首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Borrelia burgdorferi encounters potentially harmful reactive nitrogen species (RNS) throughout its infective cycle. In this study, diethylamine NONOate (DEA/NO) was used to characterize the lethal effects of RNS on B. burgdorferi. RNS produce a variety of DNA lesions in a broad spectrum of microbial pathogens; however, levels of the DNA deamination product, deoxyinosine, and the numbers of apurinic/apyrimidinic (AP) sites were identical in DNA isolated from untreated and DEA/NO-treated B. burgdorferi cells. Strains with mutations in the nucleotide excision repair (NER) pathway genes uvrC or uvrB treated with DEA/NO had significantly higher spontaneous mutation frequencies, increased numbers of AP sites in DNA and reduced survival compared with wild-type controls. Polyunsaturated fatty acids in B. burgdorferi cell membranes, which are susceptible to peroxidation by reactive oxygen species (ROS), were not sensitive to RNS-mediated lipid peroxidation. However, treatment of B. burgdorferi cells with DEA/NO resulted in nitrosative damage to several proteins, including the zinc-dependent glycolytic enzyme fructose-1,6-bisphosphate aldolase (BB0445), the Borrelia oxidative stress regulator (BosR) and neutrophil-activating protein (NapA). Collectively, these data suggested that nitrosative damage to proteins harbouring free or zinc-bound cysteine thiols, rather than DNA or membrane lipids underlies RNS toxicity in wild-type B. burgdorferi.  相似文献   

3.
The fur homologue in Borrelia burgdorferi   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
Borrelia burgdorferi, the causative agent of Lyme disease, exists in nature through a complex life cycle involving ticks of the Ixodes genus and mammalian hosts. During its life cycle, B. burgdorferi experiences fluctuations in oxygen tension and may encounter reactive oxygen species (ROS). The key metalloenzyme to degrade ROS in B. burgdorferi is SodA. Although previous work suggests that B. burgdorferi SodA is an iron-dependent superoxide dismutase (SOD), later work demonstrates that B. burgdorferi is unable to transport iron and contains an extremely low intracellular concentration of iron. Consequently, the metal cofactor for SodA has been postulated to be manganese. However, experimental evidence to support this hypothesis remains lacking. In this study, we provide biochemical and genetic data showing that SodA is a manganese-dependent enzyme. First, B. burgdorferi contained SOD activity that is resistant to H(2)O(2) and NaCN, characteristics associated with Mn-SODs. Second, the addition of manganese to the Chelex-treated BSK-II enhanced SodA expression. Third, disruption of the manganese transporter gene bmtA, which significantly lowers the intracellular manganese, greatly reduced SOD activity and SodA expression, suggesting that manganese regulates the level of SodA. In addition, we show that B. burgdorferi is resistant to streptonigrin, a metal-dependent redox cycling compound that produces ROS, and that SodA plays a protective role against the streptonigrin. Taken together, our data demonstrate the Lyme disease spirochete encodes a manganese-dependent SOD that contributes to B. burgdorferi defense against intracellular superoxide.  相似文献   

6.
The etiological agent of Lyme disease, Borrelia burgdorferi, is transmitted by ticks of the Ixodes genus and, if untreated, can cause significant morbidity in affected individuals. Recent reports have shown that polyunsaturated fatty acids in the B. burgdorferi cell envelope are potential targets for oxidative damage, which can be lethal. How B. burgdorferi responds to this assault is not known. Herein we report evidence that bb0646 codes for a lipase that is located within the bosR operon and that has specificity for both saturated and polyunsaturated fatty acids. Specifically, strains harbouring mutated copies of the lipase, either in the form of an insertionally inactivated construct or site-directed mutations within the active site, demonstrated attenuated lipolytic and haemolytic phenotypes when compared with the isogenic parent and trans-complements. In vivo analysis showed that while the bb0646 mutant remains infectious, the spirochaetal load is significantly lower than both the isogenic parent and the complemented mutant strains. Taken together, these data demonstrate that BB0646 is a broad substrate specific lipase that contributes to lipolytic and haemolytic activity in vitro and is required for optimal B. burgdorferi infection.  相似文献   

7.
Spirochetes living in an oxygen-rich environment or when challenged by host immune cells are exposed to reactive oxygen species (ROS). These species can harm/destroy cysteinyl residues, iron-sulphur clusters, DNA and polyunsaturated lipids, leading to inhibition of growth or cell death. Because Borrelia burgdorferi contains no intracellular iron, DNA is most likely not a major target for ROS via Fenton reaction. In support of this, growth of B. burgdorferi in the presence of 5 mM H2O2 had no effect on the DNA mutation rate (spontaneous coumermycin A1 resistance), and cells treated with 10 mM t -butyl hydroperoxide or 10 mM H2O2 show no increase in DNA damage. Unlike most bacteria, B. burgdorferi incorporates ROS-susceptible polyunsaturated fatty acids from the environment into their membranes. Analysis of lipoxidase-treated B. burgdorferi cells by Electron Microscopy showed significant irregularities indicative of membrane damage. Fatty acid analysis of cells treated with lipoxidase indicated that host-derived linoleic acid had been dramatically reduced (50-fold) in these cells, with a corresponding increase in the levels of malondialdehyde by-product (fourfold). These data suggest that B. burgdorferi membrane lipids are targets for attack by ROS encountered in the various stages of the infective cycle.  相似文献   

8.
Regulation of pantothenate kinase by coenzyme A and its thioesters   总被引:17,自引:0,他引:17  
Pantothenate kinase catalyzes the rate-controlling step in the coenzyme A (CoA) biosynthetic pathway, and its activity is modulated by the size of the CoA pool. The effect of nonesterified CoA (CoASH) and CoA thioesters on the activity of pantothenate kinase was examined to determine which component of the CoA pool is the most effective regulator of the enzyme from Escherichia coli. CoASH was five times more potent than acetyl-CoA or other CoA thioesters as an inhibitor of pantothenate kinase activity in vitro. Inhibition by CoA thioesters was not due to their hydrolysis to CoASH. CoASH inhibition was competitive with respect to ATP, thus providing a mechanism to coordinate CoA production with the energy state of the cell. There were considerable differences in the size and composition of the CoA pool in cells grown on different carbon sources, and a carbon source shift experiment was used to test the inhibitory effect of the different CoA species in vivo. A shift from glucose to acetate as the carbon source resulted in an increase in the CoASH:acetyl-CoA ratio from 0.7 to 4.3. The alteration in the CoA pool composition was associated with the selective inhibition of pantothenate phosphorylation, consistent with CoASH being a more potent regulator of pantothenate kinase activity in vivo. These results demonstrate that CoA biosynthesis is regulated through feedback inhibition of pantothenate kinase primarily by the concentration of CoASH and secondarily by the size of the CoA thioester pool.  相似文献   

9.
One of the major lipids in the membranes of Borrelia burgdorferi is monogalactosyl diacylglycerol (MGalDAG), a glycolipid recently shown to carry antigenic potency. Herein, it is shown that the gene mgs (TIGR designation bb0454) of B. burgdorferi encodes for the protein bbMGS that, when expressed in Escherichia coli, catalyzes the glycosylation of 1,2-diacylglycerol with specificity for the donor substrate UDP-Gal yielding MGalDAG. Related lipid enzymes were found in many Gram-positive bacteria. The presence of this galactosyltransferase activity and synthesis of a cholesteryl galactoside by another enzyme were verified in B. burgdorferi cell extract. Besides MGalDAG, phosphatidylcholine, phosphatidylglycerol, and cholesterol were also found as major lipids in the cell envelope. The high isoelectric point of bbMGS and clustered basic residues in its amino acid sequence suggest that the enzyme interacts with acidic lipids in the plasma membrane, in agreement with strong enzymatic activation of bbMGS by phosphatidylglycerol. The membrane packing and immunological properties of MGalDAG are likely to be of great importance in vivo.  相似文献   

10.
The aim of this study was to determine seizure-induced oxidative stress by measuring hippocampal glutathione (GSH) and glutathione disulfide (GSSG) levels in tissue and mitochondria. Kainate-induced status epilepticus (SE) in rats resulted in a time-dependent decrease of GSH/GSSG ratios in both hippocampal tissue and mitochondria. However, changes in GSH/GSSG ratios were more dramatic in the mitochondrial fractions compared to hippocampal tissue. This was accompanied by a mild increase in glutathione peroxidase activity and a decrease in glutathione reductase activity in hippocampal tissue and mitochondria, respectively. Since coenzyme A (CoASH) and its disulfide with GSH (CoASSG) are primarily compartmentalized within mitochondria, their measurement in tissue was undertaken to overcome problems associated with GSH/GSSG measurement following subcellular fractionation. Hippocampal tissue CoASH/CoASSG ratios were decreased following kainate-induced SE, the time course and magnitude of change paralleling mitochondrial GSH/GSSG levels. Cysteine, a rate-limiting precursor of glutathione was decreased following kainate administration in both hippocampal tissue and mitochondrial fractions. Together these changes in altered redox status provide further evidence for seizure-induced mitochondrial oxidative stress.  相似文献   

11.
Intracellular levels of three coenzyme A (CoA) molecular species, i.e., nonesterified CoA (CoASH), acetyl-CoA, and malonyl-CoA, in a variety of aerobic and facultatively anaerobic bacteria were analyzed by the acyl-CoA cycling method developed by us. It was demonstrated that there was an intrinsic difference between aerobes and facultative anaerobes in the changes in the size and composition of CoA pools. The CoA pools in the aerobic bacteria hardly changed and were significantly smaller than those of the facultatively anaerobic bacteria. On the other hand, in the facultatively anaerobic bacteria, the size and composition of the CoA pool drastically changed within minutes in response to the carbon and energy source provided. Acetyl-CoA was the major component of the CoA pool in the facultative anaerobes grown on sufficient glucose, although CoASH was dominant in the aerobes. Therefore, the acetyl-CoA/CoASH ratios in facultatively anaerobic bacteria were 10 times higher than those in aerobic bacteria. In Escherichia coli K-12 cells, the addition of reagents to inhibit the respiratory system led to a rapid decrease in the amount of acetyl-CoA with a concomitant increase in the amount of CoASH, whereas the addition of cerulenin, a specific inhibitor of fatty acid synthase, triggered the intracellular accumulation of malonyl-CoA. The acylation and deacylation of the three CoA molecular species coordinated with the energy-yielding systems and the restriction of the fatty acid-synthesizing system of cells. These data suggest that neither the accumulation of acetyl-CoA nor that of malonyl-CoA exerts negative feedback on pyruvate dehydrogenase and acetyl-CoA carboxylase, respectively.  相似文献   

12.
Three coenzyme A (CoA) molecular species, i.e., acetyl-CoA, malonyl-CoA, and nonesterified CoA (CoASH), in 13 types of fasted rat tissue were analyzed. A relatively larger pool size of total CoA, consisting of acetyl-CoA, malonyl-CoA, and CoASH, was observed in the medulla oblongata, liver, heart, and brown adipose tissue. Focusing on changes in the CoA pool size in response to the nutrient composition of the diet given, total CoA pools in rats continuously fed a high-fat diet for 4 weeks were significantly higher in the hypothalamus, cerebellum, and kidney, and significantly lower in the liver and skeletal muscle than those of rats fed a high-carbohydrate or high-protein diet. In particular, reductions in the liver were remarkable and were caused by decreased CoASH levels. Consequently, the total CoA pool size was reduced by approximately one-fifth of the hepatic contents of rats fed the other diets. In the hypothalamus, which monitors energy balance, all three CoA molecular species measured were at higher levels when rats were fed the high-fat diet. Thus, it was of interest that feeding rats a high-fat diet affected the behaviors of CoA pools in the hypothalamus, liver, and skeletal muscle, suggesting a significant relationship between CoA pools, especially malonyl-CoA and/or CoASH pools, and lipid metabolism in vivo.  相似文献   

13.
Borrelia burgdorferi , the causative agent of Lyme disease, has a limited set of genes to combat oxidative/nitrosative stress encountered in its tick vector or mammalian hosts. We inactivated the gene encoding for superoxide dismutase A ( sodA , bb0153 ), an enzyme mediating the dismutation of superoxide anions and examined the in vitro and in vivo phenotype of the mutant. There were no significant differences in the in vitro growth characteristics of the sodA mutant compared with the control strains. Microscopic analysis of viability of spirochaetes revealed greater percentage of cell death upon treatment of sodA mutant with superoxide generators compared with its controls. Infectivity analysis in C3H/HeN mice following intradermal needle inoculation of 103 or 105 spirochaetes per mouse revealed complete attenuation of infectivity for the sodA mutant compared with control strains at 21 days post infection. The sodA mutant was more susceptible to the effects of activated macrophages and neutrophils, suggesting that its in vivo phenotype is partly due to the killing effects of activated immune cells. These studies indicate that SodA plays an important role in combating oxidative stress and is essential for the colonization and dissemination of B. burgdorferi in the murine model of Lyme disease.  相似文献   

14.
A deacetylase-thiolesterase that cleaves both the amide and thiolester bonds of 4-acetamidobutyryl CoA has been highly purified from extracts of Pseudomonas B4 grown in a medium containing L-beta-lysine (3,6-diaminohexanoate) as the main energy source. The enzyme has a molecular weight of about 275,000 and contains 8 apparently identical subunits of 36,500 daltons. Products of 4-acetamidobutyryl CoA degradation are stoichiometric amounts of CoASH and acetate, variable amounts of 4-aminobutyrate and its lactam, 2-pyrrolidinone, and a little 4-acetamidobutyrate. The relative yields of 4-aminobutyrate and 2-pyrrolidinone are determined by the enzyme level. At high enzyme levels the 4-aminobutyrate/pyrrolidinone ratio is about 2, whereas at low enzyme levels only pyrrolidinone is formed. Under the latter conditions, 4-aminobutyryl CoA accumulates transiently and is converted nonenzymatically to pyrrolidinone and CoASH. Since the enzyme does not form 4-aminobutyrate from synthetic or enzymatically formed 4-aminobutyryl CoA, we conclude that a 4-aminobutyryl CoA-enzyme complex is the actual precursor of 4-aminobutyrate, whereas free 4-aminobutyryl CoA is the precursor of pyrrolidinone. Several analogs of 4-acetamidobutyryl CoA containing different amino acid or amide moieties, and several simple acyl CoA compounds are utilized by the enzyme; 4-propionamidobutyryl CoA and 5-acetamidovaleryl CoA are most readily decomposed. Acetyl CoA is a very poor substrate. 3-Acetamidopropionyl CoA is first converted to acetate and beta-alanyl CoA and the latter compound is slowly hydrolyzed to beta-alanine and CoASH. Little deacetylase-thiolesterase is formed by bacteria grown in absence of beta-lysine, but another thiolesterase, lacking deacetylase activity, is produced. The deacetylase-thiolesterase catalyzes an essential step in the aerobic degradation of L-beta-lysine.  相似文献   

15.
16.
17.
Li X  Feng J  Sun R 《Journal of virology》2011,85(2):715-724
Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL) cells are predominantly infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), presenting a barrier to the destruction of tumor cells. Latent KSHV can be reactivated to undergo lytic replication. Here we report that in PEL cells, oxidative stress induced by upregulated reactive oxygen species (ROS) can lead to KSHV reactivation or cell death. ROS are upregulated by NF-κB inhibition and are required for subsequent KSHV reactivation. Disruption of the intracellular redox balance through depletion of the antioxidant glutathione or inhibition of the antioxidant enzyme catalase also induces KSHV reactivation, suggesting that hydrogen peroxide induces reactivation. In addition, p38 signaling is required for KSHV reactivation induced by ROS. Furthermore, treatment of PEL cells with a higher concentration of the NF-κB inhibitor than that used for inducing KSHV reactivation further upregulates ROS and induces massive cell death. ROS, but not p38 signaling, are required for PEL cell death induced by NF-κB inhibition as well as by glutathione depletion. Importantly, anticancer drugs, such as cisplatin and arsenic trioxide, also induce KSHV reactivation and PEL cell death in a ROS-dependent manner. Our study thus establishes a critical role for ROS and oxidative stress in the regulation of KSHV reactivation and PEL cell death. Disrupting the cellular redox balance may be a potential strategy for treating KSHV-associated lymphoma.  相似文献   

18.
19.
Outer surface proteins OspA and OspB are among the most prominent Borrelia burgdorferi surface molecules. We constructed OspAB and OspA complementation mutants of B. burgdorferi Osp-less strain B313 and investigated the role of these surface proteins in the interactions of B. burgdorferi, human neutrophils and the complement system. We found that (1) OspB inhibits the phagocytosis and oxidative burst of human neutrophils at low serum concentrations, whereas OspA induces the oxidative burst in neutrophils; (2) OspB may have an inhibiting role in serum sensitivity and complement activation; (3) all studied strains inhibit the chemotaxis of human neutrophils specifically towards fMLP but not towards C5a, regardless of their Osp expression. These results suggest that although OspA and OspB are co-ordinately transcribed, they differ in their effects on human neutrophil functions. Our findings suggest that B. burgdorferi exploits a wide variety of immune evasion mechanisms, besides previously documented complement resistance, to survive in the vertebrate host.  相似文献   

20.
The kinetic mechanism of serine acetyltransferase from Haemophilus influenzae was studied in both reaction directions. The enzyme catalyzes the conversion of acetyl CoA and L-serine to O-acetyl-L-serine (OAS) and coenzyme A (CoASH). In the direction of L-serine acetylation, an equilibrium ordered mechanism is assigned at pH 6.5. The initial velocity pattern in the absence of added inhibitors is best described by a series of lines converging on the ordinate when L-serine is varied at different fixed levels of acetyl CoA. The initial velocity pattern at pH 7.5 is also intersecting, but the lines are nearly parallel. Product inhibition by OAS is noncompetitive against acetyl CoA, while it is uncompetitive against L-serine. Product inhibition by L-serine in the reverse reaction direction is noncompetitive with respect to both OAS and CoASH. Glycine and S-methyl-L-cysteine (SMC) were used as dead-end analogs of L-serine and OAS, respectively. Glycine is competitive versus L-serine and uncompetitive versus acetyl CoA, while SMC is competitive against OAS and uncompetitive against CoASH. Desulfo-CoA was used as a dead-end analog of both acetyl CoA and CoASH, and is competitive versus both substrates in the direction of L-serine acetylation; while it is competitive against CoASH and noncompetitive against OAS in the direction of CoASH acetylation. All of the above kinetic parameters are consistent with those predicted for an ordered mechanism at pH 6.5 with the exception of the uncompetitive inhibition by OAS vs. serine. The latter inhibition pattern suggests combination of OAS with the central E:acetyl CoA:serine complex. Cysteine is known to regulate its own biosynthesis at the level of SAT. As a dead-end inhibitor, L-cysteine is competitive against both substrates in both reaction directions. These results are discussed in terms of the mechanism of regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号