首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive assay system for receptor activity of gangliosides to paramyxovirus was developed. This system involves incorporation of gangliosides into neuraminidase-treated chicken erythrocytes (asialoerythrocytes) followed by estimation of virus-mediated agglutination and hemolysis. The asialoerythrocytes coated with I-active ganglioside (Sia alpha 2-3Gal beta 1-4GlcNAc beta 1-3(Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer) were effectively agglutinated by hemagglutinating virus of Japan (HVJ, Sendai virus). The hemolysis of the asialoerythrocytes mediated by HVJ was restored to the highest level by labeling the cells with gangliosides possessing lacto-series oligosaccharide chains, i.e., I-active ganglioside, N-acetylneuraminosylparagloboside (SiaPG(NeuAc)), and i-active ganglioside (Sia alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer). The specific receptor activity of ganglioside GD1a possessing a gangliotetraose chain was lower than those of the gangliosides described above. Gangliosides GM3, GD3, GM1a, GD1b, SiaPG(NeuGc) showed little effect on the restoration of HVJ-mediated hemolysis. On infection with Newcastle disease virus (NDV), the highest specific restoration of lysis was found in chicken asialoerythrocytes coated with SiaPG(NeuAc or NeuGc) and GM3(NeuAc or NeuGc), whereas those coated with I-active ganglioside, GD3, GM1a, and GD1b showed very low NDV-mediated hemolysis. The above results indicate that the determinants of receptor for HVJ contain sialylated branched and/or linear lacto-series oligosaccharides carried by I,i-active gangliosides and SiaPG(NeuAc) and sialosylgangliotetraose chain carried by GD1a. The determinants for NDV are carried by SiaPG(NeuAc or NeuGc) containing linear lacto-series oligosaccharide and GM3(NeuAc or NeuGc). The absence of detectable binding of free oligosaccharides obtained from I-active ganglioside and sialoglycoprotein GP-2 isolated from bovine erythrocyte membranes as HVJ receptor (Suzuki, Y., et al. J. Biochem. (1983) 93, 1621-1633; (1984) 95, 1193-1200) indicates that HVJ recognizes the sialooligosaccharides oriented out of the lipid bilayer in the cell membranes where the hydrophobic ceramide or peptide backbone of the receptor is integrated.  相似文献   

2.
New ganglioside analogs that inhibit influenza virus sialidase   总被引:1,自引:0,他引:1  
Synthetic thioglycoside-analogs of gangliosides such as Neu5Ac alpha(2-S-6)Glc beta(1-1)Ceramide (1) and the GM3 analog Neu5Ac alpha(2-S-6)Gal beta(1-4)Glc beta(1-1)Ceramide (2), competitively inhibited GM3 hydrolysis by the sialidase of different subtypes of human and animal influenza viruses with an apparent Ki value of 2.8 x 10(-6) and 1.5 x 10(-5) M, respectively. The inhibitory activity of the ganglioside GM4 analog [Neu5Ac alpha(2-S-6)Gal beta(1-1)Ceramide (3)], in which the glucose of 1 was substituted by galactose, was lower than that of 1 (Ki = 1.0 x 10(-4) M). The thioglycoside-analogs (1, 2, 3) of the gangliosides were non-hydrolyzable substrates for influenza virus sialidase. The inhibitory activity of 1 to bacterial sialidases from Clostridium perfringens and Arthrobacter ureafaciens was considerably lower than that to influenza virus sialidase, indicating that the structure of the active site in bacterial and influenza virus sialidase may be different and the analogs may be useful to determine the orientation of the substrate to the active site of sialidases, especially of influenza viruses.  相似文献   

3.
A UDP-N-acetylgalactosamine:ganglioside GM3 beta-N-acetylgalactosaminyltransferase which catalyzes the conversion of ganglioside GM3 to GM2 has been purified over 6300-fold from a Triton X-100 extract of rat liver particulate fractions by hydrophobic chromatography and affinity chromatography on GM3-acid-Sepharose. The purified enzyme has two identical subunits of 64,000 daltons. The enzyme has a pH optimum of pH 6.7-6.9 and requires divalent cations such as Mn2+ and Ni2+. In studies on substrate specificity GM3 containing N-acetylneuraminic acid (GM3(NeuAc] and GM3 containing N-glycolylneuraminic acid were both good acceptors for the purified enzyme. The plots of the activity of transferase as a function of GM3(NeuAc) showed sigmoidal relationships. The oligosaccharide of GM3, sialyllactose, was also a good acceptor, which indicates that the preferred acceptor substrate has the possible structure NeuAc alpha 2- or NeuGc alpha 2-3 Gal beta 1-4Glc-OR.  相似文献   

4.
Sialyl-linkage specificity of sialidases of the human influenza A virus strains, A/Aichi/2/68 (H3N2) and A/PR/8/34 (H1N1) were studied using natural and synthetic gangliosides. The sialidase of the A/Aichi/2/68 strain hydrolyzed the terminal Neu5Acalpha2-3Gal sequence but not the Neu5Acalpha2-3 linkage on the inner Gal of GM1a, which is a ganglioside that has the gangliotetraose chain (Galbeta1-3GalNAcbeta1-4- (Neu5Acalpha2-3)Galbeta1++ +-4Glcbeta1-Cer). The sialidase hydrolyzed the Neu5Ac on the inner Gal of GM2, which had a shorter gangliotriose chain. GM4, which had the shortest chain (Neu5Acalpha2-3Galbeta1-Cer) of the gangliosides, had a lower substrate specificity. The N1 and N2 sialidase subtypes of the human influenza A virus had no significant variation in their substrate specificity for the gangliosides. Analysis of 11 synthetic gangliosides, which contained various ceramide or sialic acid moieties, demonstrated that A/Aichi/2/68 (H3N2) sialidase recognized the ceramide and sialic acid moiety and the length and structure of the sialyl sugar chain.   相似文献   

5.
The action of neuraminidase of influenza A virus, Sendai virus and Newcastle disease virus particles on bovine brain ganglioside GM1 and the properties of Sendai virus neuraminidase for GM1 were studied. With Sendai virus, GM1 was hydrolyzed to asialo-GM1 (GA1) and N-acetylneuraminic acid even in the absence of surfactant or other additives, while the hydrolysis of GM1 by Newcastle disease virus or influenza A virus was very low or undetectable under the same conditions. The formation of GA1 by Sendai virus neuraminidase was confirmed by thin-layer chromatography and immunodiffusion test using anti-GA1 antiserum. The apparent Km of Sendai virus neuraminidase for GM1 hydrolysis was found to be 2.67 x 10(-4) M and the optimum pH was 5.6. GM3, GM2 and oligosaccharide of GM1 were hydrolyzed more effectively than GM1 in the absence of surfactant (GM3 greater than GM2 greater than oligosaccharide of GM1 greater than GM1). The hydrolysis of GM1 by the Sendai virus enzyme was stimulated by the addition of sodium cholate or sodium taurocholate, but was inhibited by divalent cations (10 mM), Ca2+, Mg2+, ZN2+, Fe2+ and CU2+. In the absence of the surfactant, Sendai virus neuraminidase hydrolyzed GM1 more efficiently than Arthobacter ureafaciens neuraminidase which has been reported recently as being an adequate enzyme to hydrolyze ganglioside GM1 as a substrate.  相似文献   

6.
Octadecylrhodamine B chloride (R18) and ganglioside GD1a (virus receptor) were incorporated into small unilamellar liposomes [Hoekstra et al. (1984) Biochemistry 23, 5675-5681]. Upon interaction of these liposomes with PR8 influenza viruses without prebinding, two types of dequenching were observed at 37 degrees C, both second-order processes: a fast reaction at pH 5.3, 2k = 17.53 x 10(-3) (Q.s)-1, and a slow reaction at pH 7.4, 2k = 0.335 x 10(-3) (Q.s)-1. The maximal level of dequenching was the same for both. Upon prebinding of liposomes to PR8 viruses (30 min, 0 degrees C, pH 7.4) at high concentrations, a very fast dequenching occurred when the prebinding mixture was diluted into prewarmed (37 degrees C) 10 mM PBS, pH 5.3. For the initial phase, a first-order rate constant of 0.5 s-1 could be extrapolated. After a quick drop in velocity during the first 30 s, the reaction was kinetically indistinguishable from the one found without prebinding. A second-order process with 2k = 16.52 x 10(-3) (Q.s)-1 became rate-limiting. The fast reactions at pH 5.3 can be abolished by inactivation or removal of the virus hemagglutinin. We conclude that the reaction at pH 5.3 reflects the hemagglutinin-dependent fusion process known to occur between influenza viruses and partner membranes at low pH; however, second-order kinetics indicate that specific binding rather than fusion is the rate-limiting step. For the slow dequenching, which is not affected by prebinding, the rate constant is 20 times lower than for the fast reaction, and the process is independent of viral hemagglutinin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Three methods (using GM3 quantities ranging from a few milligrams to grams) have been developed to prepare, in high yield, the three derivatives of ganglioside GM3 [alpha-Neu5Ac-(2-3)-beta-Gal-(1-4)-beta-Glc-(1-1)-ceramide]: deacetyl-GM3 [alpha-Neu-(2-3)-beta-Gal-(1-4)-beta-Glc-(1-1)-ceramide], lyso-GM3 [alpha-Neu5Ac-(2-3)-beta-Gal-(1-4)-beta-Glc-(1-1)-sphingosine], and deacetyl-lyso-GM3 [alpha-Neu-(2-3)-beta-Gal-(1-4)-beta-Glc-(1-1)-sphingosine]. This is the first report of the preparation of lyso-GM3 by a one-pot reaction. We can now define the optimal conditions for the different preparations. Preparation of deacetyl-GM3: alkaline reagent, 2 M KOH in water; GM3 concentration, 33 mg/ml; reaction temperature, 90 degrees C; reaction time, 3.5 h; nitrogen atmosphere. Preparation of deacetyl-lyso-GM3: alkaline reagent, 8 M KOH in water; GM3 concentration, 10 mg/ml; reaction temperature, 90 degrees C; reaction time, 18 h; nitrogen atmosphere. Preparation of lyso-GM(3): alkaline reagent, 1 M sodium tert-butoxide in methanol; GM3 concentration, 10 mg/ml; reaction temperature, 80 degrees C; reaction time, 18 h; anhydrous conditions. The percentage yield of deacetyl-GM3 was 70;-75%, that of deacetyl-lyso-GM3 100%, and of lyso-GM3 36;-40%.Deacetyl-GM3, deacetyl-lyso-GM3, and lyso-GM3 were purified by column chromatography, and chemical structures were confirmed by electron spray-mass spectrometry.  相似文献   

8.
Cell lines expressing varying levels of ganglioside GM3 at the cell surface show different degrees of adhesion and spreading on solid phase coated with such glycosphingolipids (GSLs) as Gg3 (GalNAc beta 1----4Gal beta 1----4Glc beta 1----1Cer), LacCer (Gal beta 1----4Glc beta 1----1Cer), or Gb4 (GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1Cer) (where Cer is ceramide), which may have structures complementary to GM3, but not on solid phase coated with various other GSLs. The degree of cell adhesion and spreading on Gg3 was correlated with the degree of cell-surface GM3 expression, as defined by reactivity with anti-GM3 monoclonal antibody (mAb) DH2. Only cells with high GM3 expression adhered on solid phase coated with LacCer or Gb4. Adhesion of GM3-expressing cells on Gg3-, LacCer-, and Gb4-coated solid phase is based on interaction of GM3 with Gg3 and, to a lesser extent, with LacCer and Gb4, as demonstrated by: (i) the interaction of the GM3 liposome with solid phase coated with Gg3, LacCer, and Gb4, respectively; (ii) the abolition of cell adhesion on each GSL-coated solid phase by treatment of cells with mAb DH2 or sialidase; and (iii) the inhibition of cell adhesion by treatment of GSL-coated solid phase with mAb specific to each GSL. Sialosyllactosyl-lysyllysine conjugate was bound to Gg3 adsorbed on a C18 silica gel column in the presence of bivalent cation, suggesting that the carbohydrate moiety of GM3 is involved in GM3-Gg3 interaction. Not only the adhesion and spreading of GM3-expressing cells, but also their cell motility was greatly enhanced on Gg3-coated solid phase, as determined by Transwell assay and phagokinetic track assay on a gold sol-coated surface. Spreading and motility of GM3-expressing cells on Gg3-coated solid phase were both inhibited by treatment of cells with mAb DH2 or sialidase. These results provide evidence that not only cell adhesion, but also spreading and motility in these cell lines are controlled by complementary GSL-GSL interaction.  相似文献   

9.
Previous syntheses of ganglioside GM3 (NeuAc alpha3Gal beta4Glc beta1Cer) are reviewed, and both chemoenzymatic and chemical total synthetic approaches were investigated. In a chemoenzymatic approach, (2S,3R,4E)-5'-acetyl-alpha-neuraminyl-(2' --> 3')-beta-galactopyranosyl-(1' --> 4')-beta-glucopyranosyl-(1' <--> 1)-2-azido-4-octadecene-1,3-diol (azidoGM3) was readily prepared utilizing recombinant beta-Gal-(1' --> 3'/4')-GlcNAc alpha-(2' --> 3')-sialyltransferase enzyme, and was evaluated as a synthetic intermediate to ganglioside GM3. The chemical total synthesis of ganglioside GM3 was performed on one of the largest scales yet reported. The highlights of this synthesis include minimizing the steps necessary to prepare the lactosyl acceptor as a useful anomeric mixture, which was present in excess for the highly regioselective and fairly stereoselective sialylation with a known neuraminyl donor to give the protected GM3 trisaccharide. The synthetic methodology maximized convergence by a subsequent glycosidic coupling of the well-characterized GM3 trisaccharide trichloroacetimidate derivative with protected ceramide. The ganglioside GM3 was nearly homogeneous as the two glycosidic couplings utilized preparative HLPC purifications, and variations in the sphingosine base and fatty acyl group were under 0.1 and 0.2%, respectively.  相似文献   

10.
A monoclonal antibody produced by immunization with cells of the human glioma cell line D-54 MG reacted with ganglioside GM2. The binding epitope of the antibody was found to be GalNAc beta 1-4(NeuAc alpha 2-3)Gal. Immunological detection of glycolipid antigens on thin-layer plates with this monoclonal antibody, DMAb-1, revealed the presence of a new ganglioside. This ganglioside, co-migrating with NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1Cer(6'-LM1) and GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta 1-3GalNAc beta 1-4Gla beta 1-4Glc beta 1-1Cer (GalNAc-isoGM1) at chromatographic separation was isolated from human meconium. Its structure was determined by permethylation and fast atom bombardment-mass spectometry analyses. The new ganglioside was found to be a combination of the lacto and ganglio series gangliosides, and the structure found to be GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta 1-3GlcNAc alpha 1-3Gal beta 1-4Glc beta 1-1Cer(GalNAc-3'-isoLM1).  相似文献   

11.
It was previously reported that monoclonal IgM from two patients with gammopathy and neuropathy showed similar specificity by reacting with the same group of unidentified minor components in the ganglioside fractions of human nervous tissues (Ilyas, A. A., Quarles, R. H., Dalakas, M. C., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6697-6700). Enzymatic degradation, ion-exchange chromatography, and immunostaining of purified ganglioside standards on thin-layer chromatograms have now revealed that the antigenic glycolipids recognized by the IgM from these patients are gangliosides GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1Cer(GM2), GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer (IV4GalNAcGM1b), and GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4 beta Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1-Cer (IV4GalNAcGD1a). The monoclonal IgM appears to be reacting with the terminal [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-] moiety shared by these three gangliosides and is a useful probe for detecting small amounts of GM2, IV4GalNAcGM1b, IV4GalNAcGD1a, and other gangliosides with the same terminal sugar configuration in tissues. Species distribution studies using the antibody revealed that GM2 is present in the brains and nerves of all species examined, while IV4GalNAcGM1b and IV4GalNAcGD1a exhibit some striking species specificity. GM2, but not IV4GalNAcGD1a, is enriched in purified myelin from human brain.  相似文献   

12.
The lactoside with PEG-fluorous tag was introduced to BHK-21(C-13) cells to generate a GM3-type oligosaccharide (Siaα2-3Galβ1-4Glc). The GM3-type oligosaccharide obtained was easily immobilized by spotting onto commercially available polytetrafluoroethylene (PTFE) filter through non-covalent fluorous affinity and simply assessed by dot blot method using the interaction of carbohydrate- with proteins which recognize sialic acid such as virus membrane proteins.  相似文献   

13.
Go  Shiori  Sato  Chihiro  Hane  Masaya  Go  Shinji  Kitajima  Ken 《Glycoconjugate journal》2022,39(5):619-631
Glycoconjugate Journal - A transition of sialic acid (Sia) species on GM3 ganglioside from N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc) takes place in mouse C2C12 myoblast...  相似文献   

14.
Okadaic acid is a potent inhibitor of type-2A (PP2A) and type-1 (PP1) protein phosphatases and has been proved to be a valuable tool for studies on the protein phosphorylation. We have investigated the effects of okadaic acid on rat granulosa cells in order to determine whether the regulation of ganglioside synthesis involves protein phosphorylation via inhibition of PP2A and PP1. Granulosa cells expressed luteinizing hormone (LH) receptors, measured as the binding of 125I-deglycosylated human chorionic gonadotropin (hCG) to intact cells, and synthesized the gangliosides NeuAc alpha 2-->3Gal beta 1-->4Glc beta 1-->1Cer (GM3) and Gal beta 1-->3GalNAc beta 1-->4[NeuAc alpha 2-->3]Gal beta 1-->4Glc beta 1-->1Cer (GM1), demonstrated by metabolic labeling of glycosphingolipids with [3H]galactose, in response to follicle-stimulating hormone (FSH). When FSH-stimulated granulosa cells were treated with 10 nM okadaic acid for 15 h, down-regulation of LH receptors, dissociation of LH receptor-effector coupling and significant decreases of intracellular and extracellular 3',5'-cyclic adenosine monophosphate (cAMP) levels were observed. The okadaic acid-induced desensitization to gonadotropin in granulosa cells was accompanied by increased ganglioside synthesis. The amount of 3H-labeled ganglioside GM3, the major ganglioside (about 95% of the total) synthesized by mature granulosa cells, was enhanced in okadaic acid-desensitized cells (to 215% of the control value) and in those desensitized by hCG (by 354%), forskolin (by 190%) and 12-O-tetradecanoylphorbol 13-acetate (by 143%). The results of this study suggest that an increase in the phosphorylation state of cells is accompanied by enhancement of ganglioside synthesis.  相似文献   

15.
Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.  相似文献   

16.
A simple procedure is described for preparing GM3 ganglioside, from a few milligrams to grams, from GM1-lactone (Sonnino et al., (1985) Glycoconjugate J 2: 343-54) [1]. The synthesis was carried out under the following optimal conditions: 30 mM GM1-lactone in 0.25 M H2SO4 in DMSO, 30 min, 70 degrees C, nitrogen atmosphere, strong stirring. The yield of GM3 was 55%. The procedure applied to milligram amounts of GD1b-dilactone gave GD3 ganglioside.  相似文献   

17.
Isolated adult bovine oligodendrocytes maintained in vitro for 10 days were treated for 1 day with 50 micrograms/ml of GM3 ganglioside (NeuNac alpha 2-3Gal beta 1-4Glc beta 1-1'ceramide) in serum-free culture medium. The treated oligodendrocytes had significantly longer processes with more branching than control cells in the same medium without GM3. The treatment also stimulated the release of a series of 22-100-kDa, [3H]glucosamine-labeled glycoproteins into the culture medium. Treatment of oligodendrocytes maintained in vitro for 50 days with GM3 for 1 day resulted in a thickening of the processes and the appearance of many fine branches on existing processes as well as a similar stimulation of glycoprotein release into the medium.  相似文献   

18.
A mouse (C57BL/6) monoclonal antibody M2590, which is established against syngeneic melanoma B16 cells, reacted with chemically synthesized GM3. NeuAc alpha 2-3Gal beta 1-4Glc beta 1-1' ceramide (24:0/d 18:1), but not with its stereoisomer, NeuAc beta 2-3Gal beta 1-4Glc beta 1-1' ceramide (24:0/d 18:1).  相似文献   

19.
The thin-layer chromatographic (TLC) pattern of gangliosides of rat thymocytes showed a profile characterized by the occurrence of a predominant ganglioside which did not correspond to any reference gangliosides of rat brain. The ganglioside was isolated from rat thymus, and characterized by compositional analysis, methylation analysis, sialidase treatment, negative-ion fast atom bombardment (FAB) mass spectrometry, and proton NMR spectroscopy. The structure was elucidated to be NeuGc alpha 2-8NeuGc alpha 2-3Gal beta 1-3GalNac beta 1-4Gal beta 1-4Glc beta 1-1Cer. This is the major ganglioside of rat thymus lymphoid cells and is one of the GM1b-derived gangliosides, GD1c, having two N-glycolylneuraminic acids. This is the first report on the occurrence of GD1c in normal animal cells.  相似文献   

20.
We investigated the interaction of GM3 lactone with influenza virus. The specific bindings of influenza virus and its hemagglutinin to GM3 lactone-containing mixed monolayers were studied by using a quartz-crystal microbalance. It has been known that gangliosides as receptors for influenza virus are also substrates for virus neuraminidase. GM3 lactone, however, was found to bind to influenza virus hemagglutinin, but not to be substrate for virus neuraminidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号