首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study compares four models for predicting the potential distribution of non-indigenous weed species in the conterminous U.S. The comparison focused on evaluating modeling tools and protocols as currently used for weed risk assessment or for predicting the potential distribution of invasive weeds. We used six weed species (three highly invasive and three less invasive non-indigenous species) that have been established in the U.S. for more than 75 years. The experiment involved providing non-U. S. location data to users familiar with one of the four evaluated techniques, who then developed predictive models that were applied to the United States without knowing the identity of the species or its U.S. distribution. We compared a simple GIS climate matching technique known as Proto3, a simple climate matching tool CLIMEX Match Climates, the correlative model MaxEnt, and a process model known as the Thornley Transport Resistance (TTR) model. Two experienced users ran each modeling tool except TTR, which had one user. Models were trained with global species distribution data excluding any U.S. data, and then were evaluated using the current known U.S. distribution. The influence of weed species identity and modeling tool on prevalence and sensitivity effects was compared using a generalized linear mixed model. Each modeling tool itself had a low statistical significance, while weed species alone accounted for 69.1 and 48.5% of the variance for prevalence and sensitivity, respectively. These results suggest that simple modeling tools might perform as well as complex ones in the case of predicting potential distribution for a weed not yet present in the United States. Considerations of model accuracy should also be balanced with those of reproducibility and ease of use. More important than the choice of modeling tool is the construction of robust protocols and testing both new and experienced users under blind test conditions that approximate operational conditions.  相似文献   

3.
Mass spectrometry was used to identify novel proteins associated with the human 17S U2 snRNP and one of its stable subunits, SF3b. Several additional proteins were identified, demonstrating that 17S U2 snRNPs are significantly more complex than previously thought. Two of the newly identified proteins, namely the DEAD-box proteins SF3b125 and hPrp5 (a homologue of Saccharomyces cerevisiae Prp5p) were characterized further. Immunodepletion experiments with HeLa nuclear extract indicated that hPrp5p plays an important role in pre-mRNA splicing, acting during or prior to prespliceosome assembly. The SF3b-associated protein SF3b125 dissociates at the time of 17S U2 formation, raising the interesting possibility that it might facilitate the assembly of the 17S U2 snRNP. Finally, immunofluorescence/FISH studies revealed a differential subnuclear distribution of U2 snRNA, hPrp5p and SF3b125, which were enriched in Cajal bodies, versus SF3b155 and SF3a120, which were not; a model for 17S U2 snRNP assembly based on these findings is presented. Taken together, these studies provide new insight into the composition of the 17S U2 snRNP and the potential function of several of its proteins.  相似文献   

4.
The German government has recently initiated funding schemes that incentivize strategies for wood‐based bioeconomy regions. Regional wood and chemical industries have been encouraged to act symbiotically, that is, share pilot plant facilities, couple processes where feasible, and cascade woody feedstock throughout their process networks. However, during the planning stages of these bioeconomy regions, options need to be assessed for sustainably integrating processes and energy integration between the various industries that produce bio‐based polymers and engineered wood products. The aim of this paper is to identify the environmental sustainability of industrial symbiosis for producing high‐value‐added, bio‐based products in the wood‐based bioeconomy region of Central Germany. An analysis was conducted of three possible future scenarios with varying degrees of symbiosis in the bioeconomy network. A life cycle assessment (LCA) approach was used to compare these three scenarios to a traditional fossil‐based production system. Eleven environmental impact categories were considered. The results show that, in most cases, the bioeconomy network outperformed the fossil‐based production system, mitigating environmental impacts by 25% to 130%.  相似文献   

5.
In 1943 the U. S. Federal Government erected a milk weed floss- and seed-extracting plant at Petoskey, Michigan, the only one of its kind in the world, and in one year this plant furnished to the armed forces two million pounds of milkweed floss that was used in lieu of kapok from Java in the manufacture of life saving equipment. Two million pounds of seed and tons of fibers were by-products as potential commercial sources of oil and cellulose, respectively.  相似文献   

6.
The extent of impairment to some Appalachian watersheds from acid precipitation is so extreme that watershed scale analytical tools are needed to help guide cost‐effective management decisions. The objective of this study was to develop a measure of the functional value of streams as potential areas for juvenile Brook trout recruitment. This measure, which we term “weighted potential recruitment area” (WPRA), is a function of the expected Brook trout spawning intensity and juvenile survivorship. Estimates of WPRA for each stream segment were then used to identify restoration priorities and optimal restoration programs in the upper Shavers Fork watershed in West Virginia, U.S.A. Using this approach, we determined that the watershed has lost nearly 80% of its historic juvenile recruitment potential as a result of acid precipitation. We also determined that of the 145 stream segments in the watershed, eight critical stream segments account for nearly 20% of the loss. The costs and ecological benefits of a series of five alternative restoration programs were then assessed using an ArcGIS model (Environmental Systems Research Institute, Redlands, CA, U.S.A.). This approach identified two “optimal” alternatives: (1) a low‐cost, moderate‐benefit approach that would use existing rail access to treat acidification in three critical headwater locations and (2) a high‐cost, high‐benefit approach that would use aerial limestone application to treat numerous acidic tributaries near their source. The measure of stream ecological value that we developed was effective in identifying critical restoration priorities and optimal restoration strategies in this watershed. A similar procedure could be used to guide watershed restoration decisions throughout the Appalachian region.  相似文献   

7.
Measures of eco-efficiency—broadly understood as "getting more from less"—often include an economic and an environmental variable. The latter is often seen as the more problematic variable, particularly when used in relation to impacts of public concern. But an analysis of resource and value trends in the U.K. steel and aluminum industries over the last 30 yr showed that there are significant problems associated with using economic variables in measures of eco-efficiency at the sectoral level.
The research found that the U.K. steel and aluminum industries have improved the effectiveness with which they use natural resources, but that this has been accompanied by a decline in the economic output (value added) per unit of material or energy consumed. These seemingly contradictory results can be explained by the fall in the price of metals in real terms, and by the competitive pressures that necessitate the cutting of production costs and indirectly lead to a fall in the measure of economic output of the relevant industry.
The research also suggests a logical terminology to bring consistency and coherence to the broad field of eco-efficiency indicators, with an important distinction made between measures that examine the value output per unit of physical input, and measures that examine the physical output per unit of physical input. Both these types of indicators are important, as they highlight different aspects of eco-efficiency.  相似文献   

8.
This article addresses the growing interest among U.S. scientific organizations and federal funding agencies in strengthening research partnerships between American universities and the private sector. It outlines how core facilities at universities can contribute to this partnership by offering services and access to high-end instrumentation to both nonprofit organizations and commercial organizations. We describe institutional policies (best practices) and procedures (terms and conditions) that are essential for facilitating and enabling such partnerships. In addition, we provide an overview of the relevant federal regulations that apply to external use of academic core facilities and offer a set of guidelines for handling them. We conclude by encouraging directors and managers of core facilities to work with the relevant organizational offices to promote and nurture such partnerships. If handled appropriately, we believe such partnerships can be a win-win situation for both organizations that will support research and bolster the American economy.  相似文献   

9.
Allozyme polymorphisms of maize populations from southwestern China   总被引:4,自引:0,他引:4  
Maize (Zea mays L.) is one of the most-important food crops in southwestern China. The diversity of maize populations from southwestern China has been evaluated on the basis of agronomic and morphological data, but not on marker data. Our objectives were to evaluate the allozyme polymorphism of these populations, and group the populations on the basis of allozyme data. We analyzed 27 maize populations from southwestern China and two populations [BS13(S)C2 and Lancaster] from the USA for genetic variation at 18 allozyme loci. We found a total of 69 alleles at 18 allozyme loci with an average of 3.8 alleles per locus. Compared with inbreds, hybrids, and populations from the U.S. Corn Belt, the 27 Chinese populations had a significantly higher (p<0.01) number of allozyme alleles per locus. Maize populations from southwestern China have accumulated abundant genetic diversity, and might be valuable germplasm for broadening the genetic base of U.S. Corn Belt breeding germplasm. The analyses of allele-frequency distributions and the expected heterozygosity also reflected the differences between the Chinese and the U.S. germplasm. The Chinese populations might be valuable germplasm for complementing U.S. Corn Belt breeding germplasm. The analysis of gene diversity showed that 77% of the allozyme variation resided within populations and 23% between populations. This result suggested that breeders should identify one or a few Chinese populations with the best agronomic performance, and exploit the genetic variation within these selected populations. Cluster analysis classified the 29 populations into four main groups. Groupings based on allozyme data could be useful for classifying the populations into different heterotic groups and, consequently, exploiting them in hybrid breeding. Received: 12 October 2000 / Accepted: 13 March 2001  相似文献   

10.
Music teaching and learning are socially situated activities. School-university partnerships have the potential to impact preservice teachers’ identities and level of socialization. Thus, a sociologically based belief system for establishing and maintaining school-university partnerships may provide cooperating teachers and university faculty members with purpose and direction for meeting the needs of stakeholders. This article explores the sociological and pedagogical implications of school-university partnerships and illustrates how these underpinnings function in two middle school band collaborations. Specifically, this article examines how partnerships can be viewed through three sociological perspectives, how sociological experiences might impact preservice teachers’ futures, and how policymaking endeavors could impact the strength and continuance of school-university partnerships. What we learn from existing collaborations and how stakeholders respond to this information has the potential to reshape music teaching and learning in our society.  相似文献   

11.

Purpose

The most efficient way to reduce the environmental impact of cement production is to replace Portland cement with alternative cementitious materials. These are most often industrial waste such as blast-furnace slags (GBFS) and coal combustion fly ashes (FA). However, a recent European directive no longer considers these products as waste but as by-products. Therefore, the impact of their production has to be considered. Within this new framework, this study develops an evaluation method of their environmental impacts.

Method

This paper presents pre-existing methods and underlines their limits. Through our evaluation of these methods, it has become clear that the allocation procedure is necessary; however, results depend highly on the chosen allocation procedure. This study presents a new allocation method, based on the fact that both cement and the alternative materials, GBFS and FA, are produced by energy-intensive industries (cement iron and coal) which are all subjected to the European Union Greenhouse Gas Emission Trading System. In this carbon trading system, it is economically beneficial for industries to reduce their environmental impact, like for when, by example, by-products from one industry are used as alternative ‘green’ material by another industry. Our allocation coefficient is calculated so that the economic gains and losses are the same for all of the industries involved in these exchanges and provides the overall environmental benefit of the exchanges.

Results and discussion

The discussion shows that whilst this method has much in common with other allocation methods, it is more accurate as it allocates the environmental costs fairly over the industries involved and is more robust because of its constant value. One of its limits is that it cannot be used for life cycle inventories; however, we test the possibility of choosing a coefficient from one impact category and applying it to all the others.

Conclusion

Lastly, the technical term of the equation this paper presents could be employed for consequential life cycle assessment, to calculate the most environmental uses by-products could be put to.  相似文献   

12.
As corporate responsibility for environmental management has gained attention, eco‐efficiency has become recognized as an important concept for improving the social performance of the business sector as well as that of the public sector. Improving eco‐efficiency is widely accepted not only as a means of increasing economic value, but also as a means of reducing environmental effects. However, managing for eco‐efficiency should take into consideration the differences among industries, because the impact of eco‐efficiency on financial and social performance varies among industries. To explore this variation, we conducted a cross‐industry analysis of eco‐efficiency based on social performance using data envelopment analysis (DEA). DEA measures relative efficiency and is a useful tool for taking into account the relative importance of industry‐specific characteristics. Using DEA, eco‐efficiency scores were derived based on the ratio of two factors of social performance: (1) value‐added inducing and production‐inducing economic spillover effects and (2) the amount of greenhouse gases emitted and energy used. Then, we identified the relationships between our eco‐efficiency score and financial performance, which is a measure of the firm's stability. The case study is based on 272 firms in 16 industries in South Korea. Results show that firms in product manufacturing and service‐intensive industries tend to have higher eco‐efficiency scores than those in raw material or chemical‐intensive industries. In addition, most of the industries reveal no relationship between traditional financial performance metrics and eco‐efficiency scores. A handful of industries had significant relationships with one or more financial performance metrics; in some cases, these relationships were negative, whereas in others they were positive. Surprisingly, almost all industries have no significant relationships between eco‐efficiency and financial performance. This result implies that government support for policies that reward firms that attempt to be eco‐efficient are needed, or that other nonfinancial metrics that influence eco‐efficiency, such as employment and brand reputation, should be considered. This article is expected to support policy makers as they formulate industry‐specific environmental strategies.  相似文献   

13.
The longer term sustainability of the minerals sector may hinge, in large part, on finding innovative solutions to the challenges of energy intensity and carbon dioxide (CO2) management. This article outlines the need for large‐scale “carbon solutions” that might be shared by several colocated energy‐intensive and carbon‐intensive industries. In particular, it explores the potential for situating a mineral carbonation plant as a carbon sink at the heart of a minerals and energy complex to form an industrial symbiosis. Several resource‐intensive industries can be integrated synergistically in this way, to enable a complex that produces energy and mineral products with low net CO2 emissions. An illustrative hypothetical case study of such a system within New South Wales, Australia, has been constructed, on the basis of material and energy flows derived from Aspen modeling of a serpentine carbonation process. The synergies and added value created have the potential to significantly offset the energy and emission penalties and direct costs of CO2 capture and storage. This suggests that greenfield minerals beneficiation and metals refining plants should consider closer integration with the power production and energy provision plants on which they depend, together with a carbon solution, such as mineral carbonation, as a critical element of such integration. Other sustainability considerations are highlighted.  相似文献   

14.
Construction materials account for a significant proportion of nonfuel materials flows throughout the industrialized world. Hydraulic (chiefly portland) cement, the binding agent in concrete and most mortars, is an important construction material. Portland cement is made primarily from finely ground clinker, a manufactured intermediate product that is composed predominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process typically requires approximately 3 to 6 million Btu (3.2 to 6.3 GJ) of energy and 1.7 tons of raw materials (chiefly limestone) per ton (t) of clinker produced and is accompanied by significant emissions of, in particular, carbon dioxide (CO2), but also nitrogen oxides, sulfur oxides, and particulates. The overall level of CO2 output, about 1 ton/ton clinker, is almost equally contributed by the calcination of limestone and the combustion of fuels and makes the cement industry one of the top two manufacturing industry sources of this greenhouse gas. The enormous demand for cement and the large energy and raw material requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels and provide the industry with significant opportunities to symbiotically utilize large quantities of by-products of other industries.
This article, the second in a two-part series, summarizes some of the environmental challenges and opportunities facing the cement manufacturing industry. In the companion article, the chemistry, technology, raw materials, and energy requirements of cement manufacture were summarized. Because of the size and scope of the U.S. cement industry, the article relies primarily on data and practices from the United States.  相似文献   

15.
Australia's prospects to become a key energy exporter in the Asia‐Pacific region has driven rapid development and expansion of its coal seam gas (CSG) industry, particularly in regional Queensland, Australia. The vast majority of Australia's current CSG developments and reserves are situated in agriculture‐rich, cattle‐grazing regions; therefore, it is critical to identify symbiotic relationships between agri‐based industries and the CSG industry to achieve beneficial coexistence. The CSG industry has generated infrastructure such as gas and water pipelines, water storage and treatment facilities, transportation and electricity networks, and other CSG‐associated services (e.g., accommodation, education, and medical facilities), which have the potential to improve regional communities and facilitate economic growth. This article aims to investigate these coexistence opportunities, including the use of by‐products (mainly water produced during CSG extraction), infrastructure, and services generated from the CSG industry, which can provide value to the local industries. Focusing on the cattle value chain, the authors suggest an agri‐based industrial coexistence model that indicates material‐water flows and optimized utilization of infrastructure that not only promote coexistence between the agribusiness and CSG industries, but expand the cattle value‐chain productivity in rural Queensland. A water balance has been conducted around the suggested coexistence model with the aim of quantifying water flows, to indicate the supply versus demand scenario associated with CSG‐sourced water production. The results of the water balance indicate that CSG water supply has the potential to meet the requirements of agribusiness promoting industries.  相似文献   

16.
To date the most common measures of environmental performance used to compare industries, and by extension firms or facilities, have been quantity of pollution emitted or hazardous waste generated. Discharge information, however, does not necessarily capture potential health effects. We propose an alternative environmental performance measure that includes the public health risks of toxic air emissions extended to industry supply chains using economic input-output life-cycle assessment. Cancer risk to the U.S. population was determined by applying a damage function to the Toxic Release Inventory (TRI) as modeled by CalTOX, a multimedia multipathway fate and exposure model. Risks were then translated into social costs using cancer willingness to pay. For a baseline emissions year of 1998, 260 excess cancer cases were calculated for 116 TRI chemicals, dominated by ingestion risk from polycyclic aromatic compounds and dioxins emitted by the primary aluminum and cement industries, respectively. The direct emissions of a small number of industry sectors account for most of the U.S. population cancer risk. For the majority of industry sectors, however, cancer risk per $1 million output is associated with supply chain upstream emissions. Ranking industries by total (direct + upstream) supply chain risk per economic output leads to different conclusions about the relative hazards associated with these industries than a conventional ranking based on emissions per economic output.  相似文献   

17.
The concept of industrial symbiosis (IS) over the last 20 years has become a well‐recognized approach for environmental improvements at the regional level. Many technical solutions for waste and by‐product material, water, and energy reuse between neighboring industries (so‐called synergies) have been discovered and applied in the IS examples from all over the world. However, the potential for uptake of new synergies in the regions is often limited by a range of nontechnical barriers. These barriers include environmental regulation, lack of cooperation and trust between industries in the area, economic barriers, and lack of information sharing. Although several approaches to help identify and overcome some of the nontechnical barriers were examined, no methodology was found that systematically assessed and tracked the barriers to guide the progress of IS development. This article presents a new tool—IS maturity grid—to tackle this issue in the regional IS studies. The tool helps monitor and assess the level of regional industrial collaboration and also indicates a potential path for further improvements and development in an industrial region, depending on where that region currently lies in the grid. The application of the developed tool to the Gladstone industrial region of Queensland, Australia, is presented in the article. It showed that Gladstone is at the third (active) stage of five stages of maturity, with cooperation and trust among industries the strongest characteristic and information barriers the characteristic for greatest improvement.  相似文献   

18.
The sciences of industrial ecology, complex systems, and adaptive management are intimately related, since they deal with flows and dynamic interdependencies between system elements of various kinds. As such, the tool kit of complex systems science could enrich our understanding of how industrial ecosystems might evolve over time. In this article, I illustrate how an important tool of complex systems science— agent-based simulation —can help to identify those potential elements of an industrial ecosystem that could work together to achieve more eco-efficient outcomes. For example, I show how agent-based simulation can generate cost-efficient energy futures in which groups of firms behave more eco-efficiently by introducing strategically located clusters of renewable, low-emissions, distributed generation. I then explain how role-playing games and participatory modeling can build trust and reduce conflict about the sharing of common-pool resources such as water and energy among small clusters of evolving agents. Collective learning can encourage potential industrial partners to gradually cooperate by exchanging by-products and/or sharing common infrastructure by dint of their close proximity. This kind of coevolutionary learning, aided by participatory modeling, could help to bring about industrial symbiosis.  相似文献   

19.
20.
Biogeochemical cycles are essential ecosystem services that continue to degrade as a result of human activities, but are not fully considered in efforts toward sustainable engineering. This article develops a model that integrates the carbon cycle with economic activities in the 2002 U.S. economy. Data about the carbon cycle, including emissions and sequestration flows, is obtained from the greenhouse gas inventory of the U.S. Environmental Protection Agency. Economic activities are captured by the economic input‐output model available from the Bureau of Economic Analysis. The resulting model is more comprehensive in its accounting for the carbon cycle than existing methods for carbon footprint (CF) calculations. Examples of unique flows in this model include the effect of land‐use and land‐cover change on carbon dioxide flow within the U.S. national boundary, carbon sequestration in urban trees, and emissions resulting from liming. This model is used to gain unique insight into the carbon profile of U.S. economic sectors by providing the life cycle emissions and sequestration in each sector. Such insight may be used to support policies, manage supply chains, and be used for more comprehensive CF calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号