首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraperitoneal administration of [3H]-leukotriene E4 in the rat resulted in the appearance of radiolabel in urine and feces. Separation of polar urinary metabolites and chromatographic comparison of synthetic metabolites indicated the in vivo formation of ω-oxidized metabolites of LTE4 with sequential β-oxidation. Futhermore, the metabolite identified as 16-carboxy-17,18,19,20-tetranor-14,15-dihydro-N-acetyl-LTE4 substantiates the biochemical patheway of β-oxidation in vivo involving the 2,4-dienoyl CoA reductase as an integral step. These results substantiate β-oxidation of sulfidopeptide leukotrienes in vivo and these metabolites account for some of the major urinary metabolites of this class of lipid mediator.  相似文献   

2.
Four novel ω- and β-oxidation (from the ω end) products of peptide leukotrienes, 20-hydroxy and 20-carboxy-LTE4, 18-carboxy-19,20-dinor-LTE4 and 16-carboxy-17, 18, 19, 20-tetranor-14, 15-dihydro-LTE4 were prepared by total synthesis and used as standards for identification of biliary and urinary metabolites in the cynomolgus monkey. After intravenous administration 14, 15,-[3H] leukotriene C4 (10 μCi kg−1 was partially metabolized in and rapidly cleared from the vascular circulation. This resulted, within 24 hours, in significant urinary excretion. (14.8 ± 2.1%, n = 4), consisting largely of material more polar than LET4 (61% of urinary excretion) as shown by reverse phase HPLC. The polar fraction demonstrated two predominant metabolites which coeluted in several HPLC solvent systems with synthetic 16-carboxytetranordihydro-LTE4 (major component) and 18-carboxydinor-LTE4 (minor component). Characterization of the major polar metabolites as 16-carboxytetranordihydro-LTE4 was substantiated by conversion to its N-acetylated derivative. The absence of the 14, 15 double bond was confirmed by product analysis of oxidative ozonolysis. In a single animal, the bile duct was cannulated, with significant biliary excretion of radioactivity demonstrated over 4 hours (58.6% recovery). The predominant polar biliary metabolites were also identified as the 18-carboxydinor and 16-carboxytetranordihydro derivatives of LTE4 mentioned above. These data suggest that β-oxidation products generated from the ω-carboxyl end of the 20-carboxyl-LTE4 are important products of [3H] LTC4 metabolism in the monkey. Quantitation of these urinary metabolites may be an important index of leukotriene production.  相似文献   

3.
Cysteinyl leukotrienes (LT) C4, LTD4, and LTE4 are potent mediators of anaphylaxis and inflammatin. LTE4 is extensively metabolized in man mainly by ω-oxidation followed by subsequent β-oxidation to more polar and biologically inactive metabolites. This paper describes a method for the synthesis of [1,20−18O2]-carboxy-LTE4, [1,18−18O2]-carboxy-dinor-LTE4, and [1,16−18O2]-carboxy-14,15-dihydro-tetranor-LTE4 starting from the unlabelled dimethyl esters of 20-carboxy-LTA4, 18-carboxy-dinor-LTA4 and 16-carboxy-14,15-dihydro-tetranor-LTA4, respectively, by separate chemical conjugation with cysteine hydrochloride in H218O-methanol followed by alkaline hydrolysis with Li18OH. The isotopic purity of the isolated reaction products was 94% at 18O for all three preparations while only 0.3% remained unlabelled as confirmed by negative-ion chemical-ionization gas chromatography-mass spectrometry (GC-NICI-MS) after their catalytical reduction/desulphurization and derivation. The 18O2-labelled compounds are demonstrated to be suitable internal standards for quantification by GC-NICI-MS and GC-NICI-tandem MS. We found by GC-NICI-tandem MS that the excretion rate of 20-carboxy-LTE4 is comparable to that of LTE4 (both in nmol/mol creatinine, mean ± S.E.) in healthy children (26.7 ± 4.7 vs. 32.0 ± 6.0, n = 9) and adults (13.9 ± 1.1 vs. 27.2 ± 5.4, n = 3).  相似文献   

4.
Pulmonary responses to intravenous leukotrienes C4, D4 and E4 administered as a bolus injection and by continuous infusion were studied in anesthetized guinea pigs. LTD4, LTC4 and LTE4 (respective ED50 of 0.21 ± .1, 0.64 ± .2 and 2.0 ± .1 μg kg−1) produced dose-dependent increases in insufflation pressure when given as a bolus injection to anesthetized guinea pigs (Konzett-Rössler). Bronchoconstriction was antagonized by FPL-55712 (50–200 μg kg−1), and indomethacin (50–200 μg kg−1) but was not significantly altered by mepyramine (1.0 mg kg−1), methysergide (0.1 mg kg−1), intal (10 mg kg−1) mepacrine (5 mg kg−1) or dexamethasone (10 mg kg−1). The beta adrenoceptor blocker, timolol (5 μg kg−1) produced a significantly greater potentiation of the responses to the leukotrienes than to arachidonic acid, histamine and acetylcholine. Responses to bolus injection of LTE4 but not LTD4 or LTC4 were partially antagonized by atropine (100 μg kg−1) and bilateral vagotomy. In experiments of a different design, continuous infusion of LTD4 and LTE4 (2.8–3.2 μg kg−1 min−1) into indomethacin-treated animals produced slowly developing increases in pulmonary resistance and decreases in compliance. The increase in resistance produced by LTE4 and LTD4 was partly reversed by intravenous FPL-55712 (1.0 mg kg−1) and atropine (100 μg kg−1) but was almost completely reversed by FPL-55712 (3 – 10 mg kg−1). These findings indicate that leukotrienes can produce bronchoconstriction in guinea pigs through cyclooxygenase-dependent and cyclooxygenase independent mechanisms both of which are blocked by FPL-55712. Cholinergic mechanisms are involved in the mediation of part of the response to bolus injection of LTE4 as well as a small part of the initial response to continuous infusion of LTD4 and LTE4. Intrinsic beta adrenoceptor activation serves to down modulate responses to the leukotrienes to a greater extent than responses to arachidonic acid, histamine and acetylcholine.  相似文献   

5.
, originally introduced as an inadvertent contaminant in solutions used for evaluating the stability of prostaglandins, proved to lead to the rapid disappearance of the cyclopentenone unit of PGA2 (as monitored by circular dichroic spectroscopy). The cyclopentenone unit is converted, in various metabolites, to a 9-keto, 9α or 9β-hydroxy group lacking the ring unsaturation. The major EtoAc-soluble 9-hydroxy metabolite (Compound-I) was shown to be 9α, 15α-dihydroxy-2,3,4,5-tetranor-13- -prostenoic acid. Similar tetranor 9-hydroxy metabolites with one additional degree of unsaturation, and with a 9β-hydroxy group, also occur but these have not been fully characterized. Only two of the wide range of 9-keto metabolites are fully characterized by mass spectral (MS) data: 9,15-oxo-2,3,4,5-tetranorprostanoic acid and 9,15-oxo-2,3,4,5-tetranor-13- -prostenoic acid. The water soluble metabolites have not been characterized further.The fully characterized metabolites together with MS data from mixtures of minor metabolites indicate that can perform the following transformations: β-oxidation, dehydrogenation at C-15, reduction of the enone carbon-carbon double bonds (both Δ10,11 and Δ13,14), reduction of the 9-ketone, and possibly migration of the cyclopentyl double bond (Δ10,11 → Δ11,12). metabolizes 15-epimeric PGA2 equally readily with the production of similar products. PGA1 affords less 9-keto metabolites with compound I constituting 33% of the product by HPLC analysis. displays some enantioselectivity, PGA2 and 15-epi-PGA2 are each metabolized more rapidly than their enantiomers. Other prostaglandins appear to be less readily metabolized.  相似文献   

6.
The biological effects of leukotriene (LT)F4 were compared, on a molar basis, with those of LTC4, LTD4 and LTE4 on isolated superfused strips of guinea-pig ileum smooth muscle (GPISM) and lung parenchyma (GPP). LTF4 was 1–2 orders of magnitude less active than the other leukotrienes on GPISM (LTD4 > LTC4 > LTE4 > LTF4) whereas, in the GPP, the activity of LTF4 was comparable with that of LTE4, both leukotrienes being about one order of magnitude less active than LTC4 or LTD4 (LTC4=LTD4 > LTE4=LTF4). Further, LTF4 caused protracted contractions of the GPP which were indistinguishable from those due to LTE4 and of a much longer duration than responses elicited by either LTC4 or LTD4.FPL 55712 (1.9μM) antagonised actions of LTF4 in both tissue preparations. Indomethacin (2.8μM) inhibited contractions induced by LTF4 in GPP indicating that part of the bronchoconstriction due to LTF4, like that elicited by the other leukotrienes, is mediated via release of cyclo-oxygenase products.  相似文献   

7.
Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of [3H]LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenoud N-acetyl-LTE4 elicited by endotoxin was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.  相似文献   

8.
The metabolism of leukotriene (LT)C4 and its major routes of elimination have been studied in four anesthetized domestic pigs administered intravenous [3H]-LTC4 (0.5 μCi/kg). The kinetic profile of LTC4 in the blood was followed for 60 min after administration while the biliary and urinary excretion of LTC4 and its metabolites were determined over a 120 min interval. The total recovery of radioactivity in bile and urine was 45% ± 1 (n = 3) and 18% (n = 2) respectively. Examination of the radioactive metabolites in bile showed LTD4 (44% of biliary content) and LTE4 (21% of biliary content) as the major identified lipoxygenase products at t (27 min). The only identified cysteinyl leukotriene observed in the urine was LTE4 (13% of urinary content). In both bile and urine substantial amount of radioactivity were detected at the solvent front of the reverse phase chromatographic system indicating the presence of additional unidentified metabolites. We suggest that measurement of metabolites using these sampling methods may be useful for the detection and measurement of peptide leukotriene production .  相似文献   

9.
Metabolism and excretion of exogenous [3H]-LTC4 in primates   总被引:1,自引:0,他引:1  
Four novel omega- and beta-oxidation (from the omega end) products of peptide leukotrienes, 20-hydroxy and 20-carboxy-LTE4, 18-carboxy-19, 20-dinor-LTE4 and 16-carboxy-17,18,19,20-tetranor-14,15-dihydro-LTE4 were prepared by total synthesis and used as standards for identification of biliary and urinary metabolites in the cynomolgus monkey. After intravenous administration 14, 15-[3H] leukotriene C4 (10 microCi kg-1) was partially metabolized in and rapidly cleared from the vascular circulation. This resulted, within 24 hours, in significant urinary excretion (14.8 +/- 2.1%, n = 4), consisting largely of material more polar than LTE4 (61% of urinary excretion) as shown by reverse phase HPLC. The polar fraction demonstrated two predominant metabolites which coeluted in several HPLC solvent systems with synthetic 16-carboxytetranordihydro-LTE4 (major component) and 18-carboxydinor-LTE4 (minor component). Characterization of the major polar metabolite as 16-carboxytetranordihydro-LTE4 was substantiated by conversion to its N-acetylated derivative. The absence of the 14, 15 double bond was confirmed by product analysis of oxidative ozonolysis. In a single animal, the bile duct was cannulated, with significant biliary excretion of radioactivity demonstrated over 4 hours (58.6% recovery). The predominant polar biliary metabolites were also identified as the 18-carboxydinor and 16-carboxytetranordihydro derivatives of LTE4 mentioned above. These data suggest that beta-oxidation products generated from the omega-carboxyl end of the 20-carboxy-LTE4 are important products of [3H] LTC4 metabolism in the monkey. Quantitation of these urinary metabolites may be an important index of in vivo leukotriene production.  相似文献   

10.
In the present study, we noted that bleomycin induced growth inhibitory action was augmented by all the polyunsaturated fatty acids (PUFAs) tested on human neuroblastoma IMR-32 (0.5×104 cells/100 µl of IMR) cells (EPA> DHA> ALA = GLA = AA> DGLA = LA: ∼60, 40, 30, 10–20% respectively) at the maximum doses used. Of all the prostaglandins (PGE1, PGE2, PGF, and PGI2) and leukotrienes (LTD4 and LTE4) tested; PGE1, PGE2 and LTD4 inhibited the growth of IMR-32 cells to a significant degree at the highest doses used. Lipoxin A4 (LXA4), 19,20-dihydroxydocosapentaenoate (19, 20 DiHDPA) and 10(S),17(S)-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid (protectin: 10(S),17(S)DiHDoHE), metabolites of DHA, significantly inhibited the growth of IMR-32 cells. Pre-treatment with AA, GLA, DGLA and EPA and simultaneous treatment with all PUFAs used in the study augmented growth inhibitory action of bleomycin. Surprisingly, both indomethacin and nordihydroguaiaretic acid (NDGA) at 60 and 20 µg/ml respectively enhanced the growth of IMR-32 cells even in the presence of bleomycin. AA enhanced oxidant stress in IMR-32 cells as evidenced by an increase in lipid peroxides, superoxide dismutase levels and glutathione peroxidase activity. These results suggest that PUFAs suppress growth of human neuroblastoma cells, augment growth inhibitory action of bleomycin by enhancing formation of lipid peroxides and altering the status of anti-oxidants and, in all probability, increase the formation of lipoxins, resolvins and protectins from their respective precursors that possess growth inhibitory actions.  相似文献   

11.
The contractile activities of peptide leukotrienes (LT) on isolated spiral strips of ferret trachea were chracterized pharmacologically. LTC4 and LTD4 contracted ferret tracheal strips in a concentration-related manner and were 3- to 8-fold more potent than carbachol. In contrast, high concentrations of LTE4 evoked either weak contraction or none at all, whereas LTC4 and D4 were partial agonists compared to carbachol. In tissues which were unresponsive to LTE4, this compound antagonized contractile responses to LTC4 and D4 in an apparently competitive manner: Carbachol-induced contractions were not altered by LTE4. The cyclooxygenase inhibitor, indomethacin (5 μM), LT antagonists, FPL55712 (10 μM), atropine (1 μM), phenoxybenzamine (10 μM), and LTB4 (10 μM) failed to alter LTC4 and D4 concentration-response curves. The results in dicate that ferret trachea is sensitive to the contractile activity of LTC4 and LTD4 but not LTE4. The LT-induced contractions appear to be mediated by a direct action of the LT rather than indirectly through release of secondary mediators such as thromboxane, prostaglandin, or acetylcholine. LT receptors in ferret trachea are insensitive to FPL55712 but are antagonized by LTE4.  相似文献   

12.
Leukotriene E4 (LTE4), the most stable of the cysteinyl leukotrienes (cysLTs), binds poorly to classical type 1 and 2 cysLT receptors although in asthmatic individuals it may potently induce bronchial constriction, airway hyperresponsiveness and inflammatory cell influx to the lung. A recent study has suggested that the purinergic receptor P2Y12 is required for LTE4 mediated pulmonary inflammation in a mouse model of asthma and signals in response to cysLTs. The aim of the study was to characterise the responsiveness of human P2Y12 to cysteinyl leukotrienes. Models of human CysLT1, CysLT2 and P2Y12 overexpressed in HEK293, CHO cells and human platelets were used and responsiveness to different agonists was measured using intracellular calcium, cAMP and β-arrestin recruitment assays. CysLTs induced concentration dependent calcium mobilisation in cells overexpressing CysLT1 and CysLT2 but failed to induce any calcium response in cells expressing P2Y12 or P2Y12+ Gα16. In contrast, selective P2Y12 agonists ADP and 2-MeS-ADP induced specific calcium flux in cells expressing P2Y12+ Gα16. Similarly, specific response to 2-MeS-ADP, but not to cysLTs was also observed in cells expressing P2Y12 when intracellular cAMP and β-arrestin signalling were analysed. Platelets were used as a model of human primary cells expressing P2Y12 to analyse potential signalling and cell activation through P2Y12 receptor or receptor heterodimers but no specific LTE4 responses were observed. These results show that LTE4 as well as other cysLTs do not activate intracellular signalling acting through P2Y12 and suggest that another LTE4 specific receptor has yet to be identified.  相似文献   

13.
Intraperitoneal administration of [3H]-leukotriene E4 in the rat resulted in the appearance of radiolabel in urine and feces. Separation of polar urinary metabolites and chromatographic comparison of synthetic metabolites indicated the in vivo formation of omega-oxidized metabolites of LTE4 with sequential beta-oxidation. Furthermore, the metabolite identified as 16-carboxy-17,18,19,20-tetranor-14,15-dihydro-N-acetyl-LTE4 substantiates the biochemical pathway of beta-oxidation in vivo involving the 2,4-dienoyl CoA reductase as an integral step. These results substantiate beta-oxidation of sulfidopeptide leukotrienes in vivo and these metabolites account for some of the major urinary metabolites of this class of lipid mediator.  相似文献   

14.

Background

Cysteinyl leukotrienes (CysLTs) are key mediators of asthma, but their role in the genesis of airway remodeling is insufficiently understood. Recent evidence suggests that increased expression of tenascin (Tn) and laminin (Ln) β2 chain is indicative of the remodeling activity in asthma, but represents also an example of deposition of extracellular matrix, which affects the airway wall compliance. We tested the hypothesis that CysLTs affect production of Tn and Ln β2 chain by human bronchial epithelial cells and elucidated, which of the CysLT receptors, CysLT1 or CysLT2, mediate this effect.

Methods

Cultured BEAS-2B human bronchial epithelial cells were stimulated with leukotriene D4 (LTD4) and E4 (LTE4) and evaluated by immunocytochemistry, Western blotting, flow cytometry, and RT-PCR. CysLT receptors were differentially blocked with use of montelukast or BAY u9773.

Results

LTD4 and LTE4 significantly augmented the expression of Tn, whereas LTD4, distinctly from LTE4, was able to increase also the Ln β2 chain. Although the expression of CysLT2 prevailed over that of CysLT1, the up-regulation of Tn and Ln β2 chain by CysLTs was completely blocked by the CysLT1-selective antagonist montelukast with no difference between montelukast and the dual antagonist BAY u9773 for the inhibitory capacity.

Conclusion

These findings suggest that the CysLT-induced up-regulation of Tn and Ln β2 chain, an important epithelium-linked aspect of airway remodeling, is mediated predominantly by the CysLT1 receptor. The results provide a novel aspect to support the use of CysLT1 receptor antagonists in the anti-remodeling treatment of asthma.  相似文献   

15.
The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl β-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a KD of 7.5 × 10−6 M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status.  相似文献   

16.
In the presence of indomethacin, Leukotriene C4 (LTC4), LTD4 and LTE4 were shown to be contractile agents on guinea pig gall bladder strips. The respective pD2 values for LTC4, LTD4 ad LTE4 were 9.1, 9.1 and 7.7. The contractile effects of LTD4 were not mediated through the generation of cyclooxygenase products and were antagonized by the SRS-A antagonist FPL-55712. The effects of PGE1, PGF2α, the endoperoxide analogue U44069 and histamine on gall bladder strips were also examined. All these agents caused dose-related contractions but were considerably less potent than the leukotrienes. Leukotrienes are therefore potent contractile agents on the guinea pig gall bladder and may contribute to gall bladder contractions or spasms .  相似文献   

17.
A sensitive and specific assay has been developed for measurement of total sulfidopeptide leukotriense (LT) in plasma. LTC4 and LTD4 in plasma are converted to LTE4 which is then extracted by C18 Sep-Pak binding and elution. Total LTE4 in resolved by reverse phase high performance liquid chromatography (RP-HPLC) and quantitated by radioimmunoassay (RIA). A [3H]LTE4 internal standard is added to the starting plasma sample to allow RP-HPLC to be assayed for LTE4-like immunoreactivity. The correlation between the measured increase in LTE4 concentration after addition of incremental amounts of LTC4 and LTE4 to plasma was 0.989 and 0.978, respectively, with slopes of 1.05 and 1.11. Addition of 51 pg/ml LTE4 to 5 ml plasma was detectable; the measured increase was 48 ± 12 pg/ml (mean ± SE, n = 7). The intra-assay coefficient of variation for 341 pg/ml of added LTC4 was 3.2% (n = 6). Sulfidopeptide leukotrienes could not be detected in blood samples taken from 12 normal volunteers in whom the theoretical detection limit, calculated from the sensitivity of the RIA, the overall recovery of LTE4, and the volume of plasma extracted, was 83 ± 4 pg LTE4/ml plasma (0.19 ± 0.01 pmol sulfidopeptide leukotriene/ml plasma; mean ± SE).  相似文献   

18.
Incubation of the bovine endothelial cell line, CPAE, with the calcium ionophore (A23187), bradykinin (BK), leukotriene D4 (LTD4) or leukotriene C4 (LTC4) resulted in concentration dependent increases in prostacyclin release measured as 6-ketoprostaglandin F. The kinetics of induction of prostacyclin synthesis differed among the agents studied. Statistically significant increases in prostacyclin were observed one minute after treatment with A23187, at slightly longer times with bradykinin and after approximately three minutes with the leukotrienes. Two other leukotrienes were tested. Both leukotriene B4 and leukotriene E4 (LTE4) were inactive at con- centrations up to 10 μM. The induction of prostacyclin synthesis by LTC4 and LTD4 was inhibited by cycloheximide and actinomycin-D. The effect of BK was inhibited by cycloheximide but not by actinomycin-D. Induction by A23107 was not inhibited by either actinomycin-D or cycloheximide. The results suggest that these agents induced the increases in prostacyclin synthesis by different mechanisms.  相似文献   

19.
The metabolism of leukotriene B4 (5(S),12(R)-dihydroxy-6-cis-8,10-trans-14-cis-eicosatetraenoic acid) by isolated guinea pig eosinophils was investigated. Incubation of guinea pig eosinophils with [3H]-leukotriene B4 resulted in the rapid conversion of leukotriene B4 to several more polar metabolites. Two of these metabolites were identified by ultraviolet spectroscopy and gas chromatography-mass spectrometry as the omega oxidation products 5(S),12(R),20-trihydroxy-6,8,10,14-eicosatetraenoic acid (20-hydroxy-leukotriene B4) and 5(S),12(R),19-trihydroxy-6,8,10,14-eicosatetraenoic acid (19-hydroxy-leukotriene B4). Two novel metabolites, 5(S),12(R),18,19-tetrahydroxy-6,8,10,14 eicosatetraenoic acid (18,19-dihydroxy-leukotriene B4) and 5(S),12(R)-dihydroxy-1,18-dicarboxylic-6,8,10,14,16-octadecapentaenoic acid (Δ16,17–18-carboxy-19,20-dinor-leukotriene B4) were tentatively identified. The identification of these compounds indicates that guinea pig eosinophils are capable of metabolizing leukotriene B4 by both omega and beta oxidation. This catabolic activity may play a role in modulating inflammatory reactions by removing the chemoattractant leukotriene B4 from inflammatory sites.  相似文献   

20.
Alpha-glucosidase inhibitors currently form an important basis for developing novel drugs for diabetes treatment. In our preliminary tests, the ethyl acetate fraction of Phlomis tuberosa extracts showed significant α-glucosidase inhibitory activity (IC₅₀ = 100 μg/mL). In the present study, a combined method using Sepbox chromatography and thin-layer chromatography (TLC) bioautography was developed to probe α-glucosidase inhibitors further. The ethyl acetate fraction of P. tuberosa extracts was separated into 150 individual subfractions within 20 h using Sepbox chromatography. Then, under the guidance of TLC bioautography, 20 compounds were successfully isolated from these fractions, including four new diterpenoids [14-hydroxyabieta-8,11,13-triene-11-carbaldehyde-18-oic-12-carboxy-13-(1-hydroxy-1-methylethyl)-lactone (1), 14-hydroxyabieta-8,11,13-triene-17-oic-12-carboxy-13-(1-hydroxy-1-methylethyl)-lactone (2), 14,16-dihydroxyabieta-8,11,13-triene-15,17-dioic acid (3), and phlomisol (15,16-eposy-8,13(16),14-labdatrien-19-ol) (4)], and 16 known compounds. Activity estimation indicated that 15 compounds showed more potent α-glucosidase inhibitory effects (with IC50 values in the range 0.067–1.203 mM) than the positive control, acarbose (IC50 = 3.72 ± 0.113 mM). This is the first report of separation of α-glucosidase inhibitors from P. tuberosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号