首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fishes of the genus Gobiodon are habitat specialists by their association with Acropora corals. Little is known about the parameters that define host coral quality for these fishes, in particular their breeding pairs. Data were collected in the northern Red Sea using 10 × 1-m belt transects in different reefs and zones. Gobiid density was highly correlated with coral density over all sites and zones, and the more specialized goby species preferred coral species that are less vulnerable to environmental stress. Moreover, the occupation rate of corals by goby breeding pairs significantly increased with colony size and decreased with partial mortality of colonies. Logistic regression showed that both coral size (being most important) and partial mortality are key factors influencing the occupation by breeding pairs. This study provides the first evidence that breeding pairs of coral-associated gobiids have more advanced habitat requirements than con-specifics in other social states. As coral reefs are threatened worldwide and habitat loss and degradation increase, this information will help predict the potential effects on those reef fishes obligatorily associated with live corals.  相似文献   

2.
Coral-dwelling fishes from the genus Gobiodon are some of the most habitat specialised fishes on coral reefs. Consequently, we might expect that their population dynamics will be closely associated with the abundance of host corals. I used a combination of log-linear modelling and resource selection ratios to examine patterns of habitat use among eight species of Gobiodon in Kimbe Bay, Papua New Guinea. I then used multiple regression analysis to investigate relationships between the abundance of each species of Gobiodon and the abundance of the corals they inhabited. Each species of Gobiodon used one or more species of coral more frequently than expected by chance. The pattern of habitat use exhibited by each species of Gobiodon did not vary among reef zones or among reefs with different exposures to prevailing winds, despite changes in the relative abundances of corals among reef zones. This consistency in habitat use might be expected if the coral species inhabited confer considerable fitness advantages and, therefore, are strongly preferred. For most species of Gobiodon, abundances among reef zones and exposure regimes were correlated with the abundance of the coral species usually inhabited. Therefore, it appears that habitat availability helps determine abundances of most species of Gobiodon in Kimbe Bay. In addition to correlations with habitat availability, the abundances of G. histrio, G. quinquestrigatus, G. rivulatus (dark form) and the group others were also associated with particular reef zones and exposure regimes. Therefore, in these species, reef type appears to influence patterns of abundance independently of coral availability. In contrast to other species of Gobiodon, the abundance of the most specialised species, Gobiodon sp.A, was not closely associated with the abundance of the only coral species it inhabited. This study demonstrates that even for habitat specialised species, the relationship between habitat availability and abundance varies widely and is multiscale.  相似文献   

3.
Synopsis Interspecific differences in blood hemoglobin concentration ([Hb]) occur among air breathing fishes. However, the effect on [Hb] of factors such as air-breathing organ structure and blood circulation pattern, air breathing behavior, as well as season and environmental conditions have not been fully examined. [Hb] in seven Panamanian species of air-breathing freshwater teleost fishes were compared and were monitored for most species during the wet and dry seasons and in hypoxic laboratory conditions. Fishes studied were Ancistrus, Hypostomus, and Loricaria (Family Loricariidae); Hoplosternum (Callichthyidae); Synbranchus (Synbranchidae); Piabucina (Lebiasinidae); and Dormitator (Eleotridae). [Hb] in these species ranged from 4.8 to 14.6 g 100 ml–1 (g%). Ancistrus, Hypostomus, and Dormitator significantly increased [Hb] during the dry season and, with Piabucina, also increased [Hb] when acclimated to hypoxia in the laboratory. An increase in [Hb] during the dry season may precondition facultative air breathers for habitat hypoxia (and the need to respire aerially) in the event this occurs. Intraspecific differences in both [Hb] and in red cell Hb-phosphate ratio, an index of oxygen affinity, were found in populations of Hypostomus and relate directly to differences in habitat oxygen level. In all species tested alterations in blood hematocrit (Hmct) and mean corpuscular hemoglobin concentration (MCHC) occurred only with correspondingly large net changes in blood [Hb]. The [Hb] of Loricaria, Synbranchus, and Hoplosternum was not affected by season or hypoxia and this may be due to behavioral and physiological adaptations that reduce the transbranchial loss of aerially-obtained oxygen or to a ventilatory mode that precludes this possibility.  相似文献   

4.
Patterns of gonad structure in hermaphroditic gobies (Teleostei Gobiidae)   总被引:5,自引:0,他引:5  
Synopsis Hermaphroditism has been reported for a small number of gobiid fishes, but the extent of this sexual pattern within the family is not known. Gonad structure was examined in one or more species from twenty-one gobiid genera. No evidence of hermaphroditism was found in the species selected from 14 genera. Laboratory studies supported the conclusion of gonochorism for the examined species in four of them:Asterropteryx, Bathygobius, Gnatholepis, andPsilogobius. Currently, the absence of precursive testicular tissues associated with the ovary in females, in conjunction with no retained ovarian features in the testes of males, appear to be reliable indicators of a gonochoristic sexual pattern in gobiid fishes. Evidence for hermaphroditism was observed in seven genera:Eviota, Trimma, Fusigobius, Lophogobius, Priolepis, Gobiodon, andParagobiodon. Protogyny was experimentally confirmed inE. epiphanes, and the gonad structure in another nine of ten species ofEviota suggested either protogyny or protogynous tendencies. With the exception ofGobiodon andParagobiodon, which exhibited similar gonadal structure, ovarian and testicular structure varied considerably among the hermaphroditic genera examined, both with regard to the configuration and to the degree of development of ovarian and testicular tissues, or testicular tissue precursors. Findings of this study indicate that hermaphroditic gonad structure will prove to be a useful trait in determining evolutionary relationships within the Gobiidae.  相似文献   

5.
Using respirometry, we examined the hypoxia tolerance of 31 teleost fish species (seven families) inhabiting coral reefs at a 2-5 m depth in the lagoon at Lizard Island (Great Barrier Reef, Australia). All fishes studied maintained their rate of oxygen consumption down to relatively severe hypoxia (20-30% air saturation). Indeed, most fishes appeared unaffected by hypoxia until the oxygen level fell below 10% of air saturation. This, hitherto unrecognized, hypoxia tolerance among coral reef fishes could reflect adaptations to nocturnal hypoxia in tide pools. It may also be needed to enable fishes to reside deep within branching coral at night to avoid predation. Widespread hypoxia tolerance in a habitat with such an extreme biodiversity as coral reefs indicate that there is a wealth of hypoxia related adaptations to be discovered in reef fishes.  相似文献   

6.
The obligate coral-dwelling gobiid genus Gobiodon inhabits Acropora corals and has developed various physiological, morphological and ethological adaptations towards this life habit. While the advantages of this coral-fish association are well documented for Gobiodon, possible fitness-increasing factors for the host coral are unknown. This study examines the influence of coral-dwelling gobies on the feeding behaviour of obligate corallivorous butterflyfishes. In an aquarium experiment using video observation, the corallivorous butterflyfish Chaetodon austriacus fed significantly less on corals inhabited by two Gobiodon species compared to unoccupied coral colonies of similar size. The more agonistic species G. histrio, which mostly displayed directed movements towards butterflyfishes, decreased butterflyfish bite rate by 62–98 % compared to uninhabited colonies. For Gobiodon sp. 3, which mostly displayed undirected movements in response to visits by C. austriacus, bite rate reduction was 64–68 %. The scale-less skin of Gobiodon spp. is covered by mucus that is toxic and multi-functional by reducing predation as well as affecting parasite attachment. A choice flume experiment suggests that the highly diluted skin mucus of Gobiodon spp. also functions as a corallivore repellent. This study demonstrates that Gobiodon spp. exhibit resource defence against coral-feeding butterflyfishes and also that coral colonies without resident Gobiodon suffer higher predation rates. Although the genus Gobiodon is probably a facultative corallivore, this study shows that by reducing predation on inhabited colonies by other fishes, these obligate coral-dwellers either compensate for their own fitness-decreasing impact on host colonies or live in a mutualistic association with them.  相似文献   

7.
To clarify differences in community structures and habitat utilization patterns of fishes in Enhalus acoroides- and Thalassia hemprichii-dominated seagrass beds on fringing coral reefs, visual censuses were conducted at Iriomote and Ishigaki islands, southern Japan. The numbers of fish species and individuals were significantly higher in the E. acoroides bed than in the T. hemprichii bed, although the 15 most dominant fishes in each seagrass bed were similar. Cluster and ordination analyses based on the number of individuals of each fish species also demonstrated that fish community structures were similar in the two seagrass beds. Species and individual numbers of coral reef fishes which utilized the seagrass beds numbered less than about 15% of whole coral reef fish numbers, although they comprised about half of the seagrass bed fishes. Of the 15 most dominant species, 5 occurred only in the two seagrass beds, including seagrass feeders. Ten other species were reef species, their habitat utilization patterns not differing greatly between the two seagrass beds. Some reef species, such as Lethrinus atkinsoni and L. obsoletus, showed ontogenetic habitat shifts with growth, from the seagrass beds to the coral areas. These results indicate that community structures and habitat utilization patterns of fishes were similar between E. acoroides- and T. hemprichii-dominated seagrass beds, whereas many coral reef fishes hardly utilized the seagrass beds.  相似文献   

8.
Synopsis Relationships between quantitative measures of habitat type and the biomass of Chaetodon, Scarus and Parupeneus species were investigated across 35 reef sites in the Inner Seychelles Group. Multiple regression was used to determine the proportion of variance in biomass between sites which could be explained by depth, exposure, vertical relief, topographic complexity, live coral cover, coral rubble cover, rock cover, sand cover, underlying carbonate substrate, underlying sand substrate, underlying rock substrate and an index of fishing intensity. A significant proportion of the variance in biomass was explained by habitat variables and the index of fishing intensity for 7 of 12 Chaetodon species (23–52% of variance explained), 3 of 6 Parupeneus species (33–40%), and 10 of 13 Scarus species (14–46%). Within genera, different groups of habitat variables explained the variance in biomass for different species and, of the variables studied, only the proportion of underlying sand substrate failed to explain a significant proportion of the variance in biomass for any species. Quantitative relationships between the biomass of Chaetodon and habitat were often in accordance with those suggested by previous studies of their ecology, life-history and distribution at other Indo-Pacific locations. However, the habitat associations of the Parupeneus and some Scarus species have not been studied at other locations and clearly warrant further investigation. It was concluded that habitat was an important determinant of the distribution of many Seychelles reef fishes, but that the habitat variables examined were rarely the most important determinant of biomass. However, the inclusion of a procedure to collect habitat data provided a useful means by which to reduce the unexplained variance associated with visual census biomass estimates and therefore improves the possibility of elucidating the effects of other factors on the biomass of Seychelles reef fishes.  相似文献   

9.
The rate of calcification in the scleractinian coral Galaxea fascicularis was followed during the daytime using 45Ca tracer. The coral began the day with a low calcification rate, which increased over time to a maximum in the afternoon. Since the experiments were carried out under a fixed light intensity, these results suggest that an intrinsic rhythm exists in the coral such that the calcification rate is regulated during the daytime. When corals were incubated for an extended period in the dark, the calcification rate was constant for the first 4 h of incubation and then declined, until after one day of dark incubation, calcification ceased, possibly as a result of the depletion of coral energy reserves. The addition of glucose and Artemia reduced the dark calcification rate for the short duration of the experiment, indicating an expenditure of oxygen in respiration. Artificial hypoxia reduced the rate of dark calcification to about 25% compared to aerated coral samples. It is suggested that G. fascicularis obtains its oxygen needs from the surrounding seawater during the nighttime, whereas during the day time the coral exports oxygen to the seawater.  相似文献   

10.
Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.  相似文献   

11.
Air-breathing fish are common in the tropics, and their importance in Asian aquaculture is increasing, but the respiratory physiology of some of the key species such as the striped catfish, Pangasianodon hypophthalmus Sauvage 1878 is unstudied. P. hypophthalmus is an interesting species as it appears to possess both well-developed gills and a modified swim bladder that functions as an air-breathing organ indicating a high capacity for both aquatic and aerial respiration. Using newly developed bimodal intermittent-closed respirometry, the partitioning of oxygen consumption in normoxia and hypoxia was investigated in P. hypophthalmus. In addition the capacity for aquatic breathing was studied through measurements of oxygen consumption when access to air was denied, both in normoxia and hypoxia, and the critical oxygen tension, Pcrit, was also determined during these experiments. Finally, gill ventilation and air-breathing frequency were measured in a separate experiment with pressure measurements from the buccal cavity. The data showed that P. hypophthalmus is able to maintain standard metabolic rate (SMR) through aquatic breathing alone in normoxia, but that air-breathing is important during hypoxia. Gill ventilation was reduced during air-breathing, which occurred at oxygen levels below 8 kPa, coinciding with the measured Pcrit of 7.7 kPa. The findings in this study indicate that the introduction of aeration into the aquaculture of P. hypophthalmus could potentially reduce the need to air-breathe. The possibility of reducing air-breathing frequency may be energetically beneficial for the fish, leaving more of the aerobic scope for growth and other activities, due to the proposed energetic costs of surfacing behavior.  相似文献   

12.
Long-term observations on coral units and their coral fishes, as well as observations on the growth of colonies of marked corals in the Gulf of Aqaba (Red Sea), have revealed the relationship between coral dimension and complexity and the ecomorphology and sociobiology of the inhabiting fishes. In this study, coral fishes are identified as species that, following the planktonic interval, settle and remain in a selected coral or its immediate vicinity. Parallel with growth of the refuge, the number of fishes in such a coral–fish association (=ecological cell) increases to a certain asymptote, forming a stable symbiotic entity of fish species, specific in composition and biomass. The initial cell begins with 4–5-year-old branching corals that harbors 3–4 cryptic species of gobies (Paragobiodon and Gobiodon species). This is followed by several stages of coral growth and increase in fish species and biomass, especially of pomacentrids, anthiases, pseudochromids and blennies. The water column or functional space from which the fishes harvest plankton, their main food source, starts at around a 0.2m3 column in the young colonies, and ends with a water column of around 500m3 in the mature ecological cells of large coral knolls. At the mature stage, large cells harbor up to 100 diurnal and nocturnal species of fish, permanently using this refuge and forming an integrated collective. The territorial limits of the piscivorous groupers (Cephalopholis species) generally establish the dimensions of these ecological cells. Preliminary data on standard energy metabolism of the fishes for mature ecological cells reveal that 800kg food is required each year to maintain this biomass. The biological composition and stability of fish populations of such ecological cells will depend on the biological and physical stability of the host coral population.  相似文献   

13.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

14.
We examined zooxanthellae diversity in scleractinian corals from southern Taiwan and the Penghu Archipelago, a tropical coral reef and a subtropical non-reefal community, respectively. Zooxanthellae diversity was investigated in 52 species of scleractinian corals from 26 genera and 13 families, using restriction fragment length polymorphism (RFLP), and phylogenetic analyses of the nuclear small-subunit ribosomal DNA (nssrDNA) and large-subunit ribosomal DNA (nlsrDNA). RFLP and phylogenetic analyses of nuclear-encoded ribosomal RNA genes showed that Symbiodinium clade C was the dominant zooxanthellae in scleractinian corals in the seas around Taiwan; Symbiodinium clade D was also found in some species. Both Symbiodinium clade C and D were found in colonies of seven species of scleractinian corals. Symbiodinium clade D was associated with corals that inhabit either shallow water or the reef edge in deep water, supporting the hypothesis that Symbiodinium clade D is a relatively stress-tolerant zooxanthellae found in marginal habitats.Communicated by Biological Editor H.R. Lasker  相似文献   

15.
Spatial distributions of coral reef fish species are potentially determined by habitat preferences and behavioural interactions. However, the relative importance of these factors and whether or not behavioural interactions reinforce or disrupt habitat associations are poorly understood. This paper explores the degree to which habitat and social preferences explain the association that three common coral reef cardinalfish species (Zoramia leptacanthus, Archamia zosterophora and Cheilodipterus quinquelineatus; family Apogonidae) have with coral substrata at Lizard Island, Great Barrier Reef. At diurnal resting sites, species were strongly associated with branching corals, with 80–90% of each species inhabiting one branching coral species, Porites cylindrica. Species were also highly gregarious, forming large con-specific and hetero-specific aggregations in coral heads, potentially reinforcing habitat associations. Three-way choice experiments were conducted to test fishes habitat preferences for living coral over dead substrata, for particular coral species, and the influence of gregarious behaviour on these habitat choices. The strength of habitat preferences differed among species, with Z. leptacanthus preferring live coral and P. cylindrica, A. zosterophora preferring P. cylindrica, whether live or dead and C. quinquelineatus exhibiting no preferences. All species were attracted to conspecifics, and for C. quinquelineatus and A. zosterophora, conspecific attraction resulted in stronger preferences for live corals. Gregarious behaviour also increased C. quinquelineatus associations with P. cylindrica. The relative strength of social attraction versus habitat preferences was investigated by comparing fish habitat preferences in the presence and/or absence of conspecifics. The presence of conspecifics on non-preferred rubble habitat reduced each species association with live coral. This study’s results indicate that in the field, habitat preferences and conspecific attraction combine to reinforce the association between cardinalfishes and a narrow range of coral substrata.  相似文献   

16.
On Caribbean coral reefs, high rates of grazing by herbivorous fishes are thought to benefit corals because fishes consume competing seaweeds. We conducted field experiments in the Florida Keys, USA, to examine the effects of grazing fishes on coral/seaweed competition. Initially, fragments of Porites divaracata from an inshore habitat were transplanted into full-cage, half-cage, and no-cage treatments on a fore-reef. Within 48 h, 56% of the unprotected corals in half-cage and no-cage treatments (62 of 111) were completely consumed. Stoplight parrotfish (Sparisoma viride) were the major coral predators, with redband parrotfish (S. aurofrenatum) also commonly attacking this coral. Next, we transplanted fragments of P. porites collected from the fore-reef habitat where our caging experiments were being conducted into the three cage treatments, half in the presence of transplanted seaweeds, and half onto initially clean substrates. The corals were allowed to grow in these conditions, with concurrent development of competing seaweeds, for 14 weeks. Although seaweed cover and biomass were both significantly greater in the full-cage treatment, coral growth did not differ significantly between cage treatments even though corals placed with pre-planted seaweeds grew significantly less than corals placed on initially clean substrate. This surprising result occurred because parrotfishes not only grazed algae from accessible treatments, but also fed directly on our coral transplants. Parrotfish feeding scars were significantly more abundant on P. porites from the half and no-cage treatments than on corals in the full cages. On this Florida reef, direct fish predation on some coral species (P. divaracata) can exclude them from fore-reef areas, as has previously been shown for certain seaweeds and sponges. For other corals that live on the fore-reef (P. porites), the benefits of fishes removing seaweeds can be counterbalanced by the detrimental effects of fishes directly consuming corals. Received: 31 May 1997 / Accepted: 2 September 1997  相似文献   

17.
Synopsis Use of the surface water for aquatic respiration (aquatic surface respiration, ASR) is one of the few alternatives to aerial respiration which allow fish to survive extreme hypoxia, yet it has received very little attention. This report examines three generalizations concerning ASR on a phylogenetically and geographically diverse range of tropical freshwater fishes. It demonstrates that ASR greatly enhances survival in hypoxic water, even in fish not morphologically specialized to use the surface film, that ASR is initiated at a distinct threshold oxygen concentration, with time spent at the surface increasing rapidly as O2 declines, and that with extreme deoxygenation fish perform ASR over 90% of the time. Ninety-four percent of the 31 species of non-air breathing fish tested showed ASR., with the threshold oxygen concentration ranging from 6 to 40 torr.Present address correspondence and reprint requests to D.L. Kramer.  相似文献   

18.
This is the first report of a sponge that overgrows live corals in the tropical Eastern Pacific ocean. Chalinula nematifera, native from the Indo-Pacific region, is an invasive sponge recorded for the first time in 2003 on coral communities from the Isla Isabel National Park (Mexican Pacific Ocean). Later, in 2006, it was found also on coral reefs from the Cabo Pulmo National Park; 217 nautical miles far away. It has been suggested that C. nematifera was introduced as fouling on ship hulls that have arrived at Isla Isabel from the Indo-Pacific. In this paper we examined the habitat specificity and the distribution and abundance through time of C. nematifera. While there were no significant variations in abundance through time, this species showed a very high specificity for living on live corals of the genus Pocillopora (94% vs. 6% on rocks). One of the environmental parameters that may explain this specificity for ramified corals is the low light intensity inside the coral colony, which was 96% lower than outside it. Coral reefs are currently struggling with a multitude of impacts that have weakened their resilience and pushed them away from equilibrium. As a result, more attention on ecology of corals is necessary. Although the abundance of C. nematifera seems to be stable, long-term monitoring programs (including studies of growth rates and recruitment) are needed to determine if this species could represent a threat to the Mexican coral ecosystem in the future.  相似文献   

19.
Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.  相似文献   

20.
Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilize distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号