首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial alkaline pH and the concentration of sodium chloride in the synthetic liquid medium were a key factor in the capability of twenty-five white-rot fungi strains to decolorise the dye Reactive Blue 19. Six strains decolorised 90% of the dye at pH 8.0, and only Peniophora cinerea decolorized 90% of the dye at pH 9.0. Fourteen strains were capable of decolorising the dye in saline medium (sodium chloride 10 g l−1). P. ostreatus, P. cinerea and T. villosa were able to decolorize the dye both in medium with initial pH 8.0 or in saline medium. These three strains were selected and evaluated for simulated alkali-saline textile effluent decolorisation in different conditions: time of cultivation for effluent addition (0, 5, 7 and 9 days), initial pH (4.5 and 8.0) and agitation (0 and 120 rpm). P. ostreatus and P. cinerea decolorised the alkali-saline textile effluent by 93.0 and 25.4%, when the medium’s initial pH was 8.0 or 4.5, respectively, and the effluent was added in the 7th day of growth. T. villosa decolorized 40% when the effluent was added on the 9th day of cultivation at pH 4.5. Agitation increased the effluent decolorisation by T. villosa, but inhibition was observed for P. cinerea and P. ostreatus. The results showed that each fungus presented a specific behavior in relation to the best culture conditions for decolorisation of alkali-saline effluent containing reactive dyes. The strains of P. ostreatus, P. cinerea and T. villosa were considered as promising alternative for the biodegradation of this effluent, employing the strategy of effluent addition after a certain period of fungal growth.  相似文献   

2.
 The influences of temperature, soil moisture potential and initial pH on the biotransformation of pentachlorophenol (PCP) by the lignicolous fungi Lentinula edodes and Phanerochaete chrysosporium were examined. At 10°C, L. edodes was more effective in degrading PCP (P<0.05) than P. chrysosporium. At 15°C similar results were obtained for the two fungi. The highest levels of degradation occurred for both fungi at 25°C. With P. chrysosporium, the extent of PCP elimination was directly related to soil moisture content and optimal at approximately 47%. With L. edodes, in contrast, the process was inversely related to moisture content and maximal at 26%. The initial soil pH also had a marked influence, and pH 4.0 was optimal for both fungi. Received: 7 August 1995/Accepted: 22 August 1995  相似文献   

3.
Within a screening program, 27 soil litter-decomposing basidiomycetes were tested for ligninolytic enzyme activities using agar-media containing 2,2′-azinobis(3-ethylbenzthiazoline-6-sulphonate), a humic acid or Mn2+ ions as indicator substrates. Most active species were found within the family Strophariaceae (Agrocybe praecox, Stropharia coronilla, S. rugosoannulata) and used for mineralisation experiments with a 14C-ring-labelled synthetic lignin (14C-DHP). The fungi mineralised around 25% of the lignin to 14CO2 within 12 weeks of incubation in a straw environment; about 20% of the lignin was converted to water-soluble fragments. Mn-peroxidase was found to be the predominant ligninolytic enzyme of all three fungi in liquid culture and its production was strongly enhanced in the presence of Mn2+ ions. The results of this study demonstrate that certain ubiquitous litter-decomposing basidiomycetes possess ligninolytic activities similar to the wood-decaying white-rot fungi, the most efficient lignin degraders in nature. Received: 20 April 2000 / Received revision: 12 July 2000 / Accepted: 16 July 2000  相似文献   

4.
Summary To reduce and eliminate the hazards of pentachlorophenol (PCP) to the soil, the method of inoculating free and immobilized white rot fungi, Phanerochaete chrysosporium to PCP-polluted soils was investigated. Three parallel beakers A, B, C are adopted with the same components of soil, yard waste, straw and bran for aerated composting to degrade the PCP in soil. A was with no inoculants as control, B was added with the inoculants of immobilized P.␣chrysosporium, C was inoculated with non-immobilized P. chrysosporium, and additionally D contained only PCP-contaminated soils also as control. By contrastive analyses, the feasibility of applying composting to the bioremediation of the PCP-polluted soil was discussed. From the experimental results, it could be seen that the degradation rate of PCP by the immobilized fungi exceeded 50% at day 9, while that of the non-immobilized fungi achieved the same rate at day 16. However, the final degradation rates of PCP for both of them were beyond 90% at day 60 and that the rate of A was much lower than the others. The above data have shown that the degradation effect of inoculating P. chrysosporium was better than that of no inoculation, and that of the immobilized fungi was better than that of non-immobilized ones. Meanwhile, shown by all the indicators the composts of A, B and C were mature and stabilized at the end of the experiment. Therefore, the method of composting with immobilized P.␣chrysosporium is effective for the bioremediation of PCP-contaminated soil.  相似文献   

5.
Despite many studies on phytoremediation of soils contaminated with either heavy metals or organics, little information is available on the effectiveness of phytoremediation of co-occurring metal and organic pollutants especially by using wetland species. Phragmites australis is a common wetland plant and its potential for phytoremediation of cadmium pentachlorophenol (Cd-PCP) co-contaminated soil was investigated. A greenhouse study was executed to elucidate the effects of Cd (0, 10, and 20 mg kg?1) without or with PCP (0, 50, and 250 mg kg?1) on the growth of the wetland plant P. australis and its uptake, accumulation and removal of pollutant from soils. After 75 days, plant biomass was significantly influenced by interaction of Cd and PCP and the effect of Cd on plant growth being stronger than that of PCP. Coexistence of PCP at low level lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues. The dissipation of PCP in soils was significantly influenced by interactions of Cd, PCP and plant presence or absence. As an evaluation of soil biological activities after remediation soil enzyme was measured.  相似文献   

6.
The degradation of mixtures of pentachlorophenol (PCP) and p-nitrophenol (PNP) were evaluated in pure cultures of Sphingomonas sp. UG30, statically incubated soils (60% water-holding capacity) and soil perfusion bioreactors where encapsulated cells of UG30 were used as a soil inoculant. In pure-culture studies, conditions were optimized for mineralization of PCP and PNP mixtures at concentrations of 30 mg l−1 each. Optimum in vitro mineralization of PCP and PNP mixtures by UG30 was facilitated using ammonium phosphate as a nitrogen source, while inhibition was observed with ammonium nitrate. The bioreactor system used columns containing soil treated with mixtures of 100, 225 or 500 mg kg−1 of PCP and PNP. Rapid dissipation of both substrates was observed at the 100 mg kg−1 level. Inoculation with UG30 enhanced PCP degradation at the 100 mg kg−1 level in bioreactors but not in static soil microcosms. At higher PCP and PNP concentrations (225 mg kg−1), occasional complete degradation of PNP was observed, and PCP degradation was about 80% compared to about 25% in statically incubated soils after 20 days at 22°C. There was no additional degradation of the PCP and PNP mixtures attributable to inoculation with encapsulated cells of UG30 in either soil system at concentrations of 225 or 500 mg kg−1. Journal of Industrial Microbiology & Biotechnology (2000) 25, 93–99. Received 25 February 2000/ Accepted in revised form 07 June 2000  相似文献   

7.
Hexachlorobenzene (HCB), one of twelve compounds classified as persistent organic pollutants (POP), is a byproduct of the manufacture of organochlorine compounds, and is a cause of environmental contamination in several parts of the world. Its degradation by Brazilian basidiomycetes was studied through chromatographic analyses and monitoring of the production of 14CO2 from [14C]HCB in the soil. Nineteen strains of basidiomycetes were found to be capable of tolerating concentrations of 5000 to 50,000 mg of HCB kg–1 of soil. In spite of the low rates of production of 14CO2, Psilocybe cf. castanella CCB444 and Lentinus cf. zeyheri CCB274 were capable of removing nearly 3150 and 1400 mg of HCB kg–1 from respective soil samples, during a 65-day study period.  相似文献   

8.
Kyo Sato  H. Kato  C. Furusaka 《Plant and Soil》1987,100(1-3):333-343
Summary The effects of pentachlorophenol (PCP) applications on the taxonomic composition of bacterial microflora were studied in water-logged soil (WS) and in shake cultures of suspended soil (SS). PCP applications resulted in a predominancy of Gram-negative bacteria over Gram-positive species. Members of theAcinetobacter group were the most common in PCP-treated soil although a small portion of the flora were in thePseudomonas-Alcaligenes group or belonged to theEnterobacteriaceae. Coryneform bacteria and species of theBacillus were the dominant forms in untreated WS; however, WS cultures treated with PCP at recommended rates (2.67 gm/m2) evidenced species ofPseudomonas, Alcaligenes, Acinetobacter, and members of theEnterobacteriaceae as the predominant bacterial species. The dominance of Gram-negative bacteria in PCP-treated soil was evidenced for 3 months after application of the compound but was not evident after 17 months when PCP had dissipated. Gram-negative bacteria found in PCP-treated soil were highly tolerant of the phenol. In WS cultures coryneform bacteria were the most common although PCP tolerance was heterogenous in nature.  相似文献   

9.
Rhodococcus chlorophenolicus PCP-1, a mineralizer of polychlorinated phenols, was inoculated into natural sandy loam and peaty soils with pentachlorophenol (PCP) at concentrations usually found at lightly and heavily polluted industrial sites (30 to 600 mg PCP/kg). A single inoculum of 105 to 108 cells per g of peat soil and as little as 500 cells/g sandy soil initiated mineralization of14C-PCP. The mineralization rates of PCP were 130 to 250 mg mineralized per kg soil in 4 months in the heavily (600 mg/kg) polluted soils and 13 to 18 mg/kg in the lightly (30 mg/kg) polluted soils. There were no detectable PCP mineralizing organisms in the soils prior to inoculation, and also there was no significant adaptation of the indigenous microbial population to degrade PCP during 4 months observation in the uninoculated soils. The inoculum-induced mineralization continued for longer than 4 months after a single inoculation. Uninoculated, lightly polluted soils (30 mg PCP/kg) also showed loss of PCP, but some of this reappeared as pentachloroanisol and other organic chlorine compounds (EOX). Such products did not accumulate in theR. chlorophenolicus-inoculated soils, where instead EOX was mineralized 90 to 98%.R. chlorophenolicus mineralized PCP unhindered by the substrate competition offered by the PCP-methylating bacteria indigenously occurring in the soils or by simultaneously inoculated O-methylatingR. rhodochrous.  相似文献   

10.
Sterilised and non-sterilised soils contaminated with pentachlorophenol (PCP) were inoculated with solid substrate cultures of Lentinula edodes LE2 (“shiitake” mushroom) to simulate monoculture bioremediation treatments and treatments in which the fungus competes with natural microflora. With monocultures of L. edodes, rates of PCP depletion were rapid for the initial 4 weeks and, although thereafter the rate decreased, 99% biotransformation was obtained in 10 weeks. In mixed culture, PCP biotransformation by L.edodes was markedly slower and only 42% of the PCP was depleted after 10 weeks. Maximal rates of PCP transformation, biomass (ergosterol) accumulation and oxidative enzymes (phenol oxidase and manganese-peroxidase) production were observed after 2 weeks of incubation. In monocultures, phenol oxidase activity was 195.5 U g−1 and Mn-peroxidase 138.4 U g−1. In mixed cultures, fungal enzyme activities were markedly lower: 70.33 U g−1 for phenol oxidase and 85.0 g−1 for Mn-peroxidase. Analyses of soil metabolites after 10 weeks revealed that monocultures of L.edodes had eliminated both PCP and pentachloroanisole. Pentachloroanisole, however, was detected in soils with the mixed microflora. Both dechlorination and mineralisation of the xenobiotic compound were effected by L. edodes LE2. Received: 7 April 1997 / Accepted: 14 June 1997  相似文献   

11.
The survival of two different pentachlorophenol (PCP)-degrading bacteria were studied in natural soil. The PCP-degraders Rhodococcus chlorophenolicus and Flavobacterium sp., both able to mineralize PCP into CO2 and chloride in axenic culture, were tested for the capacity to survive and degrade PCP in natural soil. These bacteria were immobilized on polyurethane (PUR) foam and introduced into natural peaty soil to give about 109 cells g-1 of soil (dry weight). R. chlorophenolicus induced PCP-degrading activity in soil remained detectable for 200 days whether or not a carbon source was added (distillery waste or wood chips). Electron microscopic investigation performed almost a year after inoculation, revealed the presence of R. chlorophenolicus-like cells in the PUR foam particles. PCP-degrading activity of Flavobacterium sp. declined within 60 days of burial in the soil without enhancing the PCP removal. R. chlorophenolicus degraded PCP in soil at a mean rate of 3.7 mg of PCP day-1 kg-1 of soil, which corresponds to ca. 5×10-3 pg of PCP degraded per inoculated R. chlorophenolicus cell day-1. The solvent extractable organic chlorine contents of the soil decreased stoichiometrically (>95%) with that of PCP indicating that PCP was essentially mineralized.Abbreviations ATCC American type culture collection - DSM Deutsche Sammlung für Mikroorganismen - DW distillery waste - EM electron microscopy - EOX extractable organic halogen - GC/ECD gas chromatograph/electron capture detector - GC/MS gas chromatograph/mass spectrometer - PCP pentachlorophenol - WC wood chips - d.wt. dry weight - w.wt. wet weight - d.s. dry soil - d.H2O distilled water - PCA polychlorinated aromatics  相似文献   

12.
This study provides a first attempt investigation of a serie of studies on the ability of Anthracophyllum discolor, a recently isolated white-rot fungus from forest of southern Chile, for the treatment of soil contaminated with pentachlorophenol (PCP) to future research on potential applications in bioremediation process. Bioremediation of soil contaminated with PCP (250 and 350 mg kg−1 soil) was investigated with A. discolor and compared with the reference strain Phanerochaete chrysosporium. Both strains were incorporated as free and immobilized in wheat grains, a lignocellulosic material previously selected among wheat straw, wheat grains and wood chips through the growth and colonization of A. discolor. Wheat grains showed a higher growth and colonization of A. discolor, increasing the production of manganese peroxidase (MnP) activity. Moreover, the application of white-rot fungi immobilized in wheat grains to the contaminated soil favored the fungus spread. In turn, with both fungal strains and at the two PCP concentrations a high PCP removal (70–85%) occurred as respect to that measured with the fungus as free mycelium (30–45%). Additionally, the use of wheat grains in soil allowed the proliferation of microorganisms PCP decomposers, showing a synergistic effect with A. discolor and P. chrysosporium and increasing the PCP removal in the soil.  相似文献   

13.
The roles of lignin peroxidase, manganese peroxidase, and laccase were investigated in the biodegradation of pentachlorophenol (PCP) by several white rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains,P. chrysosporium, Trametes sp. andPleurotus sp., was observed. The activities of manganese peroxidase and laccase were detected inTiametes sp. andPleurotus sp. cultures. However, the activities of ligninolytic enzymes were not detected inP. chrysosporium cultures. Therefore, our results showed that PCP was degraded under ligninolytic as well as nonligninolytic conditions. Indicating that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi.  相似文献   

14.
Anaerobic biodegradation of pentachlorophenol (PCP) in a contaminated soil from a wood-treating industrial site was studied in soil slurry microcosms inoculated with a PCP-degrading methanogenic consortium. When the microcosms containing 10%–40% (w/v) soil were inoculated with the consortium, more than 90% of the PCP was removed in less than 30 days at 29 °C. Less-chlorinated phenols, mainly 3-chlorophenol were slowly degraded and accumulated in the cultures. Addition of glucose and sodium formate to the microcosms was not necessary, suggesting that the organic compounds in the soil can sustain the dechlorinating activity. Inoculation of Desulfitobacterium frappieri strain PCP-1 along with a 3-chlorophenol-degrading consortium in the microcosms also resulted in the rapid dechlorination of PCP and the slow degradation of 3-chlorophenol. Competitive polymerase chain reaction experiments showed that PCP-1 was present at the same level throughout the 21-day biotreatment. D. frappieri, strain PCP-1, inoculated into the soil microcosms, was able to remove PCP from soil containing up to 200 mg PCP/kg soil. However, reinoculation of the strain was necessary to achieve more than 95% PCP removal with a concentration of 300 mg and 500 mg PCP/kg soil. These results demonstrate that D. frappieri strain PCP-1 can be used effectively to dechlorinate PCP to 3-chlorophenol in contaminated soils. Received: 14 November 1997 / Received revision: 29 January 1998 / Accepted: 24 February 1998  相似文献   

15.
Summary The ethyl acetate extract from the culture of the fungus Agrocybe perfecta (Rick) Singer was selected for further study in a screening of Brazilian basidiomycetes for bioactivity. The extract showed significant activity against the recombinant enzyme trypanothione reductase (TryR) from Trypanosoma cruzi, lymphocyte proliferation in human peripheral mononuclear cells (PBMC) stimulated with phytohemaglutinin (PHA), and the human cancer cell lines UACC-62 (melanoma), MCF-7 (mammary), and TK-10 (kidney). The chromatographic fractionation of the extract was monitored by the above bioassays and showed that agrocybin was the active component. Agrocybin, a known polyacetylene amide, showed an IC50 of 2 μM in the TryR assay but killed only 60% of the trypomastigote form of T. cruzi in infected murine blood even at 680 μM. This weaker activity could be due to the low temperature used to mimic banked blood or as a consequence of its inactivation by blood, already reported in the literature. On the other hand, it inhibited the proliferation of PBMC by 50% at 3.4 μM and the growth of the cancer cell lines at concentrations between 9 and 24.5 μM. Measurements of DNA fragmentation using flow cytometry suggest that agrocybin promotes cell death via apoptosis.  相似文献   

16.
The survival of a Sphingomonas species that was introduced into pentachlorophenol (PCP)-contaminated soil was monitored with two complementary methods, a respiration-based assay and a most probable number (MPN) technique. Sphingomonas chlorophenolicastrain RA2 is a PCP-mineralizing bacterium that was introduced into soil contaminated with a range of PCP concentrations (0–300 μg PCP g−1 soil). The population of introduced microorganisms was followed for 170 days using a substrate-induced growth-response method and a MPN assay that specifically targets PCP-mineralizing bacteria. Varying the initial PCP concentration resulted in the emergence of three distinct patterns of survival. In soil contaminated with 300 μg PCP g−1 the population of S. chlorophenolica strain RA2 immediately declined following introduction, increased by 200-fold and leveled off by the end of the 170-day incubation. In contrast, populations of S. chlorophenolica strain RA2 declined to levels below detection limits in uncontaminated soil by the end of the experiment. Intermediate PCP concentrations (10–100 μg PCP g−1 soil) resulted in the establishment of S. chlorophenolica strain RA2 that slowly declined in numbers. These results indicate that Sphingomonas chlorophenolica strain RA2 is an effective colonizer of PCP-contaminated soil but will not persist in the absence of PCP. Received 14 April 1999/ Accepted in revised form 24 June 1999  相似文献   

17.
Fungal peroxidases and phenoloxidases are widely used in aromatic toxic compounds degradation. Peroxidases, such as lignin peroxidase and manganese peroxidase, as well as laccases are mainly produced by basidiomycetes and to a lower extent by other fungi, such as ascomycetes. Peroxidase-encoding genes have been described and homologous expression has been achieved in basidiomycetes. Heterologous expression has also been achieved in some non-producing peroxidase ascomycetes, like Penicillium and Aspergillus. In this work, heterologous expression of peroxidase-encoding genes, lignin peroxidase, and manganese peroxidase was achieved in a zygomycete producing only phenoloxidases (Amylomyces rouxii), aimed at coupling two different pathways used in nature for PCP removal in only one microbial strain. The ability of PCP removal was assayed with one of the obtained transformants, resulting in increased activity with respect to the ability of the parental strain cultured free of the inducer tyrosine (95% and 45%, respectively, of the initial PCP (12.5 mg L−1) in 120 h, or 100% and 49%, respectively, of the initial PCP after 144 h of liquid culture).  相似文献   

18.
淋洗与植物作用耦合对盐渍化土壤的改良效应   总被引:2,自引:0,他引:2  
唐让云  曹靖  董放  董利苹  孔晓乐 《生态学报》2015,35(17):5686-5694
以甘肃秦王川引大灌区盐渍化土壤为背景,以当地5种耐盐植物为材料,采用根袋法盆栽试验动态研究了淋洗结合植物种植对盐渍化土壤改良的效应。结果表明:与种前相比,单纯的淋洗作用对土壤pH值影响不大,而淋洗结合植物种植明显降低了土壤pH值,且根际土壤pH值小于非根际土壤的,5种耐盐植物中霸王根际土壤pH值降低幅度最大,达0.6个单位。K+、Ca2+、Na+、Mg2+、Cl-和SO2-4在5种植物根际土壤中均有不同程度的富集,富集程度因物种的不同而不同,随培养时间的延长而呈波动状态。5种供试植物和对照组土壤中的6种主要的可溶性盐分离子随淋洗次数和培养时间的延长呈下降趋势。在培养120d后,单纯淋洗的土壤中K+、Ca2+、Na+、Mg2+、Cl-和SO2-4的含量相比种前平均分别降低了33.3%、26.1%、35.6%、32.5%、35.5%和36.3%,植物吸收带走的上述各离子的含量平均分别占种前的46.2%、8.1%、30.2%、7.2%和21.6%,其中霸王吸收带走的盐分离子最多,而淋洗结合种植植物的土壤中上述各离子的含量与种前相比平均分别降低了67.25%、63.73%、83.8%、67.5%、81.55%和78.46%,由此可见,淋洗结合植物种植的脱盐效果优于单纯淋洗,且土壤中主要的盐分离子Na+、Cl-和SO2-4的含量降低幅度最大,通过计算得出,在Cl-、SO2-4和Na+减少的总量中还有37.73%的Na+、38.22%的Cl-和35.14%的SO2-4的减少量是由植物根系的物理化学作用机制引起的。  相似文献   

19.
Gypsum and sulfur have been used as amendments for application in sodic and saline sodic soils, although gypsum is not effective in soil pH reduction. In this study the combined effects of elemental sulfur inoculated with Acidithiobacillus (S*) and gypsum (G) in chemical attributes of a Brazilian solodic soil was evaluated. The treatments consisted in addition of S* and G in various levels (0, 0.8, 1.6, 2.4, and 3.2 t ha−1) and different mixing proportions (100:0, 75:25, 50:50, 25:75, and 100:0), acting during 15, 30, and 45 days. Sulfur inoculated with Acidithiobacillus (S*) markedly reduced soil pH in the leaching solution, especially when applied in the highest levels. Gypsum or sulfur applied individually was not satisfactory for soil reclamation. At 15 days of incubation Na+, Ca2+, and Mg2+ showed higher values in the leaching solution, and a marked decrease was observed in the leaching solution at 30 days. Reduction in soil electrical conductivity and in exchangeable Na+, Ca2+, and Mg2+ was observed and in a general way best results were achieved with S* : G in the ratio 50:50, using 2.4 and 3.2 t ha−1. Sulfur with Acidithiobacillus was more effective than gypsum in decreasing soil pH, and sulfur applied with gypsum in the proportion 50:50 showed the best results in relation to exchangeable sodium and electrical conductivity and showed values below those used for classification as sodic soils.  相似文献   

20.
为了解野生和栽培阿尔泰银莲花根际土壤微生物多样性的差异,该研究采用Illumina MiSeq高通量测序技术对野生和栽培阿尔泰银莲花根际土壤微生物的群落组成和多样性进行探究。结果表明:(1)野生阿尔泰银莲花根际土壤的真菌多样性显著高于栽培阿尔泰银莲花(P<0.05),而细菌多样性差异不显著(P>0.05); NMDS分析结果显示,野生和栽培阿尔泰银莲花根际土壤真菌群落结构差异更显著。(2)细菌9 566个可操作分类单元(OTUs)涉及39门127纲315目500科886属,真菌2 670个OTUs涉及15门57纲138目293科597属。在门水平上,细菌群落中的变形菌门、酸杆菌门、放线菌门及真菌群落中的担子菌门、子囊菌门、被孢霉门均为野生和栽培阿尔泰银莲花根际土壤优势菌门,但其相对丰度在不同生长方式下存在差异。(3)环境因子关联分析(RDA)结果显示,土壤有机质是影响土壤细菌群落的主要因子(P<0.05),土壤pH、碱解氮和有效磷是影响真菌群落的主要因子(P<0.05)。综上认为,野生和栽培下的阿尔泰银莲花根际土壤微生物群落组成和多样性存在显著差异,这种差异可能与不同生长条件下的土壤理化性质存在密切的联系,该研究结果对阿尔泰银莲花科学种植以及土壤改良具有一定意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号