without exogenous administration of PYY(3-36), indicating that Y(2) receptors do not play a crucial role in the determination of gastric tone in physiological conditions.  相似文献   

8.
The matching of blood flow with metabolic need requires a mechanism for sensing the needs of the tissue and communicating that need to the arterioles, the ultimate controllers of tissue perfusion. Despite significant strides in our understanding of blood flow regulation, the identity of the O(2) sensor has remained elusive. Recently, the red blood cell, the Hb-containing O(2) carrier, has been implicated as a potential O(2) sensor and contributor to this vascular control by virtue of its concomitant carriage of millimolar amounts of ATP, which it is able to release when exposed to a low-O(2) environment. To evaluate this possibility, we exposed perfused cerebral arterioles to low extraluminal O(2) in the absence and presence of red blood cells or 6% dextran and determined both vessel diameter and ATP in the vessel effluent. Only when the vessels were perfused with red blood cells did the vessels dilate in response to low extraluminal O(2). In addition, this response was accompanied by a significant increase in vessel effluent ATP. These findings support the hypothesis that the red blood cell itself serves a role in determining O(2) supply to tissue.  相似文献   

9.
The production of peroxynitrite (ONOO(-)) in the endothelium decreases NO bioavailability, decreases vasorelaxation and changes vascular tone. ONOO(-) can also influence the production of prostacyclin-another vasorelaxant. We used a nanotechnological approach (nanosensors) to elucidate the release of NO, O(2)(-), and ONOO(-) in endothelium and their effect on production of prostanoids. The basal ONOO(-) concentration near the endothelium (3-5 microm) varied from 1 to 50 nmol/L and maximal calcium ionophore stimulated ONOO(-), did not exceed 900 nmol/L. The highest ONOO(-) concentrations were produced in ischemia/reperfusion atherosclerosis, diabetes, aging and vary among different racial groups (higher in Blacks than in Whites). ONOO(-) decreased PGI(2) activity with IC(50) approximately 150 nmol/L for 8 min reaction time, but has no effect of short reaction time. Prostaglandin E(1) decreased NO, O(2)(-), and ONOO(-) by limiting Ca(2+) flux into endothelium, decreased edema and vasoconstriction during ischemia/reperfusion. In endothelium (HUVEC's) of Black's the ONOO(-) concentrations were high 750+/-50 nmol/L while the lowest concentrations of vasorelaxants were 275+/-25 nmol/L of NO, 150+/-15 pb/100 microg protein of 6-keto-PGF(1)(alpha) as compared to White's (420+/-30 and 470+/- nmol/L for ONOO(-) and NO respectively and 280+/-20 pg/100 mg protein for 6-keto-PGF(1)(alpha)).  相似文献   

10.
Nitric oxide (NO) is produced by NO synthase (NOS) and contributes to the regulation of vascular tone in the perinatal lung. Although the neuronal or type I NOS (NOS I) isoform has been identified in the fetal lung, it is not known whether NO produced by the NOS I isoform plays a role in fetal pulmonary vasoregulation. To study the potential contribution of NOS I in the regulation of basal fetal pulmonary vascular resistance (PVR), we studied the hemodynamic effects of a selective NOS I antagonist, 7-nitroindazole (7-NINA), and a nonselective NOS antagonist, N-nitro-L-arginine (L-NNA), in chronically prepared fetal lambs (mean age 128 +/- 3 days, term 147 days). Brief intrapulmonary infusions of 7-NINA (1 mg) increased basal PVR by 37% (P < 0.05). The maximum increase in PVR occurred within 20 min after infusion, and PVR remained elevated for up to 60 min. Treatment with 7-NINA also increased the pressure gradient between the pulmonary artery and aorta, suggesting constriction of the ductus arteriosus (DA). To test whether 7-NINA treatment selectively inhibits the NOS I isoform, we studied the effects of 7-NINA and L-NNA on acetylcholine-induced pulmonary vasodilation. The vasodilator response to acetylcholine remained intact after treatment with 7-NINA but was completely inhibited after L-NNA, suggesting minimal effects on endothelial or type III NOS after 7-NINA infusion. Western blot analysis detected NOS I protein in the fetal lung and great vessels including the DA. NOS I protein was detected in intact and endothelium-denuded vessels, suggesting that NOS I is present in the medial or adventitial layer. We conclude that 7-NINA, a selective NOS I antagonist, increases basal PVR, systemic arterial pressure, and DA tone in the late-gestation fetus and that NOS I protein is present in the fetal lung and great vessels. We speculate that NOS I may contribute to NO production in the regulation of basal vascular tone in the pulmonary and systemic circulations and the DA.  相似文献   

11.
12.
A1 adenosine receptors from different tissues and species were photoaffinity labelled and then the carbohydrate content was examined by both enzymatic and chemical treatment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labelled membrane receptors shows that neuraminidase treatment alters the electrophoretic mobility of the receptor band indicating the presence of terminal neuraminic acids. Neuraminidase digestion does not influence the binding characteristics of the receptor. The totally deglycosylated receptor protein obtained by chemical treatment has an apparent molecular weight of 32,000.  相似文献   

13.
Structure and function of A1 adenosine receptors   总被引:5,自引:0,他引:5  
J Linden 《FASEB journal》1991,5(12):2668-2676
The A1 adenosine receptor is the best characterized of the widely distributed purinergic receptor family. The purified brain A1 receptor is a monomeric 35- to 36-kDa glycoprotein. A1 receptors can be clearly distinguished from A2 adenosine receptors on the basis of structure activity relationships with selective ligands. Recent structure activity data suggest that subtypes of A1 (A1a, A1b, and A3) and A2 (A2a and A2b) receptors may exist. A1 receptor-mediated responses are coupled via multiple pertussis toxin-sensitive GTP binding proteins (G proteins) to many different effectors in various tissues: adenylate cyclase, phospholipase C, Na+- Ca2+ exchange, Ca2+ channels, Cl- channels, and K+ channels. The formation of calcium-mobilizing inositol phosphates can either be enhanced or inhibited. In general, adenosine has been found to act in concert with other hormones or neurotransmitters in either an inhibitory or a stimulatory way. The myriad modulatory actions of adenosine suggest that: 1) adenosine may simultaneously produce multiple effects within the same cell; and 2) activation of A1 receptors may lead to either a decrease or an increase in the coupling of other receptors to their G proteins.  相似文献   

14.
Adenosine and ATP modulate cellular and tissue functions via specific P1 and P2 receptors, respectively. Although, in general, adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, little is known about the direct interaction between P1 and P2 receptors. We recently demonstrated that the G(i/o)-coupled adenosine A1 receptor (A1R) and G(q/11)-coupled P2Y1 receptor (P2Y1R) form a heteromeric complex with a unique pharmacology in cotransfected HEK293T cells using the coimmunoprecipitation of differentially epitope-tagged forms of the receptor [Yoshioka et al. (2001) Proc. Natl. Acad. Sci. USA 98, 7617-7622], although it remained to be determined whether this hetero-oligomerization occurs in vivo. In the present study, we first demonstrated a high degree of colocalization of A1R and P2Y1R by double immunofluorescence experiments with confocal laser microscopy in rat cortex, hippocampus and cerebellum in addition to primary cultures of cortical neurons. Then, a direct association of A1R with P2Y1R was shown in coimmunoprecipitation studies using membrane extracts from these regions of rat brain. Together, these results suggest the widespread colocalization of A1R and P2Y1R in rat brain, and both receptors can exist in the same neuron, and therefore associate as hetero-oligomeric complexes in the rat brain.  相似文献   

15.
Endothelium-derived nitric oxide (NO) and endothelin (ET)-1 interact to regulate vascular tone. In congestive heart failure (CHF), the release and/or the activity of both factors is affected. We hypothesized that the increased ET-1 production associated with CHF may result in a reduced smooth muscle sensitivity to NO. The aim of this study was to evaluate the effects of a chronic treatment with the ET(A)-receptor (ET receptor A) antagonist LU-135252 (LU) on cerebrovascular reactivity to sodium nitroprusside (SNP) in the rat infarct model of CHF. Rats were subjected to coronary artery ligation and were treated for 4 wk with placebo (n = 24) or LU (50 mg. kg(-1). day(-1), n = 29). CHF was associated with a decreased (P < 0.05) efficacy of SNP to induce relaxation of isolated middle cerebral arteries. Furthermore, neither NO synthase inhibition with N(omega)-nitro-L-arginine (L-NNA) nor endothelial denudation affected the efficacy of SNP. Thus the endothelium no longer influences smooth muscle sensitivity to SNP. LU treatment, however, normalized (P < 0.05) smooth muscle sensitivity to SNP. Sensitivity of ET-1-induced contraction was increased in CHF only in the presence of L-NNA, whereas contraction induced by ET(B) receptor (receptor B) stimulation was increased (P < 0.05) in endothelium-denuded vessels. LU treatment restored these changes in reactivity and revealed a significant endothelium-dependent ET(B)-mediated relaxation after NO synthase inhibition. In conclusion, CHF decreases and uncouples cerebrovascular smooth muscle sensitivity to SNP from endothelial regulation. The observation that chronic ET(A) blockade restored most of the changes associated with CHF suggests that activation of the ET-1 system importantly contributes to the alteration in vascular reactivity observed in experimental CHF.  相似文献   

16.
The presence of A1 adenosine receptors (A1AR) in mammalian spermatozoa was previously demonstrated by radiochemical and immunochemical detection. This study was performed to investigate the cellular location of the A1AR to determine whether these receptors were somehow connected with ecto-adenosine deaminase and to evaluate their function in calcium uptake. By immunofluorescence staining we showed that in mammalian spermatozoa A1AR were constantly localized in the acrosomal region. This finding was confirmed by immunogold detection. Confocal analyses with anti-A1 and anti-ADA antibodies showed a high degree of co-localization. Calcium loading assay showed that this association was functional and affected calcium accumulation in mammalian spermatozoa. Therefore, we concluded that the acrosomal localization of A1AR was a constant feature in mammalian sperm. Moreover, these A1 receptors were functionally coupled to ecto-ADA and were able to modulate calcium uptake into an IP3-gated store.(J Histochem Cytochem 48:1163-1171, 2000)  相似文献   

17.
Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.  相似文献   

18.
Little is known about the mechanisms that regulate the expression of adenosine receptors during CNS development. We demonstrate here that retinas from chick embryos injected in ovo with selective adenosine receptor ligands show changes in A1 receptor expression after 48 h. Exposure to A1 agonist N6‐cyclohexyladenosine (CHA) or antagonist 8‐Cyclopentyl‐1, 3‐dipropylxanthine (DPCPX) reduced or increased, respectively, A1 receptor protein and [3H]DPCPX binding, but together, CHA+DPCPX had no effect. Interestingly, treatment with A2A agonist 3‐[4‐[2‐[[6‐amino‐9‐[(2R,3R,4S,5S)‐5‐(ethylcarbamoyl)‐3,4‐dihydroxy‐oxolan‐2‐yl]purin‐2‐yl]amino] ethyl]phenyl] propanoic acid (CGS21680) increased A1 receptor protein and [3H]DPCPX binding, and reduced A2A receptors. The A2A antagonists 7‐(2‐phenylethyl)‐5‐amino‐2‐(2‐furyl)‐pyrazolo‐[4,3‐e]‐1,2,4‐trizolo[1,5‐c] pyrimidine (SCH58261) and 4‐(2‐[7‐amino‐2‐[2‐furyl][1,2,4]triazolo[2,3‐a][1,3,5]triazo‐5‐yl‐amino]ethyl)phenol (ZM241385) had opposite effects on A1 receptor expression. Exposure to CGS21680 + CHA did not change A1 receptor levels, whereas CHA + ZM241385 or CGS21680 + DPCPX had no synergic effect. The blockade of adenosine transporter with S‐(4‐nitrobenzyl)‐6‐thioinosine (NBMPR) also reduced [3H]DPCPX binding, an effect blocked by DPCPX, but not enhanced by ZM241385. [3H]DPCPX binding kinetics showed that treatment with CHA reduced and CGS21680 increased the Bmax, but did not affect Kd values. CHA, DPCPX, CGS21680, and ZM241385 had no effect on A1 receptor mRNA. These data demonstrated an in vivo regulation of A1 receptor expression by endogenous adenosine or long‐term treatment with A1 and A2A receptors modulators.  相似文献   

19.
《Life sciences》1994,55(20):PL383-PL388
The effects of N6-cyclohexyladenosine, a selective adenosine A1 receptor agonist, on the capsaicin-induced cough reflex in mice were examined. I.c.v. administration of N6-cyclohexyladenosine in doses that ranged from 0.03 to 0.3 nmol decreased the number of coughs in a dose-dependent manner. Pretreatment with 8-cyclopentyl-1,3-theophylline, a selective adenosine A1 receptor antagonist, significantly reduced the antitussive effect of N6-cyclohexyladenosine. On the other hand, CGS21680 (0.3 and 1 nmol, i.c.v.), a selective adenosine A2 receptor agonist, had no significant effect on the number of capsaicin-induced coughs. These data suggest that adenosine A1 agonist may have a marked antitussive effect in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号