首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phosphotyrosine interacting domain-containing protein 1 (PID1) serves as a cytosolic adaptor protein of the LDL receptor-related protein 1 (LRP1). By regulating its intracellular trafficking, PID1 controls the hepatic, LRP1-dependent clearance of pro-atherogenic lipoproteins. In adipose and muscle tissues, LRP1 is present in endosomal storage vesicles containing the insulin-responsive glucose transporter 4 (GLUT4). This prompted us to investigate whether PID1 modulates GLUT4 translocation and function via its interaction with the LRP1 cytosolic domain. We initially evaluated this in primary brown adipocytes as we observed an inverse correlation between brown adipose tissue glucose uptake and expression of LRP1 and PID1. Insulin stimulation in wild type brown adipocytes induced LRP1 and GLUT4 translocation from endosomal storage vesicles to the cell surface. Loss of PID1 expression in brown adipocytes prompted LRP1 and GLUT4 sorting to the plasma membrane independent of insulin signaling. When placed on a diabetogenic high fat diet, systemic and adipocyte-specific PID1-deficient mice presented with improved hyperglycemia and glucose tolerance as well as reduced basal plasma insulin levels compared to wild type control mice. Moreover, the improvements in glucose parameters associated with increased glucose uptake in adipose and muscle tissues from PID1-deficient mice. The data provide evidence that PID1 serves as an insulin-regulated retention adaptor protein controlling translocation of LRP1 in conjunction with GLUT4 to the plasma membrane of adipocytes. Notably, loss of PID1 corrects for insulin resistance-associated hyperglycemia emphasizing its pivotal role and therapeutic potential in the regulation of glucose homeostasis.  相似文献   

2.
Glucose transporter (GLUT) 4 is the insulin responsive glucose transporter in adipose tissue, skeletal muscle, and heart. Insulin elicits increased glucose uptake by recruiting GLUT4 from a specialized intracellular storage site to the cell surface. Expression of various proteins that colocalize with GLUT4 and/or are involved in insulin-stimulated GLUT4 translocation was examined in adipocytes as well as skeletal and cardiac muscles from GLUT4 null mice. Our data demonstrate that expression of insulin-regulated aminopeptidase (IRAP) is divergently regulated in GLUT4 null tissues, e.g., upregulated 1.6-fold in GLUT4 null adipocytes and downregulated in GLUT4 null skeletal muscle (40%) and heart (60%). IRAP exhibited abnormal subcellular distribution and impaired insulin-stimulated translocation in GLUT4-deficient tissues. We propose the compartment containing IRAP and proteins normally associated with GLUT4 vesicle traffics constitutively to the cell surface in GLUT4 null adipocytes and skeletal muscle.  相似文献   

3.
Insulin receptor substrate-2-deficient (IRS-2(-/-)) mice develop type 2 diabetes. We have investigated the molecular mechanisms by which IRS-2(-/-) immortalized brown adipocytes showed an impaired response to insulin in inducing GLUT4 translocation and glucose uptake. IRS-2-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity was blunted in IRS-2(-/-) cells, total PI 3-kinase activity being reduced by 30%. Downstream, activation of protein kinase C (PKC) zeta was abolished in IRS-2(-/-) cells. Reconstitution with retroviral IRS-2 restores IRS-2/PI 3-kinase/PKC zeta signalling, as well as glucose uptake. Wild-type cells expressing a kinase-inactive mutant of PKC zeta lack GLUT4 translocation and glucose uptake. Our results support the essential role played by PKC zeta in the insulin resistance and impaired glucose uptake observed in IRS-2-deficient brown adipocytes.  相似文献   

4.
Heterotrimeric G-proteins, including Galpha(i2), have been implicated in modulating glucose disposal and insulin signaling. This cross-talk between G-protein-coupled and tyrosine kinase-coupled signaling pathways is a focal point for the study of integration of cell signaling. Herein we study the role of Galpha(i2) in modulating glucose transport, focusing upon linkages to insulin signaling. Utilizing mice harboring a transgene that directs the expression of a constitutively activated, GTPase-deficient mutant of Galpha(i2) (Q205L) in adipose tissue, skeletal muscle, and liver, we demonstrate that Galpha(i2) regulates the translocation of the insulin-sensitive GLUT4 glucose transporter in skeletal muscle and adipose tissue. The expression of Q205L Galpha(i2) increased glucose transport and translocation of GLUT4 to the plasma membrane in vivo in the absence of insulin stimulation. Adipocytes from the Q205L Galpha(i2) mice displayed enhanced insulin-stimulated glucose transport and GLUT4 translocation to the plasma membrane to levels nearly twice that of those from littermate controls. Phosphatidylinositol 3-kinase and Akt activities were constitutively activated in tissues expressing the Q205L Galpha(i2). Studies of adipocytes from wild-type mice displayed short term activation of phosphatidylinositol 3-kinase, Akt, and GLUT4 translocation in response to activation of Galpha(i2) by lysophosphatidic acid, a response sensitive to pertussis toxin. These data provide an explanation for the marked glucose tolerance of the Q205L Galpha(i2) mice and demonstrate a linkage between Galpha(i2) and GLUT4 translocation.  相似文献   

5.
Previously, we demonstrated that lipocalin-type prostaglandin D(2) synthase (L-PGDS) knockout mice become glucose intolerant and display signs of diabetic nephropathy and accelerated atherosclerosis. In the current study we sought to explain the link between L-PGDS and glucose tolerance. Using the insulin-sensitive rat skeletal muscle cell line, L6, we showed that L-PGDS could stimulate glucose transport approximately 2-fold as well as enhance insulin-stimulated glucose transport, as measured by 2-deoxy-[(3)H]-glucose uptake. The increased glucose transport was not attributed to increased GLUT4 production but rather the stimulation of GLUT4 translocation to the plasma membrane, a phenomenon that was lost when cells were cultured under hyperglycemic (20 mM) conditions or pretreated with wortmannin. There was however, an increase in GLUT1 expression as well as a 3-fold increase in hexokinase III expression, which was increased to nearly 5-fold in the presence of insulin, in response to L-PGDS at 20 mM glucose. In addition, adipocytes isolated from L-PGDS knockout mice were significantly less sensitive to insulin-stimulated glucose transport than wild-type. We conclude that L-PGDS, via production of prostaglandin D(2), is an important mediator of muscle and adipose glucose transport which is modulated by glycemic conditions and plays a significant role in the glucose intolerance associated with type 2 diabetes.  相似文献   

6.
Decreased GLUT4 expression, impaired insulin receptor (IR), IRS-1, and pp60/IRS-3 tyrosine phosphorylation are characteristics of adipocytes from insulin-resistant animal models and obese NIDDM humans. However, the sequence of events leading to the development of insulin signaling defects and the significance of decreased GLUT4 expression in causing adipocyte insulin resistance are unknown. The present study used male heterozygous GLUT4 knockout mice (GLUT4(+/-)) as a novel model of diabetes to study the development of insulin signaling defects in adipocytes with the progression of whole body insulin resistance and diabetes. Male GLUT4(+/-) mice with normal fed glycemia and insulinemia (N/N), normal fed glycemia and hyperinsulinemia (N/H), and fed hyperglycemia with hyperinsulinemia (H/H) exist at all ages. The expression of GLUT4 protein and the maximal insulin-stimulated glucose transport was 50% decreased in adipocytes from all three groups. Insulin signaling was normal in N/N adipose cells. From 35 to 70% reductions in insulin-stimulated tyrosine phosphorylation of IR, IRS-1, and pp60/IRS-3 were noted with no changes in the cellular content of IR, IRS-1, and p85 in N/H adipocytes. Insulin-stimulated protein tyrosine phosphorylation was further decreased to 12-23% in H/H adipose cells accompanied by 42% decreased IR and 80% increased p85 expression. Insulin-stimulated, IRS-1-associated PI3 kinase activity was decreased by 20% in N/H and 68% reduced in H/H GLUT4(+/-) adipocytes. However, total insulin-stimulated PI3 kinase activity was normal in H/H GLUT4(+/-) adipocytes. Taken together, these results strongly suggest that hyperinsulinemia triggers a reduction of IR tyrosine kinase activity that is further exacerbated by the appearance of hyperglycemia. However, the insulin signaling cascade has sufficient plasticity to accommodate significant changes in specific components without further reducing glucose uptake. Furthermore, the data indicate that the cellular content of GLUT4 is the rate-limiting factor in mediating maximal insulin-stimulated glucose uptake in GLUT4(+/-) adipocytes.  相似文献   

7.
Calorie restriction (CR) has been shown to improve peripheral insulin resistance and type 2 diabetes in animal models. However, the exact mechanism of CR on GLUT4 expression and translocation in insulin-sensitive tissues has not been well elucidated. In the present study, we examine the effect of CR on the expression of glucose transporter 4 (GLUT4), GLUT4 translocation, and glucose transport activity in adipose tissue from Otsuka Long-Evans Tokushima Fatty (OLETF) rat and control (LETO) rats. CR (70% of satiated group) ameliorated hyperglycemia and improved impaired glucose tolerance (IGT) in OLETF rats. In skeletal muscle, the expression levels of GLUT4 and GLUT1 were not significantly different between LETO and OLETF rats, and were not affected by CR. By contrast, the expression level of GLUT4 was markedly decreased in the adipose tissue of OLETF rats, but was dramatically increased by CR. The GLUT4 recruitment stimulated by insulin was also improved in OLETF rat adipocytes by CR. The insulin-stimulated 2-deoxyglucose (2DG) uptake was significantly increased in adipocytes from the CR OLETF rats, as compared with the satiated OLETF rats. Taken together, these results suggest that CR improves whole body glucose disposal and insulin resistance in OLETF rats, and that these effects may associate with the increased adipocyte-specific GLUT4 expression.  相似文献   

8.
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.  相似文献   

9.
GLUT4 translocation: the last 200 nanometers   总被引:2,自引:0,他引:2  
Insulin regulates circulating glucose levels by suppressing hepatic glucose production and increasing glucose transport into muscle and adipose tissues. Defects in these processes are associated with elevated vascular glucose levels and can lead to increased risk for the development of Type 2 diabetes mellitus and its associated disease complications. At the cellular level, insulin stimulates glucose uptake by inducing the translocation of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane, where the transporter facilitates the diffusion of glucose into striated muscle and adipocytes. Although the immediate downstream molecules that function proximal to the activated insulin receptor have been relatively well-characterized, it remains unknown how the distal insulin-signaling cascade interfaces with and recruits GLUT4 to the cell surface. New biochemical assays and imaging techniques, however, have focused attention on the plasma membrane as a potential target of insulin action leading to GLUT4 translocation. Indeed, it now appears that insulin specifically regulates the docking and/or fusion of GLUT4-vesicles with the plasma membrane. Future work will focus on identifying the key insulin targets that regulate the GLUT4 docking/fusion processes.  相似文献   

10.
We earlier developed a novel method to detect translocation of the glucose transporter (GLUT) directly and simply using c-MYC epitope-tagged GLUT (GLUTMYC). To define the effect of platelet-derived growth factor (PDGF) on glucose transport in 3T3-L1 adipocytes, we investigated the PDGF- and insulin-induced glucose uptake, translocation of glucose transporters, and phosphatidylinositol (PI) 3-kinase activity in 3T3-L1, 3T3-L1GLUT4MYC, and 3T3-L1GLUT1MYC adipocytes. Insulin and PDGF stimulated glucose uptake by 9-10- and 5.5-6.5-fold, respectively, in both 3T3-L1 and 3T3-L1GLUT4MYC adipocytes. Exogenous GLUT4MYC expression led to enhanced PDGF-induced glucose transport. In 3T3-L1GLUT4MYC adipocytes, insulin and PDGF induced an 8- and 5-fold increase in GLUT4MYC translocation, respectively, determined in a cell-surface anti-c-MYC antibody binding assay. This PDGF-induced GLUT4MYC translocation was further demonstrated with fluorescent detection. In contrast, PDGF stimulated a 2-fold increase of GLUT1MYC translocation and 2.5-fold increase of glucose uptake in 3T3-L1GLUT1MYC adipocytes. The PDGF-induced GLUT4MYC translocation, glucose uptake, and PI 3-kinase activity were maximal (100%) at 5-10 min and thereafter rapidly declined to 40, 30, and 12%, respectively, within 60 min, a time when effects of insulin were maximal. Wortmannin (0.1 microM) abolished PDGF-induced GLUT4MYC translocation and glucose uptake in 3T3-L1GLUT4MYC adipocytes. These results suggest that PDGF can transiently trigger the translocation of GLUT4 and stimulate glucose uptake by translocation of both GLUT4 and GLUT1 in a PI 3-kinase-dependent signaling pathway in 3T3-L1 adipocytes.  相似文献   

11.
Various studies have demonstrated that the platelet-derived growth factor (PDGF) receptor in adipocytes can activate PI 3-kinase activity without affecting insulin-responsive glucose transporter (GLUT4) translocation. To investigate this phenomenon of receptor signaling specificity, we utilized single cell analysis to determine the cellular distribution and signaling properties of PDGF and insulin in differentiated 3T3L1 adipocytes. The insulin receptor was highly expressed in a large percentage of the cell population (>95%) that also expressed caveolin 2 and GLUT4 with very low levels of the PDGF receptor. In contrast, the PDGF receptor was only expressed in approximately 10% of the differentiated 3T3L1 cell population with relatively low levels of the insulin receptor, caveolin 2, and GLUT4. Consistent with this observation, insulin stimulated the phosphorylation of Akt in the caveolin 2- and GLUT4-positive cells, whereas PDGF primarily stimulated Akt phosphorylation in the caveolin 2- and GLUT4-negative cell population. Furthermore, transfection of the PDGF receptor in the insulin receptor-, GLUT4-, and caveolin 2-positive cells resulted in the ability of PDGF to stimulate GLUT4 translocation. These data demonstrate that differentiated 3T3L1 adipocytes are not a homogeneous population of cells, and the lack of PDGF receptor expression in the GLUT4-positive cell population accounts for the inability of the endogenous PDGF receptor to activate GLUT4 translocation.  相似文献   

12.
In wild-type mice, a single injection of streptozotocin (STZ, 200 mg/kg body wt) caused within 4 days severe hyperglycemia, hypoinsulinemia, significant glucose intolerance, loss of body weight, and the disappearance of pancreatic beta-cells. However, in ATP-sensitive K(+) channel (K(ATP) channel)-deficient mice (Kir6.2(-/-) mice), STZ had none of these effects. Exposing isolated pancreatic islets to STZ caused severe damage in wild-type but not in Kir6.2(-/-) islets. Following a single injection, plasma STZ levels were slightly less in Kir6.2(-/-) mice than in wild-type mice. Despite the difference in plasma STZ, wild-type and Kir6.2(-/-) liver accumulated the same amount of STZ, whereas Kir6.2(-/-) pancreas accumulated 4.1-fold less STZ than wild-type pancreas. Kir6.2(-/-) isolated pancreatic islets also transported less glucose than wild-type ones. Quantification of glucose transporter 2 (GLUT2) protein content by Western blot using an antibody with an epitope in the extracellular loop showed no significant difference in GLUT2 content between wild-type and Kir6.2(-/-) pancreatic islets. However, visualization by immunofluorescence with the same antibody gave rise to 32% less fluorescence in Kir6.2(-/-) pancreatic islets. The fluorescence intensity using another antibody, with an epitope in the COOH terminus, was 5.6 times less in Kir6.2(-/-) than in wild-type pancreatic islets. We conclude that 1) Kir6.2(-/-) mice are STZ resistant because of a decrease in STZ transport by GLUT2 in pancreatic beta-cells and 2) the decreased transport is due to a downregulation of GLUT2 activity involving an effect at the COOH terminus.  相似文献   

13.
The aim of this study was to establish a rapid preparation of plasma membrane from adipocytes and muscle cells to detect translocated glucose transporter (GLUT) 4. A plasma membrane fraction was prepared by sequential centrifugation with buffer containing detergents, and its purity was estimated by detecting insulin receptor beta-subunit (IRbeta). After insulin stimulus, GLUT4 translocation was observed in 3T3-L1 adipocytes and L6 myotubes. It was found that IRbeta and GLUT4 levels on the plasma membrane decreased in adipose and muscle with intake of a 29% lard diet for 14 weeks. Hence, this method should be useful for rapid preparation of the plasma membrane fraction.  相似文献   

14.
In adipose and muscle cells, insulin stimulates the exocytic translocation of vesicles containing GLUT4, a glucose transporter, and insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. A substrate of IRAP is vasopressin, which controls water homeostasis. The physiological importance of IRAP translocation to inactivate vasopressin remains uncertain. We previously showed that in skeletal muscle, insulin stimulates proteolytic processing of the GLUT4 retention protein, TUG, to promote GLUT4 translocation and glucose uptake. Here we show that TUG proteolysis also controls IRAP targeting and regulates vasopressin action in vivo. Transgenic mice with constitutive TUG proteolysis in muscle consumed much more water than wild-type control mice. The transgenic mice lost more body weight during water restriction, and the abundance of renal AQP2 water channels was reduced, implying that vasopressin activity is decreased. To compensate for accelerated vasopressin degradation, vasopressin secretion was increased, as assessed by the cosecreted protein copeptin. IRAP abundance was increased in T-tubule fractions of fasting transgenic mice, when compared with controls. Recombinant IRAP bound to TUG, and this interaction was mapped to a short peptide in IRAP that was previously shown to be critical for GLUT4 intracellular retention. In cultured 3T3-L1 adipocytes, IRAP was present in TUG-bound membranes and was released by insulin stimulation. Together with previous results, these data support a model in which TUG controls vesicle translocation by interacting with IRAP as well as GLUT4. Furthermore, the effect of IRAP to reduce vasopressin activity is a physiologically important consequence of vesicle translocation, which is coordinated with the stimulation of glucose uptake.  相似文献   

15.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.  相似文献   

16.
Diets enriched in sucrose severely impair metabolic regulation and are associated with obesity, insulin resistance and glucose intolerance. In the current study, we investigated the effect of 4 weeks high-sucrose diet (HSD) feeding in C57BL6/J mice, with specific focus on adipocyte function. Mice fed HSD had slightly increased adipose tissue mass but displayed similar hepatic triglycerides, glucose and insulin levels, and glucose clearance capacity as chow-fed mice. Interestingly, we found adipose depot-specific differences, where both the non- and insulin-stimulated glucose transports were markedly impaired in primary adipocytes isolated from the inguinal fat depot from HSD-fed mice. This was accompanied by decreased protein levels of both GLUT4 and AS160. A similar but much less pronounced trend was observed in the retroperitoneal depot. In contrast, both GLUT4 expression and insulin-stimulated glucose uptake were preserved in adipocytes isolated from epididymal adipose tissue with HSD. Further, we found a slight shift in cell size distribution towards larger cells with HSD and a significant decrease of ACC and PGC-1α expression in the inguinal adipose tissue depot. Moreover, fructose alone was sufficient to decrease GLUT4 expression in cultured, mature adipocytes.Altogether, we demonstrate that short-term HSD feeding has deleterious impact on insulin response and glucose transport in the inguinal adipose tissue depot, specifically. These changes occur before the onset of systemic glucose dysmetabolism and therefore could provide a mechanistic link to overall impaired energy metabolism reported after prolonged HSD feeding, alone or in combination with HFD.  相似文献   

17.
Stearoyl-CoA desaturase 1 (SCD1) deficiency protects mice from diet-induced obesity and insulin resistance. To understand the tissue-specific role of SCD1 in energy homeostasis, we have generated mice with an adipose-specific knockout of Scd1 (AKO), and report here that SCD1 deficiency increases GLUT1 expression in adipose tissue of AKO mice, but not global SCD1 knockout (GKO) mice. In 3T3-L1 adipocytes treated with an SCD inhibitor, basal glucose uptake and the cellular expression of GLUT1 were significantly increased while GLUT4 expression remained unchanged. Consistently, adipose-specific SCD1 knockout (AKO) mice had significantly elevated GLUT1 expression, but not GLUT4, in white adipose tissue compared to Lox counterparts. Concurrently, adiponectin expression was significantly diminished, whereas TNF-α expression was elevated. In contrast, in adipose tissue of GKO mice, GLUT4 and adiponectin expression were significantly elevated with lowered TNF-α expression and little change in GLUT1 expression, suggesting a differential responsiveness of adipose tissue to global- or adipose-specific SCD1 deletion. Taken together, these results indicate that adipose-specific deletion of SCD1 induces GLUT1 up-regulation in adipose tissue, associated with decreased adiponectin and increased TNF-α production, and suggest that GLUT1 may play a critical role in controlling glucose homeostasis of adipose tissue in adipose-specific SCD1-deficient conditions.  相似文献   

18.
Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.  相似文献   

19.
Insulin regulates blood glucose by promoting uptake by fat and muscle, and inhibiting production by liver. Insulin-stimulated glucose uptake is mediated by GLUT4, which translocates from an intracellular compartment to the plasma membrane. GLUT4 traffic and insulin secretion both rely on calcium-dependent, regulated exocytosis. Deletion of the voltage-gated potassium channel Kv1.3 results in constitutive expression of GLUT4 at the plasma membrane. Inhibition of channel activity stimulated GLUT4 translocation through a calcium dependent mechanism. The synaptotagmins (Syt) are calcium sensors for vesicular traffic, and Syt VII mediates lysosomal and secretory granule exocytosis. We asked if Syt VII regulates insulin secretion by pancreatic beta cells, and GLUT4 translocation in insulin-sensitive tissues mouse model. Syt VII deletion (Syt VII -/-) results in glucose intolerance and a marked decrease in glucose-stimulated insulin secretion in vivo. Pancreatic islet cells isolated from Syt VII -/- cells secreted significantly less insulin than islets of littermate controls. Syt VII deletion disrupted GLUT4 traffic as evidenced by constitutive expression of GLUT4 present at the plasma membrane of fat and skeletal muscle cells and unresponsiveness to insulin. These data document a key role for Syt VII in peripheral glucose homeostasis through its action on both insulin secretion and GLUT4 traffic.  相似文献   

20.
Obesity leads to a proinflammatory state with immune responses that include infiltration of adipose tissue with macrophages. These macrophages are believed to alter insulin sensitivity in adipocytes, but the mechanisms that underlie this effect have not been characterized. We have explored the interaction between macrophages and adipocytes in the context of both indirect and direct coculture. Macrophage-secreted factors blocked insulin action in adipocytes via downregulation of GLUT4 and IRS-1, leading to a decrease in Akt phosphorylation and impaired insulin-stimulated GLUT4 translocation to the plasma membrane. GLUT1 was upregulated with a concomitant increase in basal glucose uptake. These changes recapitulate those seen in adipose tissue from insulin-resistant humans and animal models. TNF-alpha-neutralizing antibodies partially reversed the insulin resistance produced by macrophage-conditioned media. Peritoneal macrophages and macrophage-enriched stromal vascular cells from adipose tissue also attenuated responsiveness to insulin in a manner correlating with inflammatory cytokine secretion. Adipose tissue macrophages from obese mice have an F4/80(+)CD11b(+)CD68(+)CD14(-) phenotype and form long cellular extensions in culture. Peritoneal macrophages take on similar characteristics in direct coculture with adipocytes and induce proinflammatory cytokines, suggesting that macrophage activation state is influenced by contact with adipocytes. Thus both indirect/secreted and direct/cell contact-mediated factors derived from macrophages influence insulin sensitivity in adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号