首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protective effects of adenosine receptor acute preconditioning (PC) are well known; however, the signaling mechanism mediating this effect has not been determined in in vivo models. The purpose of this study was to determine the role of the extracellular signal-regulated kinase (ERK) pathway in mediating adenosine PC in in vivo rat myocardium. Open-chest rats were submitted to 25 min of coronary artery occlusion and 2 h of reperfusion. ERK activation was assessed by measuring total and dually phosphorylated p44/42 ERK isoforms in nuclear and/or myofilament, mitochondrial, cytosolic, and membrane fractions. Adenosine receptor PC with the A1/A2a agonist 1S-[1a,2b,3b,4a(S*)]-4-[7-[[2-(3-chloro-2-thienyl)-1-methylpropyl]amino]-3H-imidazo[4,5-b]pyridyl-3-yl]cyclopentane carboxamide (AMP-579) reduced infarct size from 49 +/- 3% to 29 +/- 3%, an effect that was blocked by the mitogen-activated protein kinase-ERK inhibitor U-0126. ERK isoforms were present in all fractions, with the greatest expression in the cytosolic fraction and the least in the mitochondrial fraction. AMP-579 treatment increased preischemic p44/42 ERK phosphorylation in all fractions 2.7- to 6.9-fold. Reperfusion increased ERK isoform activation in all fractions, but there were no differences between control and AMP-579 hearts. Preischemic increases in phospo-p44/p42 ERK with AMP-579 were blunted by U-0126, although only in mitochondrial and membrane compartments. The PC effects of AMP-579 on infarct size and ERK were blunted by both the A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine and, surprisingly, the A2a antagonist ZM-241385. These results indicate that the unique adenosine receptor agonist AMP-579 exerts its beneficial effects in vivo via both A1 and A2a receptor modulation of subcellular ERK isoform signaling.  相似文献   

2.
We investigated the role of p38 mitogen-activated protein kinase (MAPK) phosphorylation and opening of the mitochondrial ATP-sensitive K(+) [(K(ATP))(mito)] channel in the adenosine A(1) receptor (A(1)AR)-induced delayed cardioprotective effect in the mouse heart. Adult male mice were treated with vehicle (5% DMSO) or the A(1)AR agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.1 mg/kg ip). Twenty-four hours later, hearts were subjected to 30 min of global ischemia and 30 min of reperfusion in the Langendorff mode. Genistein or SB-203580 (1 mg/kg i.p.) given 30 min before CCPA treatment was used to block receptor tyrosine kinase or p38 MAPK phosphorylation, respectively. 5-Hydroxydecanoate (5-HD; 200 microM) was used to block (K(ATP))(mito) channels. CCPA produced marked improvement in left ventricular function, which was partially blocked by SB-203580 and 5-HD and completely abolished with genistein. CCPA caused a reduction in infarct size (12.0 +/- 2.0 vs. 30.3 +/- 3.0% in vehicle), which was blocked by genistein (29.4 +/- 2.3%), SB-203580 (28.3 +/- 2.6%), and 5-HD (33.9 +/- 2.4%). CCPA treatment also caused increased phosphorylation of p38 MAPK during ischemia, which was blocked by genistein, SB-203580, and 5-HD. The results suggest that A(1)AR-triggered delayed cardioprotection is mediated by p38 MAPK phosphorylation. Blockade of cardioprotection with 5-HD concomitant with decrease in p38 MAPK phosphorylation suggests a potential role of (K(ATP))(mito) channel opening in phosphorylation and ensuing the late preconditioning effect of A(1)AR.  相似文献   

3.
4.
Our laboratory showed previously that cardiac-specific overexpression of FGF-2 [FGF-2 transgenic (Tg)] results in increased recovery of contractile function and decreased infarct size after ischemia-reperfusion injury. MAPK signaling is downstream of FGF-2 and has been implicated in other models of cardioprotection. Treatment of FGF-2 Tg and wild-type hearts with U-0126, a MEK-ERK pathway inhibitor, significantly reduced recovery of contractile function after global low-flow ischemia-reperfusion injury in FGF-2 Tg (86 +/- 2% vehicle vs. 66 +/- 4% U-0126; P < 0.05) but not wild-type (61 +/- 7% vehicle vs. 67 +/- 7% U-0126) hearts. Similarly, MEK-ERK inhibition significantly increased myocardial infarct size in FGF-2 Tg (12 +/- 3% vehicle vs. 31 +/- 2% U-0126; P < 0.05) but not wild-type (30 +/- 4% vehicle vs. 36 +/- 7% U-0126) hearts. In contrast, treatment of FGF-2 Tg and wild-type hearts with SB-203580, a p38 inhibitor, did not abrogate FGF-2-induced cardioprotection from postischemic contractile dysfunction. Instead, inhibition of p38 resulted in decreased infarct size in wild-type hearts (30 +/- 4% vehicle vs. 11 +/- 2% SB-203580; P < 0.05) but did not alter infarct size in FGF-2 Tg hearts (12 +/- 3% vehicle vs. 14 +/- 1% SB-203580). Western blot analysis of ERK and p38 activation revealed signaling alterations in FGF-2 Tg and wild-type hearts during early ischemia or reperfusion injury. In addition, MEK-independent ERK inhibition by p38 was observed during early ischemic injury. Together these data suggest that activation of ERK and inhibition of p38 by FGF-2 is cardioprotective during ischemia-reperfusion injury.  相似文献   

5.
Activation of p38 mitogen-activated protein (MAP) kinase (MAPK) has been implicated in the mechanism of cardiomyocyte (CMC) protection and injury. The p38 MAPK controversy may be related to differential effects of this kinase on apoptosis and necrosis. We have hypothesized that p38 MAPK-mediated F-actin reorganization promotes apoptotic cell death, whereas it protects from osmotic stress-induced necrotic cell death. Cultured neonatal rat CMCs were subjected to 2 h of simulated ischemia followed by reoxygenation. p38 MAPK activity measured by phosphorylation of MAP kinase-activated protein (MAPKAP) kinase 2 was increased during simulated ischemia and reoxygenation. This was associated with translocation of heat shock protein 27 (HSP27) from the cytosolic to the cytoskeletal fraction and F-actin reorganization. Cytochrome c release from mitochondria, caspase-3 activation, and DNA fragmentation were increased during reoxygenation. Robust lactate dehydrogenase (LDH) release was observed under hyposmotic (140 mosM) reoxygenation. The p38 MAPK inhibitor SB-203580 abrogated activation of p38 MAPK, translocation of HSP27, and F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation. Conversely, SB-203580 enhanced LDH release during hyposmotic reoxygenation. The F-actin disrupting agent cytochalasin D inhibited F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation, whereas it enhanced LDH release during hyposmotic reoxygenation. When CMCs were incubated under the isosmotic condition for the first 15 min of reoxygenation, SB-203580 and cytochalasin D increased ATP content of CMCs and prevented LDH release after the conversion to the hyposmotic condition. These results suggest that F-actin reorganization mediated by activation of p38 MAPK plays a differential role in apoptosis and protection against osmotic stress-induced necrosis during reoxygenation in neonatal rat CMCs; however, the sarcolemmal fragility caused by p38 MAPK inhibition can be reversed during temporary blockade of physical stress during reoxygenation.  相似文献   

6.
Adenosine A1 receptor delayed preconditioning (PC) against myocardial infarction has been well described; however, there have been limited investigations of the signaling mechanisms that mediate this phenomenon. In addition, there are multiple conflicting reports on the role of inducible nitric oxide synthase (iNOS) in mediating A1 late-phase PC. The purpose of this study was to determine the roles of the p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs) in in vivo delayed A1 receptor PC and whether this protection at the myocyte level is due to upregulation of iNOS. Myocardial infarct size was measured in open-chest anesthetized rats 24 h after treatment with vehicle or the adenosine A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 100 microg/kg ip). Additional rats receiving CCPA were pretreated with the p38 inhibitor SB-203580 (1 mg/kg ip) or the MAPK/ERK kinase (MEK) inhibitor PD-098059 (0.5 mg/kg ip). At 24 h after CCPA administration, a group of animals was given the iNOS inhibitor 1400 W 10 min before ischemia. Treatment with CCPA reduced infarct size from 48 +/- 2 to 28 +/- 2% of the area at risk, an effect that was blocked by both SB-203580 and PD-098059 but not 1400 W. Ventricular myocytes isolated 24 h after CCPA injection exhibited significantly reduced oxidative stress during H2O2 exposure compared with myocytes from vehicle-injected animals, and this effect was not blocked by the iNOS inhibitor 1400 W. Western blot analysis of whole heart and cardiac myocyte protein samples revealed no expression of iNOS 6 or 24 h after CCPA treatment. These results indicate that adenosine A1 receptor delayed PC in rats is mediated by MAPK-dependent mechanisms, but this phenomenon is not associated with the early or late expression of iNOS.  相似文献   

7.
p38 MAP kinase activation is known to be deleterious not only to mitochondria but also to contractile function. Therefore, p38 MAP kinase inhibition therapy represents a promising approach in preventing reperfusion injury in the heart. However, reversal of p38 MAP kinase-mediated contractile dysfunction may disrupt the fragile sarcolemma of ischemic-reperfused myocytes. We, therefore, hypothesized that the beneficial effect of p38 MAP kinase inhibition during reperfusion can be enhanced when contractility is simultaneously blocked. Isolated and perfused rat hearts were paced at 330 rpm and subjected to 20 min of ischemia followed by reperfusion. p38 MAP kinase was activated after ischemia and early during reperfusion (<30 min). Treatment with the p38 MAP kinase inhibitor SB-203580 (10 microM) for 30 min during reperfusion, but not the c-Jun NH(2)-terminal kinase inhibitor SP-600125 (10 microM), improved contractility but increased creatine kinase release and infarct size. Cotreatment with SB-203580 and the contractile blocker 2,3-butanedione monoxime (BDM, 20 mM) or the ultra-short-acting beta-blocker esmorol (0.15 mM) for the first 30 min during reperfusion significantly reduced creatine kinase release and infarct size. In vitro mitochondrial ATP generation and myocardial ATP content were significantly increased in the heart cotreated with SB-203580 and BDM during reperfusion. Dystrophin was translocated from the sarcolemma during ischemia and reperfusion. SB-203580 increased accumulation of Evans blue dye in myocytes depleted of sarcolemmal dystrophin during reperfusion, whereas cotreatment with BDM facilitated restoration of sarcolemmal dystrophin and mitigated sarcolemmal damage after withdrawal of BDM. These results suggest that treatment with SB-203580 during reperfusion aggravates myocyte necrosis but concomitant blockade of contractile force unmasks cardioprotective effects of SB-203580.  相似文献   

8.
The purpose of this study was to determine whether the adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Regional stunning was produced by 15 min of coronary artery occlusion and 3 h of reperfusion (RP) in anesthetized open-chest pigs. In acute protection studies, animals were pretreated with saline, low-dose AMP-579 (15 microg/kg iv bolus 10 min before ischemia), or high-dose AMP-579 (50 microg/kg iv at 14 microg/kg bolus + 1.2 microg.kg(-1).min(-1) for 30 min before coronary occlusion). The delayed preconditioning effects of AMP-579 were evaluated 24 h after administration of saline vehicle or high-dose AMP-579 (50 microg/kg iv). Load-insensitive contractility was assessed by measuring regional preload recruitable stroke work (PRSW) and PRSW area. Acute preconditioning with AMP-579 dose dependently improved regional PRSW: 129 +/- 5 and 100 +/- 2% in high- and low-dose AMP-579 groups, respectively, and 78 +/- 5% in the control group at 3 h of RP. Administration of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.7 mg/kg) blocked the acute protective effect of high-dose AMP-579, indicating that these effects are mediated through A1 receptor activation. Delayed preconditioning with AMP-579 significantly increased recovery of PRSW area: 64 +/- 5 vs. 33 +/- 5% in control at 3 h of RP. In isolated perfused rat heart studies, kinetics of the onset and washout of AMP-579 A1 and A2a receptor-mediated effects were distinct compared with those of other adenosine receptor agonists. The unique nature of the adenosine agonist AMP-579 may play a role in its ability to induce delayed preconditioning against in vivo myocardial stunning.  相似文献   

9.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

10.
Myocardial ischemia-reperfusion injury contributes significantly to morbidity and mortality in patients with diabetes. Insulin decreases myocardial infarct size in animals and the rate of apoptosis in cultured cells. Ischemia-reperfusion activates p38 mitogen-activated protein kinase (MAPK), which regulates cellular apoptosis. To examine whether p38 MAPK affects insulin's cardioprotection against ischemia-reperfusion injury, we studied overnight-fasted adult male rats by use of an in vivo rat model of myocardial ischemia-reperfusion. A euglycemic clamp (3 mU.min(-1).kg(-1)) was begun either 10 min before ischemia (InsulinBI), 5 min before reperfusion (InsulinBR), or 30 min after the onset of reperfusion (InsulinAR), and continued until the end of the study. Compared with saline control, insulin decreased the infarct size in both InsulinBI (P < 0.001) and InsulinBR (P < 0.02) rats but not in InsulinAR rats. The ischemic area showed markedly increased phosphorylation of p38 MAPK compared with the nonischemic area in saline animals. Acute activation of p38 MAPK with anisomycin (2 mg/kg iv 10 min before ischemia) had no effect on infarct size in saline rats. However, it completely abolished insulin's protective effect in InsulinBI and InsulinBR rats. Activation of p38 MAPK by anisomycin was associated with marked and persistent elevation in IRS-1 serine phosphorylation. Treatment of animals with SB-239063, a potent and specific inhibitor of p38 MAPK, 10 min before reperfusion enabled insulin-mediated myocardial protection in InsulinAR rats. We conclude that insulin protects myocardium against ischemia-reperfusion injury when given prior to ischemia or reperfusion, and activation of p38 MAPK abolishes insulin's cardioprotective effect.  相似文献   

11.
Activation of either the A1 adenosine receptor (A1R) or the A3 adenosine receptor (A3R), by their specific agonists CCPA and Cl-IB-MECA, respectively, protects cardiac cells in culture against ischemic injury. Yet the full protective mechanism remains unclear. In this study, we therefore examined the involvement of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) phosphorylation in this protective intracellular signaling mechanism. Furthermore, we investigated whether p38 MAPK phosphorylation occurs upstream or downstream from the opening of mitochondrial ATP-sensitive potassium (KATP) channels. The role of p38 MAPK activation in the intracellular signaling process was studied in cultured cardiomyocytes subjected to hypoxia, that were pretreated with CCPA or Cl-IB-MECA or diazoxide (a mitochondrial KATP channel opener) with and without SB203580 (a specific inhibitor of phosphorylated p38 MAPK). Cardiomyocytes were also pretreated with anisomycin (p38 MAPK activator) with and without 5-hydroxy decanoic acid (5HD) (a mitochondrial KATP channel blocker). SB203580 together with the CCPA, Cl-IB-MECA or diazoxide abrogated the protection against hypoxia as shown by the level of ATP, lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Anisomycin protected the cardiomyocytes against ischemic injury and this protection was abrogated by SB203580 but not by 5HD. Conclusions Activation of A1R or A3R by CCPA or Cl-IB-MECA, respectively, protects cardiomyocytes from hypoxia via phosphorylation of p38 MAPK, which is located downstream from the mitochondrial KATP channel opening. Elucidating the signaling pathway by which adenosine receptor agonists protect cardiomyocytes from hypoxic damage, will facilitate the development of anti ischemic drugs.  相似文献   

12.
The mechanisms through which p38 mitogen-activated protein kinase (p38 MAPK) is involved in smooth muscle contraction remain largely unresolved. We examined the role of p38 MAPK in prostaglandin F(2alpha) (PGF(2alpha))-induced vasoconstriction and in hypoxic pulmonary vasoconstriction (HPV) of rat small intrapulmonary arteries (IPA). The p38 MAPK inhibitors SB-203580 and SB-202190 strongly inhibited PGF(2alpha)-induced vasoconstriction, with IC(50)s of 1.6 and 1.2 microM, whereas the inactive analog SB-202474 was approximately 30-fold less potent. Both transient and sustained phases of HPV were suppressed by SB-203580, but not by SB-202474 (both 2 microM). Western blot analysis revealed that PGF(2alpha) (20 microM) increased phosphorylation of p38 MAPK and of heat shock protein 27 (HSP27), and this was abolished by SB-203580 but not by SB-202474 (both 2 microM). Endothelial denudation or blockade of endothelial nitric oxide (NO) synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly suppressed the relaxation of PGF(2alpha)-constricted IPA by SB-203580, but not by SB-202474. Similarly, the inhibition of HPV by SB-203580 was prevented by prior treatment with L-NAME. SB-203580 (2 microM), but not SB-202474, enhanced relaxation-induced by the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in endothelium-denuded IPA constricted with PGF(2alpha). In alpha-toxin-permeabilized IPA, SB-203580-induced relaxation occurred in the presence but not the absence of the NO donor sodium nitroprusside (SNP); SB-202474 was without effect even in the presence of SNP. In intact IPA, neither PGF(2alpha)- nor SNAP-mediated changes in cytosolic free Ca(2+) were affected by SB-203580. We conclude that p38 MAPK contributes to PGF(2alpha)- and hypoxia-induced constriction of rat IPA primarily by antagonizing the underlying Ca(2+)-desensitizing actions of NO.  相似文献   

13.
We investigated the effects of thrombin on the induction of heat shock proteins (HSP) 70 and 27, and the mechanism behind the induction in aortic smooth muscle A10 cells. Thrombin increased the level of HSP27 but had little effect on the level of HSP70. Thrombin stimulated the accumulation of HSP27 dose dependently between 0.01 and 1 U/ml and cycloheximide reduced the accumulation. Thrombin stimulated an increase in the level of HSP27 mRNA and actinomycin D suppressed the thrombin-increased mRNA level. Thrombin induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The HSP27 accumulation by thrombin was reduced by SB-203580 and PD-169316 but not by SB-202474. SB-203580 and PD-169316 suppressed the thrombin-induced phosphorylation of p38 MAPK. SB-203580 reduced the thrombin-increased level of HSP27 mRNA. Dissociation of the aggregated HSP27 to the dissociated HSP27 was induced by thrombin. Dissociation was inhibited by SB-203580. Thrombin induced the phosphorylation of HSP27 and the phosphorylation was suppressed by SB-203580. These results indicate that thrombin stimulates not only the dissociation of HSP27 but also the induction of HSP27 via p38 MAPK activation in aortic smooth muscle cells.  相似文献   

14.
Evidence suggests that p38 mitogen-activated protein kinase (MAPK) activation influences cardiac function on an acute basis. The characterization and mechanisms by which this occurs were investigated in the present study. Adult rat ventricular myocytes treated with 1 mM arsenite for 30 min had a 16-fold increase in p38 MAPK phosphorylation that was attenuated by SB-203580 (a p38 MAPK inhibitor). Extracellular signal-regulated protein kinase (ERK) and c-Jun NH2-terminal kinase (JNK) were also minimally activated, but this activation was not sensitive to SB-203580. In addition, arsenite caused a p38 MAPK-independent translocation/activation of protein phosphatase 2a (PP2a) and decrease in phosphorylation of myosin light chain 2 (LC2). Arsenite-p38 MAPK activation led to translocation of heat shock protein 27 but not alpha B-crystallin to the myofilaments. Using isolated cardiomyocytes, we determined that arsenite reduces isometric tension without a change in Ca2+ sensitivity of tension via p38 MAPK and lowers myofibrillar actomyosin Mg2+-ATPase activity in a p38 MAPK-independent manner. Thus arsenite induces a p38 MAPK-independent change in PP2a and LC2 that may account for the arsenite-dependent decrease in ATPase and a p38 MAPK-dependent modification of the myofilaments that decreases myocardial force development.  相似文献   

15.
The activation of p38 MAPK by dual phosphorylation aggravates myocardial ischemic injury and depresses cardiac contractile function. SB203580, an ATP-competitive inhibitor of p38 MAPK and other kinases, prevents this dual phosphorylation during ischemia. Studies in non-cardiac tissue have shown receptor-interacting protein 2 (RIP2) lies upstream of p38 MAPK, is SB203580-sensitive and ischemia-responsive, and aggravates ischemic injury. We therefore examined the RIP2-p38 MAPK signaling axis in the heart. Adenovirus-driven expression of wild-type RIP2 in adult rat ventricular myocytes caused robust, SB203580-sensitive dual phosphorylation of p38 MAPK associated with activation of p38 MAPK kinases MKK3, MKK4, and MKK6. The effect of SB203580 was recapitulated by unrelated inhibitors of RIP2 or the downstream MAPK kinase kinase, TAK1. However, overexpression of wild-type, kinase-dead, caspase recruitment domain-deleted, or kinase-dead and caspase recruitment domain-deleted forms of RIP2 had no effect on the activating dual phosphorylation of p38 MAPK during simulated ischemia. Similarly, p38 MAPK activation and myocardial infarction size in response to true ischemia did not differ between hearts from wild-type and RIP2 null mice. However, both p38 MAPK activation and the contractile depression caused by the endotoxin component muramyl dipeptide were attenuated by SB203580 and in RIP2 null hearts. Although RIP2 can cause myocardial p38 MAPK dual phosphorylation in the heart under some circumstances, it is not responsible for the SB203580-sensitive pattern of activation during ischemia.  相似文献   

16.
Stress-activated protein kinases may be essential to cardioprotection. We assessed the role of p38 in an in vivo rat model of ischemia-reperfusion. Ischemic preconditioning (IPC) and the delta(1)-opioid receptor agonist 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aalpha-octahydroquinolino [2,3,3-g]isoquinoline (TAN-67) significantly reduced infarct size (IS), expressed as a percentage of the area at risk (AAR), versus animals subjected only to 30 min of ischemia and 2 h of reperfusion (7.1 +/- 1.5 and 29.6 +/- 3.3 vs. 59.7 +/- 1.6%). The p38 antagonist SB-203580 attenuated IPC when it was administered before (34.0 +/- 6.9%) or after (25.0 +/- 3.8%) the IPC stimulus; however, it did not significantly attenuate TAN-67-induced cardioprotection (39.6 +/- 3.2). We also assessed the phosphorylation of p38 and c-jun NH(2)-terminal kinase (JNK) throughout ischemia-reperfusion in nuclear and cytosolic fractions. After either intervention, no increase was detected in the phosphorylation state of either enzyme in the nuclear fraction or for p38 in the cytosolic fraction versus control hearts. However, there was a robust increase in JNK activity in the cytosolic fraction immediately on reperfusion that was more pronounced in animals subjected to IPC or administered TAN-67. These data suggest that SB-203580 likely attenuates IPC via the inhibition of kinases other than p38, which may include JNK. The data also suggest that activation of JNK during early reperfusion may be an important component of cardioprotection.  相似文献   

17.
Although studies indicatethat a shift from a Th1 to a Th2 response contributes to a markedsuppression of cell-mediated immunity during sepsis, the mechanism bywhich this occurs remains unknown. Given that the mitogen-activatedprotein kinase (MAPK) p38 plays a critical role in the activation andfunction of immune cells, the aim of this study was to determine thecontribution of MAPK p38 activation to the immune dysfunction seen inpolymicrobial sepsis. To study this, polymicrobial sepsis was inducedin C3H/HeN male mice by cecal ligation and puncture (CLP). Spleniclymphocytes and purified T cells were harvested 24 h post-CLP,pretreated with the specific MAPK p38 inhibitor SB-203580, and thenstimulated with a monoclonal antibody against the T cell marker CD3.The results indicate that interleukin (IL)-2 release is markedlydepressed while the release of the immunosuppressive mediator, IL-10,as well as mRNA levels of IL-10 and IL-4, are augmented after CLP. Inhibition of MAPK p38 suppressed in vitro IL-10 levels as well asIL-10 and IL-4 gene expression while restoring the release of IL-2. Todetermine whether these in vitro findings could be translated to an invivo setting, mice were given 100 mg of SB-203580/kg body wt or salinevehicle (intraperitoneal) at 12 h post-CLP. Examination of ex vivolymphocyte responsiveness indicated that, as with the in vitro finding,septic mouse Th1 responsiveness was restored. In light of our recentfinding that delayed in vivo SB-203580 treatment also improved survivalafter CLP, we believe that these results not only illustrate the roleof MAPK p38 in the induction of immunosuppressive agents in sepsis butdemonstrate that SB-203580 administration after the initialproinflammatory state of sepsis significantly prevents the morbidityfrom sepsis.

  相似文献   

18.
19.
The objective of this study was to evaluate mitochondrial alterations in a cell-based model of myocardial ischemia/reperfusion (I/R) injury. Using GFP-biosensors and fluorescence deconvolution microscopy, we investigated mitochondrial morphology in relation to Bax and Bid activation in the HL-1 cardiac cell line. Mitochondria underwent extensive fragmentation during ischemia. Bax translocation from cytosol to mitochondria was initiated during ischemia and proceeded during reperfusion. However, Bax translocation was not sufficient to induce cell death or mitochondrial dysfunction. Bid processing was caspase-8 dependent, and Bid translocation to mitochondria occurred after Bax translocation and clustering, and minutes before cell death. Clustering of Bax into distinct regions on mitochondria could be prevented by CsA, an inhibitor of the mitochondrial permeability transition pore, and also by SB203580, an inhibitor of p38 MAPK. Surprisingly, mitochondrial fragmentation which occurred during ischemia and before Bax translocation could be reversed by the addition of the p38 inhibitor SB203580 at reperfusion. Taken together, these results implicate p38 MAPK in the mitochondrial remodeling response to I/R that facilitates Bax recruitment to mitochondria.  相似文献   

20.
We have previously demonstrated that p38 and extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinases (MAPK) are components of proinflammatory induced cytokine expression in human airway myocytes. The experiments described here further these studies by examining p38 MAPK and NF-kappaB regulation of cyclooxygenase-2 (COX-2) expression in response to a complex inflammatory stimulus consisting of 10 ng/ml interleukin (IL)-1beta, tumor necrosis factor-alpha (TNF-alpha), and interferon (IFN)-gamma. COX-2 expression was induced with this stimulus in a time-dependent manner, with maximal expression seen 12-20 h after treatment. Semiquantitative RT-PCR and immunoblotting experiments demonstrate decreased COX-2 expression following treatment with the p38 MAPK inhibitor SB-203580 (25 microM) or the proteosome inhibitor MG-132 (1 microM). SB-203580 did not affect cytokine-stimulated IkappaBalpha degradation, NF-kappaB nuclear binding activity, or NF-kappaB-dependent signaling from the COX-2 promoter, indicating that p38 MAPK and NF-kappaB may affect COX-2 expression via separate signaling pathways. SB-203580, but not MG-132, also increased the initial rate of COX-2 mRNA decay, indicating p38 MAPK, but not NF-kappaB, participates in the regulation of COX-2 mRNA stability. These findings suggest that although p38 MAPK and NF-kappaB signaling regulate steady-state levels of COX-2 expression, p38 MAPK additionally affects stability of COX-2 mRNA in cytokine-stimulated human airway myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号