首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modulatory effects of estrogen in two murine models of experimental colitis   总被引:1,自引:0,他引:1  
The association between oral contraceptives or pregnancy and inflammatory bowel disease is unclear. We investigated whether 17beta-estradiol modulates intestinal inflammation in two models of colitis. Female mice were treated with 17beta-estradiol alone or with tamoxifen, tamoxifen alone, 17 alpha-estradiol, or placebo. Dinitrobenzene sulfonic acid (DNB)- or dextran sodium sulfate (DSS)-induced colitis were assessed macroscopically, histologically, and by myeloperoxidase (MPO) activity. Malondialdehyde and mRNA levels of intercellular adhesion molecule-1 (ICAM-1), interferon-gamma (IFN-gamma), and interleukin-13 (IL-13) were determined. In DNB colitis, 17beta-estradiol alone, but not 17beta-estradiol plus tamoxifen, or 17 alpha-estradiol reduced macroscopic and histological scores, MPO activity and malondialdehyde levels. 17beta-Estradiol also decreased the expression of ICAM-1, IFN-gamma, and IL-13 mRNA levels compared with placebo. In contrast, 17beta-Estradiol increased the macroscopic and histological scores compared with placebo in mice with DSS colitis. These results demonstrate anti-inflammatory and proinflammatory effects of 17beta-estradiol in two different models of experimental colitis. The net modulatory effect most likely reflects a combination of estrogen receptor-mediated effects and antioxidant activity and may explain, in part, conflicting results from clinical trials.  相似文献   

2.
3.
Tissues of the mucosa are lined by an epithelium that provides barrier and transport functions. It is now appreciated that inflammatory responses in inflammatory bowel diseases are accompanied by striking shifts in tissue metabolism. In this paper, we examined global metabolic consequences of mucosal inflammation using both in vitro and in vivo models of disease. Initial analysis of the metabolic signature elicited by inflammation in epithelial models and in colonic tissue isolated from murine colitis demonstrated that levels of specific metabolites associated with cellular methylation reactions are significantly altered by model inflammatory systems. Furthermore, expression of enzymes central to all cellular methylation, S-adenosylmethionine synthetase and S-adenosylhomocysteine hydrolase, are increased in response to inflammation. Subsequent studies showed that DNA methylation is substantially increased during inflammation and that epithelial NF-κB activity is significantly inhibited following treatment with a reversible S-adenosylhomocysteine hydrolase inhibitor, DZ2002. Finally, these studies demonstrated that inhibition of cellular methylation in a murine model of colitis results in disease exacerbation while folate supplementation to promote methylation partially ameliorates the severity of murine colitis. Taken together, these results identify a global change in methylation, which during inflammation, translates to an overall protective role in mucosal epithelia.  相似文献   

4.
Inflammatory bowel disease (IBD) encompasses a range of intestinal pathologies, the most common of which are ulcerative colitis (UC) and Crohn''s Disease (CD). Both UC and CD, when present in the colon, generate a similar symptom profile which can include diarrhea, rectal bleeding, abdominal pain, and weight loss.1 Although the pathogenesis of IBD remains unknown, it is described as a multifactorial disease that involves both genetic and environmental components.2There are numerous and variable animal models of colonic inflammation that resemble several features of IBD. Animal models of colitis range from those arising spontaneously in susceptible strains of certain species to those requiring administration of specific concentrations of colitis-inducing chemicals, such as dextran sulphate sodium (DSS). Chemical-induced models of gut inflammation are the most commonly used and best described models of IBD. Administration of DSS in drinking water produces acute or chronic colitis depending on the administration protocol.3 Animals given DSS exhibit weight loss and signs of loose stool or diarrhea, sometimes with evidence of rectal bleeding.4,5 Here, we describe the methods by which colitis development and the resulting inflammatory response can be characterized following administration of DSS. These methods include histological analysis of hematoxylin/eosin stained colon sections, measurement of pro-inflammatory cytokines, and determination of myeloperoxidase (MPO) activity, which can be used as a surrogate marker of inflammation.6The extent of the inflammatory response in disease state can be assessed by the presence of clinical symptoms or by alteration in histology in mucosal tissue. Colonic histological damage is assessed by using a scoring system that considers loss of crypt architecture, inflammatory cell infiltration, muscle thickening, goblet cell depletion, and crypt abscess.7 Quantitatively, levels of pro-inflammatory cytokines with acute inflammatory properties, such as interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α,can be determined using conventional ELISA methods. In addition, MPO activity can be measured using a colorimetric assay and used as an index of inflammation.8In experimental colitis, disease severity is often correlated with an increase in MPO activity and higher levels of pro-inflammatory cytokines. Colitis severity and inflammation-associated damage can be assessed by examining stool consistency and bleeding, in addition to assessing the histopathological state of the intestine using hematoxylin/eosin stained colonic tissue sections. Colonic tissue fragments can be used to determine MPO activity and cytokine production. Taken together, these measures can be used to evaluate the intestinal inflammatory response in animal models of experimental colitis.  相似文献   

5.

Background

MUC2 mucin produced by intestinal goblet cells is the major component of the intestinal mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we used random mutagenesis to produce two murine models of inflammatory bowel disease, characterised the basis and nature of the inflammation in these mice, and compared the pathology with human ulcerative colitis.

Methods and Findings

By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis scores versus wild-type mice, p < 0.01) and chronic diarrhoea. Monitoring over 300 mice of each strain demonstrated that 25% and 40% of each strain, respectively, developed severe clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced by a luminal toxin. Enhanced local production of IL-1β, TNF-α, and IFN-γ was seen in the distal colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2 cytokines (IFN-γ, TNF-α, and IL-13). This pathology was accompanied by accumulation of the Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER) stress in goblet cells, activation of the unfolded protein response, and altered intestinal expression of genes involved in ER stress, inflammation, apoptosis, and wound repair. Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate similar accumulation of nonglycosylated MUC2 precursor in goblet cells together with ultrastructural and biochemical evidence of ER stress even in noninflamed intestinal tissue. Although our study demonstrates that mucin misfolding and ER stress initiate colitis in mice, it does not ascertain the genetic or environmental drivers of ER stress in human colitis.

Conclusions

Characterisation of the mouse models we created and comparison with human disease suggest that ER stress-related mucin depletion could be a fundamental component of the pathogenesis of human colitis and that clinical studies combining genetics, ER stress-related pathology and relevant environmental epidemiology are warranted.  相似文献   

6.
Although macrophages are considered a critical factor in determining the severity of acute inflammatory responses in the gut, recent evidence has indicated that macrophages may also play a counterinflammatory role. In this study, we examined the role of a macrophage subset in two models of colitis. Macrophage colony-stimulating factor (M-CSF)-deficient osteopetrotic mice (op/op) and M-CSF-expressing heterozygote (+/?) mice were studied following the induction of colitis by either dinitrobenzene sulfonic acid (DNBS) or dextran sulfate sodium (DSS). DNBS induced a severe colitis in M-CSF-deficient op/op mice compared with +/? mice. This was associated with increased mortality and more severe macroscopic and microscopic injury. Colonic tissue myeloperoxidase (MPO) activity as well as concentrations of TNF-alpha, IL-1beta, and IL-6 were higher and IL-10 lower in op/op mice with DNBS colitis. The severity of inflammation and mortality was attenuated in op/op mice that had received human recombinant M-CSF prior to the induction of colitis. In contrast, op/op mice appeared less vulnerable to colitis induced by DSS. Macroscopic damage, microscopic injury, MPO activity, and tissue concentrations of TNF-alpha, IL-1beta, and IL-6 were all lower in op/op mice compared with +/? mice with DSS colitis, and no changes were seen in IL-10. Macrophage inflammatory protein-1alpha concentrations were increased in op/op but not +/? mice following colitis induced by DNBS but not DSS. These results indicate that M-CSF-dependent macrophages may play either a pro- or counterinflammatory role in acute experimental colitis, depending on the stimulus used to induce colitis.  相似文献   

7.
8.
Studies in recent years have identified a pivotal role of the cytokine IL-23 in the pathogenesis of inflammatory bowel diseases (IBD: Crohn´s disease, ulcerative colitis) and colitis-associated colon cancer. Genetic studies revealed that subgroups of IBD patients have single nucleotide polymorphisms in the IL-23R gene suggesting that IL-23R signaling affects disease susceptibility. Furthermore, increased production of IL-23 by macrophages, dendritic cells or granulocytes has been observed in various mouse models of colitis, colitis-associated cancer and IBD patients. Moreover, in several murine models of colitis, suppression of IL-12/IL-23 p40, IL-23 p19 or IL-23R function led to marked suppression of gut inflammation. This finding was associated with reduced activation of IL-23 target cells such as T helper 17 cells, innate lymphoid cells type 3, granulocytes and natural killer cells as well as with impaired production of proinflammatory cytokines. Based on these findings, targeting of IL-23 emerges as important concept for suppression of gut inflammation and inflammation-associated cancer growth. Consistently, neutralizing antibodies against IL-12/IL-23 p40 and IL-23 p19 have been successfully used in clinical trials for therapy of Crohn´s disease and pilot studies in ulcerative colitis are ongoing. These findings underline the crucial regulatory role of IL-23 in chronic intestinal inflammation and colitis-associated cancer and indicate that therapeutic strategies aiming at IL-23 blockade may be of key relevance for future therapy of IBD patients.  相似文献   

9.
The matrix metalloproteinases (MMPs), MMP-2 and MMP-9, share structural and substrate similarities and are up-regulated during human as well as animal models of inflammatory bowel disease. We recently demonstrated that epithelial-derived MMP-9 is an important mediator of inflammation and tissue damage in colitis. In this study, we examined the role of MMP-2 in acute colitis. Colitis was induced using two models, administration of dextran sodium sulfate (DSS) and Salmonella enterica subsp. serovar Typhimurium (S.T.). Bone marrow chimeras were performed using bone marrow cells from wild-type (WT) and MMP-2(-/-) mice. Colitis was evaluated by clinical symptoms, myeloperoxidase assay, and histology. MMP-2 protein expression and activity were up-regulated in WT mice treated with DSS or S.T. MMP-2(-/-) mice were highly susceptible to the development of colitis induced by DSS (or S.T.) compared with WT. During inflammation, MMP-2 expression was increased in epithelial cells as well as in the infiltrating immune cells. Bone marrow chimera demonstrated that mucosa-derived MMP-2 was required for its protective effects toward colitis. Furthermore, we demonstrate that severe colitis in MMP-2(-/-) is not due to a compensatory increase in MMP-9. Finally, we show that MMP-2 regulates epithelial barrier function. In contrast to MMP-9, mucosa-derived MMP-2 may be a critical host factor that is involved in the prevention or cessation of the host response to luminal pathogens or toxins, an important aspect of healing and tissue resolution. Together, our data suggest that a critical balance between the two gelatinases determines the outcome of inflammatory response during acute colitis.  相似文献   

10.
11.
12.
Inflammatory bowel disease is a chronic inflammatory response of the gastrointestinal tract mediated in part by an aberrant response to intestinal microflora. Expression of IL-23 subunits p40 and p19 within cells of the innate immune system plays a central role in the development of lower bowel inflammation in response inflammatory challenge. The NF-kappaB subunit c-Rel can regulate expression of IL-12/23 subunits suggesting that it could have a critical role in mediating the development of chronic inflammation within the lower bowel. In this study, we have analyzed the role of c-Rel within the innate immune system in the development of lower bowel inflammation, in two well-studied models of murine colitis. We have found that the absence of c-Rel significantly impaired the ability of Helicobacter hepaticus to induce colitis upon infection of RAG-2-deficient mice, and ameliorated the ability of CD4(+)CD45RB(high) T cells to induce disease upon adoptive transfer into RAG-deficient mice. The absence of c-Rel interfered with the expression of IL-12/23 subunits both in cultured primary macrophages and within the colon. Thus, c-Rel plays a critical role in regulating the innate inflammatory response to microflora within the lower bowel, likely through its ability to modulate expression of IL-12/23 family members.  相似文献   

13.
Curcumin (diferulolylmethane) demonstrates profound anti-inflammatory effects in intestinal epithelial cells (IEC) and in immune cells in vitro and exhibits a protective role in rodent models of chemically induced colitis, with its presumed primary mechanism of action via inhibition of NF-kappaB. Although it has been demonstrated effective in reducing relapse rate in ulcerative colitis patients, curcumin's effectiveness in Crohn's disease (CD) or in Th-1/Th-17 mediated immune models of CD has not been evaluated. Therefore, we investigated the effects of dietary curcumin (0.1-1%) on the development of colitis, immune activation, and in vivo NF-kappaB activity in germ-free IL-10(-/-) or IL-10(-/-);NF-kappaB(EGFP) mice colonized with specific pathogen-free microflora. Proximal and distal colon morphology showed a mild protective effect of curcumin only at 0.1%. Colonic IFN-gamma and IL-12/23p40 mRNA expression followed similar pattern ( approximately 50% inhibition at 0.1%). Secretion of IL-12/23p40 and IFN-gamma by colonic explants and mesenteric lymph node cells was elevated in IL-10(-/-) mice and was not decreased by dietary curcumin. Surprisingly, activation of NF-kappaB in IL-10(-/-) mice (phospho-NF-kappaBp65) or in IL-10(-/-);NF-kappaB(EGFP) mice (whole organ or confocal imaging) was not noticeably inhibited by curcumin. Furthermore, we demonstrate that IL-10 and curcumin act synergistically to downregulate NF-kappaB activity in IEC and IL-12/23p40 production by splenocytes and dendritic cells. In conclusion, curcumin demonstrates limited effectiveness on Th-1 mediated colitis in IL-10(-/-) mice, with moderately improved colonic morphology, but with no significant effect on pathogenic T cell responses and in situ NF-kappaB activity. In vitro studies suggest that the protective effects of curcumin are IL-10 dependent.  相似文献   

14.
Immunological diseases such as inflammatory bowel disease (IBD) are infrequent in less developed countries, possibly because helminths provide protection by modulating host immunity. In IBD murine models, the helminth Heligmosomoides polygyrus bakeri prevents colitis. It was determined whether H. polygyrus bakeri mediated IBD protection by altering dendritic cell (DC) function. We used a Rag IBD model where animals were reconstituted with IL10(-/-) T cells, making them susceptible to IBD and with OVA Ag-responsive OT2 T cells, allowing study of a gut antigenic response. Intestinal DC from H. polygyrus bakeri-infected Rag mice added to lamina propria mononuclear cells (LPMC) isolated from colitic animals blocked OVA IFN-γ/IL-17 responses in vitro through direct contact with the inflammatory LPMC. DC from uninfected Rag mice displayed no regulatory activity. Transfer of DC from H. polygyrus bakeri-infected mice into Rag mice reconstituted with IL10(-/-) T cells protected animals from IBD, and LPMC from these mice lost OVA responsiveness. After DC transfer, OT2 T cells populated the intestines normally. However, the OT2 T cells were rendered Ag nonresponsive through regulatory action of LPMC non-T cells. The process of regulation appeared to be regulatory T cell independent. Thus, H. polygyrus bakeri modulates intestinal DC function, rendering them tolerogenic. This appears to be an important mechanism through which H. polygyrus bakeri suppresses colitis. IFN-γ and IL-17 are colitogenic. The capacity of these DC to block a gut Ag-specific IFN-γ/IL-17 T cell response also is significant.  相似文献   

15.
Resolvins of the D series are generated from docosahexaenoic acid, which are enriched in fish oils and are believed to exert beneficial roles on diverse inflammatory disorders, including inflammatory bowel disease (IBD). In this study, we investigated the anti-inflammatory effects of the aspirin-triggered resolvin D1 (AT-RvD1), its precursor (17(R)-hydroxy docosahexaenoic acid [17R-HDHA]) and resolvin D2 (RvD2) in dextran sulfate sodium (DSS)- or 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Our results showed that the systemic treatment with AT-RvD1, RvD2, or 17R-HDHA in a nanogram range greatly improved disease activity index, body weight loss, colonic damage, and polymorphonuclear infiltration in both colitis experimental models. Moreover, these treatments reduced colonic cytokine levels for TNF-α, IL-1β, MIP-2, and CXCL1/KC, as well as mRNA expression of NF-κB and the adhesion molecules VCAM-1, ICAM-1, and LFA-1. Furthermore, AT-RvD1, but not RvD2 or 17R-HDHA, depended on lipoxin A4 receptor (ALX) activation to inhibit IL-6, MCP-1, IFN-γ, and TNF-α levels in bone marrow-derived macrophages stimulated with LPS. Similarly, ALX blockade reversed the beneficial effects of AT-RvD1 in DSS-induced colitis. To our knowledge, our findings showed for the first time the anti-inflammatory effects of resolvins of the D series and precursor 17R-HDHA in preventing experimental colitis. We also demonstrated the relevant role exerted by ALX activation on proresolving action of AT-RvD1. Moreover, AT-RvD1 showed a higher potency than 17R-HDHA and RvD2 in preventing DSS-induced colitis. The results suggest that these lipid mediators possess a greater efficacy when compared with other currently used IBD therapies, such as monoclonal anti-TNF, and have the potential to be used for treating IBD.  相似文献   

16.
Helminth exposure appears to protect hosts from inappropriate inflammatory responses, such as those causing inflammatory bowel disease. A recently identified, strongly proinflammatory limb of the immune response is characterized by T cell IL-17 production. Many autoimmune type inflammatory diseases are associated with IL-17 release. Because helminths protect from these diseases, we examined IL-17 production in helminth-colonized mice. We colonized mice with Heligmosomoides polygyrus, an intestinal helminth, and analyzed IL-17 production by lamina propria mononuclear cells (LPMC) and mesenteric lymph node (MLN) cells. Colonization with H. polygyrus reduces IL-17A mRNA by MLN cells and inhibits IL-17 production by cultured LPMC and MLN cells. Helminth exposure augments IL-4 and IL-10 production. Blocking both IL-4 and IL-10, but not IL-10 alone, restores IL-17 production in vitro. Colonization of colitic IL-10-deficient mice with H. polygyrus suppresses LPMC IL-17 production and improves colitis. Ab-mediated blockade of IL-17 improves colitis in IL-10-deficient mice. Thus, helminth-associated inhibition of IL-17 production is most likely an important mechanism mediating protection from inappropriate intestinal inflammation.  相似文献   

17.

Background

Diagnosis of chronic intestinal inflammation, which characterizes inflammatory bowel disease (IBD), along with prediction of disease state is hindered by the availability of predictive serum biomarker. Serum biomarkers predictive of disease state will improve trials for therapeutic intervention, and disease monitoring, particularly in genetically susceptible individuals. Chronic inflammation during IBD is considered distinct from infectious intestinal inflammation thereby requiring biomarkers to provide differential diagnosis. To address whether differential serum biomarkers could be identified in murine models of colitis, immunological profiles from both chronic spontaneous and acute infectious colitis were compared and predictive serum biomarkers identified via multivariate modeling.

Methodology/Principal Findings

Discriminatory multivariate modeling of 23 cytokines plus chlorotyrosine and nitrotyrosine (protein adducts from reactive nitrogen species and hypochlorite) in serum and tissue from two murine models of colitis was performed to identify disease-associated biomarkers. Acute C. rodentium-induced colitis in C57BL/6J mice and chronic spontaneous Helicobacter-dependent colitis in TLR4−/− x IL-10−/− mice were utilized for evaluation. Colon profiles of both colitis models were nearly identical with chemokines, neutrophil- and Th17-related factors highly associated with intestinal disease. In acute colitis, discriminatory disease-associated serum factors were not those identified in the colon. In contrast, the discriminatory predictive serum factors for chronic colitis were neutrophil- and Th17-related factors (KC, IL-12/23p40, IL-17, G-CSF, and chlorotyrosine) that were also elevated in colon tissue. Chronic colitis serum biomarkers were specific to chronic colitis as they were not discriminatory for acute colitis.

Conclusions/Significance

Immunological profiling revealed strikingly similar colon profiles, yet distinctly different serum profiles for acute and chronic colitis. Neutrophil- and Th17-related factors were identified as predictive serum biomarkers of chronic colitis, but not acute colitis, despite their presence in colitic tissue of both diseases thereby demonstrating the utility of mathematical modeling for identifying disease-associated serum biomarkers.  相似文献   

18.
Interleukin (IL)-2 knockout (KO) mice, which spontaneously develop symptoms of inflammatory bowel disease similar to ulcerative colitis in humans, were made vitamin D deficient (D-) or vitamin D sufficient (D+) or were supplemented with 1,25-dihydroxyvitamin D(3) (1,25D3). 1,25-Dihydroxyvitamin D3 supplementation, but not vitamin D supplementation, reduced the early mortality of IL-2 KO mice. However, colitis severity was not different in D-, D+, or 1,25D3 IL-2 KO mice. Cells from D- IL-2 KO mice produced more interferon (IFN)-gamma than cells from all other mice. Con A-induced proliferation was upregulated in IL-2 KO mice and downregulated in wildtype (WT) mice fed 1,25D3. All other measured immune responses in cells from IL-2 KO mice were unchanged by vitamin D status. In vitro addition of 1,25-dihydroxyvitamin D3 significantly reduced the production of IL-10 and IFN-gamma in cells from D- and D+ WT mice. Conversely, IFN-gamma and IL-10 production in cells from IL-2 KO mice were refractory to in vitro 1,25-dihydroxyvitamin D3 treatments. In the absence of IL-2, vitamin D was ineffective for suppressing colitis and ineffective for the in vitro downregulation of IL-10 or IFN-gamma production. One target of 1,25-dihydroxyvitamin D3 in the immune system is the IL-2 gene.  相似文献   

19.
Current evidence indicates that the chronic inflammation observed in the intestines of patients with inflammatory bowel disease is due to an aberrant immune response to enteric flora. We have developed a lipid A-mimetic, CRX-526, which has antagonistic activity for TLR4 and can block the interaction of LPS with the immune system. CRX-526 can prevent the expression of proinflammatory genes stimulated by LPS in vitro. This antagonist activity of CRX-526 is directly related to its structure, particularly secondary fatty acyl chain length. In vivo, CRX-526 treatment blocks the ability of LPS to induce TNF-alpha release. Importantly, treatment with CRX-526 inhibits the development of moderate-to-severe disease in two mouse models of colonic inflammation: the dextran sodium sulfate model and multidrug resistance gene 1a-deficient mice. By blocking the interaction between enteric bacteria and the innate immune system, CRX-526 may be an effective therapeutic molecule for inflammatory bowel disease.  相似文献   

20.
Inflammatory mediators such as TNF-alpha, IL-6, and IL-1 are important in the pathogenesis of inflammatory bowel diseases and are regulated by the activation of NF-kappaB. The aim of the present study was to investigate whether the NF-kappaB essential modulator (NEMO)-binding domain (NBD) peptide, which has been shown to block the association of NEMO with the IkappaB kinasebeta subunit (IKKbeta) and inhibit NF-kappaB activity, reduces inflammatory injury in mice with colitis. Two colitis models were established by the following: 1) inclusion of dextran sulfate sodium salt (DSS) in the drinking water of the mice; and 2) a trinitrobenzene sulfonic acid enema. Marked NF-kappaB activation and expression of proinflammatory cytokines were observed in colonic tissues. The NBD peptide ameliorated colonic inflammatory injury through the down-regulation of proinflammatory cytokines mediated by NF-kappaB inhibition in both models. These results indicate that an IKKbeta-targeted NF-kappaB blockade using the NBD peptide could be an attractive therapeutic approach for inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号